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\S .1 Introduction

We are concerned with the Cauchy problem for the following first order
equation

(1. 1) \partial_{t}u=\sum_{j=1}^{l}A_{j}(x, t)\partial_{x}u+B(x, t)u+f ,

where x=(X_{1}^{ },\cdots, X_{l})\in R^{l} , t\in R;u(x, t)=^{t}(u_{1}(x, t), \cdots , u_{m}(x, t)) , and A_{j}(1\leqq

j\leqq l) and B are matrices of order m. All the coefficients are assumed to be
real analytic in x and continuous in t .

The Cauchy-Kowalewsky theorem, more precisely the NagumO-Ovcianni-
kov theorem asserts that, given any real analytic initial data \varphi(x)\in C^{\omega}(\mathscr{Q}_{x})

and f(x, t)\in C_{t}^{0}(C^{\omega}(\mathscr{Q}_{x})) (continuous function of t with values in C^{\omega}(\mathscr{Q}_{x})),
where \mathscr{Q}_{x}(\subset R^{l}) is an open connected neighborhood of the origin.

We are concerned with the existence domain of u. Let f=0. Then its
domain may depend on the initial data \varphi , more precisely on its radius of
convergence around the origin. However, the Bony-Schapira theorem
asserts that, when A_{j} and B are analytic in (x, t) , and if the characteristic
roots \lambda_{i}(x, t;\xi) of

(1. 2) det ( \lambda I-\sum_{j}A_{j}(x, t)\xi_{f})=0

are all real, then there exists a neighborhood of the origin, say V, such
that for any \varphi(x)\in C^{\omega}(\mathscr{Q}_{x}) , there exists a unique solution u(x, t)\in C^{\omega}(V) .
It is plausible that this result can be extended to the actual situation. Our
aim is to show that

THEOREM 1. If there exists a common existence domain V of the
solution u(x, t) for any real analytic initial data \varphi(x)\in C^{\omega}(\mathscr{Q}_{x}) , then the
characterustuc roots \lambda_{i}(x, 0;\xi)(1\leqq i\leqq m) should be real.

In \S . 6, we shall explain what becomes Theorem 1 in the case of the
class s of Gevrey (1<s<+\infty) . Concerning this subject, there are two



On the hyperbolicity in the domain of real analytic functions and Gevrey classes 299

articles: T. Nishitani [4], and V. Ya. Ivrii [2]. We want to show that the
method used in [3] can be applied to these without significant modifications.

The purpose of this exposition is tw0-fold. First, as we shall see by
comparing Theorem 1 with Theorem 2, there is an essential difference be-
tween the case of analytic functions and that of Gevrey class. In the work
of Nishitani, we cannot recognize this difference clearly. Next, by making
minimum assumptions on the coefficients, we cam make clear the nature of
the problem. The work of Ivrii assumes the coefficients to be real-analytic.

The interest in these kind problems was raised by the discussions with
the group of partial differential equations in the Scuola Normale Superiore
di Pisa during my stay in Pisa. Especially Theorem 1 is the question posed
by E. Jannelli. Let us remark that the same content was already published
in [5].

\S .2 Preliminaries

To avoid unessential technical complications, we consider only the foUow-
ing equation :

(2. 1) \partial_{t}u=\sum_{j=1}^{l}a_{j}(x, t)\partial_{x_{j}}u
,\cdot

where we assume t\mapsto a_{f}(x, t)\in H(\mathscr{Q}_{x}’) to be continuous, where \mathscr{Q}_{x}’ is a com-
plex open neighborhood of the origin. We assume

ASSUMPTION 1. There exists an open connected neighborhood V_{x}\cross

(-t_{0}, t_{0})\subset R^{l+1} of the origin such that, for any \varphi(x)\in C^{\omega}(\mathscr{Q}_{x}) , there exists
a unique solution u(x, t)\in C_{x,t}^{\infty,1}(V_{x}\cross(-t_{0}, t_{0})) of (2. 1) with u(x, O)=\varphi(x) .

ASSUMPTION 2. At least one of a_{j}(x, t) is not real at the origin.

Our aim is to show that these two assumptions are not compatible.

PROPOSITION 1. Set K=\overline{\mathscr{Q}}_{x} . Let K_{\text{\’{e}}} be the complex \epsilon neighborhood of
K. Then the mapping \varphi(x)\mapsto u(x, t) , from H(K_{e}) into C_{x,t}^{\infty,1}( V_{x}\cross(-t_{0}, t_{0}))

is continuous.

PROOF. Both spaces are Fr\’echet, and the graph of the mapping is
closed. Thus, by Banach, the mapping is continuous.

This proposition implies in particular the following a priori estimate of
u : given K(compact)\subset V_{x}, t_{0}’(0<t_{0}’<t_{0}) , then three exists a constant C(K, t_{0}’, \epsilon)

such that

(2. 2) \sup|u(x, t)|+\sum_{i}\sup|\partial_{x_{i}}u(x, t)|\leq C(K, t, \epsilon)\sup_{x\in K}‘|\varphi(x)|
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where, in the left-hand side, sup is taken over (x, t)\in K\cross[0, t_{0}’] .

In the case when the coefficients depend only on t, the proof is easy.

In fact Assumption 2 implies that there exists a \xi^{0}\in R^{n} , |\xi^{0}|=1 such that

Im \sum_{f}a_{j}(0)\xi_{j}^{0}<0

Then in the expression of the solution of (2. 1),

u(x, t; \xi)=e^{i\xi x}\exp[i\int_{0}^{t}\sum_{j}a_{j}(s)\xi_{j}ds] ,

if we set \xi=\rho\xi^{0}, \rho being positive parameter, we have

u_{\rho}(x, t)=e^{i\rho\xi^{0}x} exp [i \rho\int_{0}^{t}\sum_{j}a_{j}(s)\xi_{j}^{0}ds]

First, \sup_{x\in K_{*}}|u_{\rho}(x, 0)|\leq e^{6\rho}
.

Next, by hypothesis, if t_{0}’ is small, we have -Im \sum a_{j}(s)\xi_{j}^{0}\geq\delta(>0) for s\in[0 ,

t_{0}’] . Thus,

|u_{\rho}(0, t_{0}’)|\geq e^{\rho tt_{\acute{0}}}

By taking \epsilon<\delta t_{0}’ , and making \rhoarrow\infty , we see that (2. 2), does not hold,

which proves the Theorem.

Choice of the initial data. We take a series of the initial data at t=0 of

the form,

(2. 3) \varphi_{n}(x)=(2\pi)^{-l}\int e^{ix\xi}\psi(\xi-n\xi^{0})d\xi ,

where \xi^{0}\in R^{l} , |\xi^{0}|=1 , is chosen in such a way that

(2. 4) Im \sum_{j}a_{j}(0,0)\xi_{j}^{0}=-\delta_{0}<0
,

and \psi(\xi)\geq 0 being a continuous function with its support in \{\xi;|\xi|\leq 1\} , and

J\psi d\xi=1 .

Let u_{n}(x, t) be the solution of (2. 1) corresponding to \varphi_{n}(x) . Since

\sup_{K}. |\varphi_{n}(x)|\leq e^{(n+1)6}’.

(2. 2) implies,

(2. 5) \sup|u_{n}(x, t)|+\sum_{i}\sup|\partial_{x_{i}}u_{n}(x, t)|\leq C(K, t_{0}’, \epsilon)e^{(n+1)\epsilon}c

Observe that C(K, t_{0}’, \epsilon) is independent of n, and that we can take \epsilon as
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small as we please.

\S .3 Microlocalization

In the C^{\infty}-case, we used the cut off functions of the form \alpha(\xi/n) where
\alpha(\xi) is a C^{\infty}-function with small support, which is equal to 1 on a ne\overline{\overline{l}}gh -

borhood of \xi^{0} . [3]. In actual case, this would not work well. We use here
the following cut off functions due to H\"ormander [1].

Let K be a compact set in R^{l} . For each large integer N we associate
\chi_{N}(x) defined as follows: Let r>0 be a positive number. \phi\in C_{0}^{\infty} with
support in \{x;|x|<1/4\} so that \phi\geq 0 , \int\phi dx=1 . Set

C_{a}= \int|D^{\alpha}\phi|dx , C= \max C_{\alpha}1|\alpha|=1

Let u be the characteristic function of the set of points at distance less than
1/2 r from K, and form

\underline{N}

\chi_{N}=u*\phi_{r}*\phi_{r/N}*\cdots*\phi_{r/N} .
Here we have set

\phi_{a}(\dot{x})=a^{-l}\phi(x/a) .
Then \chi_{N}(x)\in C_{0}^{\infty} , equal to 1 on K, and vanishes at all points with distance
greater than r from K, and we have

|\partial^{\alpha+\beta}\chi_{N}(x)|\leq C_{a}r^{-|a|}(CN/r)^{1\beta I} if |\beta|\leq N

Now we take as K the ball of radius r_{0}/2 with center \xi^{0}, and r=r_{0}/2^{\cdot}in

the above definition. Finally, set

(3. 1) \alpha_{n}(\xi)=\chi_{N}(\xi/n)t

We have

(3. 2) | \partial^{\alpha+\beta}\alpha_{n}(\xi)|\leq\frac{C_{\alpha}’}{n^{|\alpha|}}(C’N/n)^{I\beta 1} for |\beta|\leq N ,

C’=2C/r_{0} , C_{\alpha}’=C_{a}( \frac{r_{0}}{2})^{-|\alpha|}

In the same way, on taking as K the ball of radius r_{0}/2 with center the
origin of R_{x}^{l} , and r=r_{0}/2 , we set

(3. 3) \beta_{n}(x)=\chi_{N}(x)(
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In the same way we have

(3. 4) |\partial^{a+\beta}\beta_{n}(x)|\leq C_{\alpha}’(C’N)^{|\beta|} for |\beta|\leq Nr

Hereafter we take N in such a way that N_{-}^{\sim}\theta n(0<\theta<1) , \theta being defined
later.

Apply \beta_{n}(x) to (2. 1)

\partial_{t}(\beta_{n}u)=\sum_{j}a_{j}\partial_{x_{j}}(\beta_{n}u)-\sum_{j}a_{j}\partial_{x_{j}}\beta_{n}u .

Observe that supp [\beta_{n}]\subset\{x;|x|\leq r_{0}\} , and r_{0} is small. We extend all
the coefficients on R^{l} , keeping invariant on the set \{x j |x|\leq 2r_{0}\} . For
instance,

\tilde{a}_{f}(x, t)=\phi(|x|)a_{f}(x, t)+(1-\phi(|x|))a_{f}(0, t)

where \phi(r)\in C_{0}^{\infty} , 0\leq\phi(r)\leq 1 , \phi(r)=1 , for r\leq 2r_{0} , \phi(r)=0 for r\geq 3r_{0} . We
write a_{f} instead of \tilde{a}_{j} .

Apply \alpha_{n}(D) to the above equation. Then

(3. 5) \partial_{t}(\alpha_{n}\beta_{n}u)=\sum_{f}a_{j}\partial_{x_{f}}(\alpha_{n}\beta_{n}u)+f_{n}
,

where f_{n} is the function arising from the actions of cut off, mamely,

(3. 6) f_{n}= \sum_{j}[\alpha_{n}, a_{j}]\partial_{x_{j}}(\beta_{n}u)-\sum_{j}\alpha_{n}a_{j}\partial_{x_{j}}\beta_{n}u

To estimate the error term f_{n} , we need to consider the equations replacing

in (3. 5) \alpha_{n}, \beta_{n} by \alpha_{n}^{(p)} , \beta_{n(q)}(\alpha_{n}^{(p)}(\xi)=\partial_{\xi}^{p}\alpha_{n}(\xi), \beta_{n(q)}=(i^{-1}\partial_{x})^{q}\beta_{n}(x)) .

(3. 7) \partial_{t}(\alpha_{n}^{(p)}\beta_{n(q)}u)=\sum_{t}a_{j}\partial_{x_{j}}(\alpha_{n}^{(p)}\beta_{n(q)}u)+f_{n,(p,q)}
,

(3. 8\rangle f_{n,(p,q)}= \sum_{j}[\alpha_{n}^{(p)}, a_{f}]\partial_{x_{f}}(\beta_{n(q)}u)-i\sum\alpha_{n}^{(p)}a_{f}(\beta_{ntq+e_{j})}u)t

\S .4 Energy inequalities

Let us recall (2. 4). By virtue of the microlocalization, if we choose r_{0}

small, and that if we take t_{0}’(0<t_{0}’\leq t_{0}) small, we have the following energy

inequality for the solution u of (3. 7).

For t\in[0, t_{0}’] , it holds (p\geq 0, q\geq 0)

(4. 1) \frac{d}{dt}||\alpha_{n}^{(p)}\beta_{n(q)}u||\geq\delta’n||\alpha_{n}^{(p)}\beta_{n(q)}u||-||f_{n,(p,q)}||,\cdot

where \delta’(<\delta) is a positive constant independent of (n, p, q) .
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\S .5 Estimates of the error terms

Put u=u_{n} in (4. 1). Recall that u_{n}(x, t) is the solution of (2. 1) cor-
responding to \varphi_{n}(x) . Our aim is to show the following. Define

(5. 1) S_{n}(t)= \sum_{0\leq|p+q|\leq N}M^{1p+qI}n^{-1q1}||\alpha_{n}^{(p)}\beta_{n(q)}u_{n}||

Then, if we take M large, we have

(5. 2) \sum_{0\leq|p+q|\leq N}M^{lp+q1}n^{-1qI}||f_{n,(p,q)}||<\frac{1}{2}\delta’nS_{n}(t)+o(1)c

To estimate ||f_{n,(p,q)}|| , we divide it in two parts:

I) ||f_{n,(p,q)}||_{\{x;Ix1\leq r_{0}\}p}

II) ||f_{n,(p,q)}||_{1x;1xI\geq 2r_{0}I}

Let us recall that \beta_{n}(x) has its supports in \{x;|x|\leq r_{0}\} , and moreover, on
the set \{x;|x|\leq 2r_{0}\} , a_{j}(x, t) are real analytic. Namely,

|a_{j(\nu)}(x, t)|_{1x;1x1\leq 2r_{0}I}\leq AC_{0}^{|\nu|}\nu !

Without loss of generality, are can assume.
C’\geq C_{0} ,

where C’ is the constant in (3. 2) and (3. 4). Look at I). The asymptotic
expansion becomes

[ \alpha_{n}^{(p)}, a_{j}]\sim\sum_{|\nu|\geq|}\nu!^{-1}a_{j^{(_{y})}}\alpha_{n}^{(p+\nu)}

Using the above estimate
||\nu!^{-1}a_{j(_{\nu})}\alpha_{n}^{(p+\nu)}\partial_{x_{j}}(\beta_{n(q)}u_{n})||_{\{x;IxI\leq 2r_{0}\rangle}

\leq AC_{0}^{|\nu|}||\alpha_{n}^{(p+\nu)}\partial_{x_{f}}(\beta_{n(q)}u_{n})||

\leq(1+r_{0})nAC^{\prime|\nu|}||\alpha_{n}^{(p+\nu)}\beta_{n(q)}u_{n}||

We take the asymptotic expansion up to

(5. 3) |\nu|+|p+q|=N

Thus, we have

(5. 4) \{

n^{-1q1}M^{|p+q|}||f_{n,(p,q)}||_{\{x;1x1\leq 2r_{0}I}

\leq l(1+r_{0})nA[\sum_{1\leq|\nu|\leq N-|p+q|}(C’/M)^{|\nu|}M^{(p+q+\nu 1}n^{-1qI}||\alpha_{n}^{(p+\nu)}\beta_{ntq)}u_{n}||

+_{IA_{0\leq|\nu|\leq N-Tp+q|}^{i^{\vee wp}}}^{\frac{1}{M}\sum_{j=}^{l}\sum,(C’/M)^{|\nu|}M^{\mathfrak{l}p+q+\nu I+1}n^{-1qI-1}||\alpha_{n}^{(p+\nu)}\beta_{n(q+e_{j})}u_{n}||]}t--|\pi-\prime_{1}1|

+(remainder term)
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Summing up the above expression, we see that the coefficient of M^{(p+qI}n^{-1q1}\cross

\alpha||\alpha_{n}^{(p)}\beta_{n(q)}u_{n}|| is majorized by

n\{l(1+r_{0}) A j>1 \sum_{\prime}(j+1)^{\iota_{-1(\frac{C’}{M})^{j}+\frac{l(1+r_{0})A}{M}\sum_{>0}(j+1)^{l-1(\frac{C’}{M})^{f}\}t}}}j

,

Now we fix M(>C’) is such a way that

(5. 5) \{\cdots\cdots\}\leq\frac{1}{2}\delta’ ,

where \delta’ is the constant appearing in (4. 1).

Next, we estimate the remainder term. It would be enough to estimate
the quantity M^{(p+qI}n^{-Iq1}C^{\prime|\nu|}||\alpha_{n}^{(p+\nu)}\beta_{n(q)}u_{n}|| , for |p+q|+|\nu|=N. This is esti-
mated by

(MC’N/n)^{N}||u_{n}||_{\{x;1x1\leq 2r_{0}\}}

We take integer N in such a way that

(5. 6) N_{-}^{-} \frac{1}{MC’e}n\equiv\theta n , ( \theta=\frac{1}{MC’e}) .

More precisely, the nearest integer to On.

Since (MC’N/n)^{N-}-e^{-\theta n} , in view of (2. 5) (a priori estimates of u_{n}), the
above quantity is estimated by

C(K, t_{\acute{0}}, \epsilon)e^{-\theta n}e^{6(n+1)}

So, if we choose \epsilon less than \theta, mere precisely if

(5. 7) \epsilon<\frac{1}{MC’e} , \epsilon<\frac{1}{2}\delta’t_{0}’ ,

the remainder term becomes negligible when narrow\infty .
Now we pass to the estimates of the term M^{tp+qI}n^{-1q1}||f_{n,(p,q)}||_{1x;\mathfrak{l}x1\geq 2r_{0}1} .

In the domain \{x;|x|\geq 2r_{0}\} , the above asymptotic expansion does not work,
because we cannot assume a_{f}(x, t) to be real analytic in R^{n} . However, in
virtue of the pseud0-local property of \alpha_{n}(D) , we see easily these terms are
of o(1) .

In fact,

[\alpha_{n}^{(p)}, a_{f}]\partial_{x_{j}}(\beta_{(q)}u_{n})=\alpha_{n}^{(p)}a_{j}\partial_{x_{j}}(\beta_{(q)}u_{n})-a_{j}\alpha_{n}^{(p)}\partial_{x_{j}}(\beta_{(q)}u_{n})

Let

\tilde{\alpha}_{n}^{(p)}(x)=(2\pi)^{-l}\int e^{ix\xi}\alpha_{n}^{(p)}(\xi)d\xi .



On the hyperbolicity in the domain of real analytic functions and Gevrey classes 305

Then \alpha_{n}^{(p)}(D)v=\tilde{\alpha}_{n}^{(p)}(x)*v . Now

|x|^{2k} \tilde{\alpha}_{n}^{(p)}(x)=(2\pi)^{-l}\int e^{ix\xi}(-\Delta)^{k}\alpha_{n}^{(p)}(\xi)d\xi

Suppose |p|\leq N, then we have

|\tilde{\alpha}_{n}^{(p)}(x)|\leq const . l^{k}(C’N/n)^{|p1+2k}/|x|^{2k}

where k is an arbitrary integer satisfying |p|+2k\leq N. In that estimate, if
N-|p|\leq l (dimension of the space), we replace the right-hand side by const.
(C’N/n)^{N}/|x|^{l+1} . This implies

LEMMA. (pseudO-local property of \alpha_{n}^{(p)})

If v(x)\in L^{2} with support in \{x;|x|\leq r_{0}\} , then

||\alpha_{n}^{(p)}v||_{\{x;1x1\geq 2r_{0}I}\leq cost . l^{k}(C’N/n)^{|pI+2k}/r_{0}^{2k}||v|| ,

where k is an arbitary constant satisfying |p|+2k\leq N, and const. is inde-
pendent of (k,p) .
From this lemma, and in view of the form of [\alpha_{n}^{(p)}, a_{f}]\partial_{x_{j}}(\beta_{tq)}u_{n}) , we have

p_{ROPOSITION} .
M^{(p+qI}n^{-IqI}||f_{n,(p,q)}||_{\{x;1x1\geq 2r_{0}I}\leqq const.(MC’N/n)^{N}|u_{n}|_{1,1x_{j}Ix1\leq r_{0}I} ’.

if M\geq\sqrt{l}/r_{0} .
This implies, since the right-hand side is estimated by

const. e^{-(\theta-\epsilon)}n ,

we have completed the proof of (5. 2).

Now it is easy to see that

S_{n}(0)\geqq||\alpha_{n}\beta_{n}\varphi_{n}||\geq c_{0}(>0) .

Thus, we have,

(5. 8) S_{n}(t)\geq c_{0}’e^{\frac{1}{2}\delta’nt} (0<c_{0}’<c_{0})

On the other hand,

(5. 9)

S_{n}(t)= \sum_{0\leq|p+q|\leq N}M^{lp+q1}n^{-1q1}||\alpha_{n}^{(p)}\beta_{n(q)}u_{n}||

\leq A\sum_{(p,q)}M^{(p+q1}(C’N/n)^{1p+qI}|u_{n}|_{0,1x;Ix1\leq r_{0}I}

- \leq A’e^{\epsilon n}\sum_{(p,q)}e^{-Ip+qI}\leq A’e^{\epsilon n}
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(5. 8) and (5. 9) are not compatible at t=t_{0}’ , because we have chosen \epsilon in

such a way that \epsilon<\frac{1}{2}\delta’t_{0}’ .

\S .6 Theorem in the case of Gebrey class

We can extend the above arguments to the case of Gevrey class. Let
G_{x}’\subset R^{l} be a relatively compact open set. We say that f(x)\in C^{\infty}(\mathscr{Q}_{x}) belongs
to \gamma^{(s)}(\mathscr{Q}_{x}) , (s,’,1\sim) , if there exist positive constants C and K such that

\forall_{\alpha^{\sim_{\backslash }},0},
\sup_{x\in 0}|\partial^{\alpha}f(x)|\leq C\alpha!^{s}K^{|a|}

Next, we say that, f(x)\in\gamma_{A}^{(s)}(6_{x}) , if f(x)\in\gamma^{(s)}(\mathscr{Q}_{x}) , and moreover ||f||_{s,A}=

\sup_{>\nu 0},\sup_{x\epsilon 0_{x}}|\partial^{\nu}f(x)|/\nu!^{s}A^{|\nu|}<+\infty .

Of course, if A<A’,, \gamma_{A}^{(s)}\subset\gamma_{A}^{(s)}, , and

\gamma^{(s)}(\mathscr{Q}_{x})=\bigcup_{A>0}\gamma_{A}^{(s)}(\mathscr{Q}_{x}) .

DEFINITION. We say that (1. 1) with f=0 is well-posed in \gamma^{(s)} , or in
short \gamma^{(s)} -well-posed, at the origin, if for every u_{0}(x)\in\gamma^{(s)}(\mathscr{Q}_{x}) , there exists
a unique solution u(x, t)\in C_{x,t}^{\infty,1}( V) in a neighborhood V of the origin, where
\mathscr{Q}_{x} is a fixed open neighborhood of the origin, and V may depend on u_{0} .

We can prove the following theorem, which is the same as in the C^{\infty}-

case :

THEOREM 2. Suppose s>1 . The coefficients of (1. 1) are assumed to
be in \gamma^{(s)} in x, and continuous in t . Then, in order that (1. 1) to be \gamma^{(S)} -well-
posed at the origin, it is necessary that all the eigenvalues at the origin \lambda_{i}

(0,0;\xi) be real

REMARK 1. Theorem 2 can be stated as follows. If one of eigenvalues
is not real at the origin, then we are at the following situation: i) the
uniqueness of the Cauchy problem does not hold, ii) the uniqueness holds,
however there exists a least an initial data u_{0}(x)\in\gamma^{(s)}(\mathscr{Q}_{x}) such that the
corresponding solution does not exist in any neighborhood of the origin.

REMARK 2. Theorem 2 has been proved by Nishitani under the assump-
tion that the coefficients belong to \gamma^{(s’)} with 4<s , and, it seems to us, this
is an essentia] assumption to carry out the arguments. It is important to
prove the theorem under the assumption that the coefficients belong to \gamma^{(s)} ,
as function of x, in view of the several results on the sufficiency.

We are going to explain how to modify the above arguments to derive
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theorem 2.

First of all, observe that \gamma_{A}^{(s)}(\mathscr{Q}_{x}) , with the norm ||f||_{s,A} is a Banach
space. Then, if we assume \gamma^{(s)} -well-posedness at the origin, then by Category
theorem, every time A is fixed, there exists a common existence domain
D_{A} of the solutions u(x, t) for all u_{0}\in\gamma_{A}^{(s)}(\mathscr{Q}_{x}) . Thus by Banach,

(6. 1) the mapping u_{0}(x)\in\gamma_{A}^{(s)}(6_{x})\mapsto C_{x,t}^{1,1}(D_{A}) is continuous.

Again we argue to (2. 1) to simplify the arguments. In the case when
the coefficients a_{j} depend only on t, the argument is simple. In fact, let
\xi^{0}\in R^{n}, |\xi^{0}|=1 , then

||e^{i\rho\xi^{0}x}||_{s,A}\leq\exp(\epsilon\rho^{1/s}) when \rho\in R_{+}^{1}arrow+\infty j

where const. A^{-1/s} .

Now, as explained before, there exists a positive constant \delta(>0) such that

|u_{\rho}(0, t_{0}’)|\geq e^{\rho\partial t_{\acute{0}}}t

Of course we suppose \{0\}\cross[0, t_{0}’]\subset D_{A}. Since s>1 , (6. 1) never holds, which
proves Theorem 2. In the general case, we take \varphi_{n}(x) defined by (2. 3) as
the series of initial data. Then

(||\varphi_{n}(x)||_{s,A}\leq\exp(\epsilon n^{1/s})

(6. 2)
|_{\epsilon=const.A^{-1/s}}

In general, we should take A large to make \epsilon small (In the case when the
coefficients belong to \gamma^{(S^{l})} , s’<s , there is no need of such a consideration).
Then, since the size of D_{A} might become small when A is taken large, we
should take the support of cut off function \beta_{n}(x) small. In appearance, this
seems to be a serious difficulty, which is an essential difference between the
analytic case and the Gevrey case. However, as we shall show in the next
section, a little careful examination of the arguments in the analytic case
enables us to overcome this difficulty.

\S .7 Proof of Theorem 2

1^{o}) We define \alpha_{n}(\xi)=\chi_{N}(\xi/n) , where N_{-}^{\sim}\theta n^{1/s}, \theta is to be defined later.
\beta_{n}(x)=\chi_{N’}(x) , N’-\sim\theta’n , \theta’ is defined later.

2^{o}) In the analytical case, we considered all the terms of the form
M^{\mathfrak{l}p+q1}n^{-1q1}||\alpha_{n}^{(p)}\beta_{n(q)}u_{n}|| , |p+q|\leq N,\cdot

here we consider all the terms of the form
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M^{|pI}|p|!^{s-1}n^{-Iq1}||\alpha_{n}^{(p)}\beta_{n(q)}u_{n}|| , |p|\leq N , |q|\leq N’

In fact, in the estimates of commutators with \alpha_{n}^{(p)} , we are concerned with
the terms \nu!^{-1}a_{j(\nu)}\alpha_{n}^{(p+\nu)}\beta_{n(q)}u_{n} . Since

|\partial^{y}a_{j}(x, t)|\leq A’\nu!^{s}C^{1I}0^{\nu}’-

these terms are estimated by A’\nu!^{s-1}C_{0^{\nu}}^{I1}||\alpha_{n}^{(p+\nu)}\beta_{n(q)}u_{n}|| .

3^{o}) We defined r_{0} as the size of cut off functions \alpha_{n}(\xi) , \beta_{n}(x) which
guarantees the energy inequality. In the analytic case, we decided the siezs
of two functions in a almost symmetric way. In the actual case, we decide
the sizes of these two functions in different ways. First we decide the size
of \alpha_{n}(\xi) by r_{0} . supp [\beta_{n}] should be taken small according the size of D_{A} .
Of course, we can assume supp [\beta_{n}]\subset\{x;|x|\leq r_{0}\} . In this sense, r_{0} may be
considered independent of A.

4^{o}) M is defined by (5. 5) with M\geq\sqrt{l}/r_{0} .
5^{o}) N is defined by

(7. 1) N_{-}^{\sim}( \frac{1}{MC’e})^{1/s}n^{\frac{1}{s}} ; \theta=(\frac{1}{MC’e})^{1/s}

Then, the remainder term is estimated by

M^{1p\mathfrak{l}}|p|!^{s-1}\nu!^{s-1}C_{0^{\nu}}^{1l}||\alpha_{n}^{(p+\nu)}\beta_{n(q)}u_{n}||n^{-1qI} ,

where |p|+|\nu|-\sim N. This is estimated by

M^{Ip+\nu 1}|p+\nu|!^{s-1}|\alpha_{u}^{(p+v)}|_{0}||\beta_{n(q)}u_{n}||n^{-Iq1}

\leq N!^{s-1}(MC’N/n)^{N}||\beta_{n(q)}u_{n}||n^{-IqI}

\leq(MC’N^{s}/n)^{N}||\beta_{n(q)}u_{n}||n^{-Iq1}

\leq e^{-N}||\beta_{n(q)}u_{n}||n^{-Iq1}=\exp (-\theta n^{1/s})||\beta_{n(q)}u_{n}||n^{-1qI}

6^{o}) \theta is thus determined, we take A large in such a way that (see (6. 2))

(7. 2) \epsilon<\theta .
7^{o}) When D_{A} is defined, we define \beta_{n}(x) . We can assume supp [\beta_{n}]\subset

\{x;|x|\leq r_{0}\} and that if we choose t_{0}’(>0) small, we have

supp [\beta_{n}(x)]\cross[0, t_{0}’]\subset D_{A} .
By the definition \beta_{n}(x)=\chi_{N’}(x) , we have

|\partial^{\alpha}\beta_{n}(x)|\leq(C’N’)^{|\alpha|} , for |\alpha|\leq N’ ,
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Where C’ can be considered as the number which is determined only by the
size of \beta_{n}(x) . So we define

\theta’=1/C’e , N’=\theta’n .
Thus,

| \beta_{n(q)}(x)|n^{-IqI}\leq(\frac{C’N’}{n})^{1qI} for |q|\leq N’

Observe that the right-hand side \leq 1 , and that for |q|=N’ ,

(C’N’/n)^{1q1}=\exp (-\theta’n)

Now, taking into account (6. 1) and (6. 2), we know that sup |u_{n}(x, t)|

on (x, t)\in supp[\beta_{n}]\cross[0, t_{0}’] is estimated by const, exp (\epsilon n^{1/S}) . Then, by virtue
of (7. 2), the remainder terms are negligible in view of the results of 5^{o}) and
7^{o}) . Moreover, we have

S_{n}(t)=
|q I,\leq N\sum_{|p|\leq N},

,
M^{\mathfrak{l}pI}|p|!^{s-1}n^{-|q|}||\alpha_{n}^{(p)}\beta_{n(q)u_{n}}||\leq A’ exp (\epsilon n^{1/s})

On the other hand, we have

S_{n}(t)\geq C_{0}’ exp ( \frac{1}{2}\delta’nt) , t\in[0, t_{0}’]

These two estimates are not compatible when narrow\infty , since s>1 .

\S .8 Remark

More refined arguments will prove the following fact. Let

P(x, t;D_{x}, D_{t})=P_{m}+P_{m-1}+\cdots ,

with the principal symbol

P_{m}(x, t; \xi, \tau)=j=I^{-}I_{1}(\tau-\lambda_{j})^{2}\prod_{j=s+1}^{m-S}(\tau-\lambda_{j})s ,

where \lambda_{j}(x, t, \xi)(1\leq j\leq m-s) are real and distinct. The coefficients are
supposed in \gamma^{(s)}(s\geqq 1) . We know that if the Levi condition is satisfied, then
the Cauchy problem is C^{\infty}-well posed.

Assume now that the Levi condition is violated at the origin, namely for
some i(1\leq i\leq s) and for some \xi\in R^{n}, it holds

P_{m-1}’ (0, 0; \xi , \lambda_{i}(0,0;\xi))\neq 0 ,

where P_{m-1}’(x, t;\xi, \tau) is the subprincipal symbol of P. We can prove the
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following

THEOREM 3. In order that the Cauchy problem for P be \gamma^{(s)} will posed
in a neighborhood of the origin, it is necessary that s\leqq 2 .

We remark that this theorem is already proved in [2] under the assump-
tion that the coefficients of P are real analytic. A forthcoming paper will
give the proof with some related results.
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