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0. Introduction. Statement of results

Throughout this work \Omega denotes a C^{\infty} manifold, countable at infinity,

of dimension 2n+1(n\geq 1) . What we call here an abstract CR structure

(to be precise one should add “of codimension on\"e ) is the datum of a C^{\infty}

vector subbundle \mathscr{C} of the complex tangent bundle CTf2 (henceforth called
the CR bundle) submitted to the following three conditions:

(0. 1) [\mathscr{C}, \mathscr{C}]\subset \mathscr{C} , i. e., the commutation bracket of any two smooth
sections of \mathscr{C} over an open subset of f2 is a section of \mathscr{C} over
that same subset;

(0. 2) \mathscr{C}\cap\overline{\mathscr{C}}=\{0\} ( \mathscr{C}- is the complex conjugate” of \mathscr{C}) ;

(0. 3) the fifibre dimension over C of \mathscr{C} is equal to n.

Call \mathscr{C}’ the orthogonal of \mathscr{C} in the complex cotangent bundle CT^{*}\Omega for the
duality between tangent and cotangent vectors. Note that (0. 2) is equivalent
to

(0. 4) CT^{*}\Omega=\mathscr{C}’+\overline{\mathscr{C}}’

Let \Omega’ be any open subset of \Omega . A C^{1} function (resp., a distribution) f in
\Omega’ is called a CR function (resp., a CR distribution) if Lf=0 whatever the
smooth section L of \mathscr{C} over \Omega’ . The differentials of the C^{1} CR functions
are continuous sections of \mathscr{C}’ . The CR structure \mathscr{C} is said to be locally
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integrable if at any point p of \Omega there are n+1 germs of C^{\infty} CR functions
whose differentials at p are linearly independent (and thus make up a linear
basis of \mathscr{C}_{p}’).

Let U be an open subset of \Omega in which there are n linearly independent
C^{\infty} sections of \mathscr{C} , L_{1} , \cdots , L_{n} ; they generate \mathscr{C} at every point of U. Take
any smooth real vector field L_{0} in U such that

L_{0}, L_{1} , \cdots , L_{n},\overline{L}_{1} , \cdots,\overline{L}_{n\prime}.

make up a basis of CT_{p}\Omega for every p\in U. For every pair of indices j,

k=1 , \cdots , n , there is a complex number c_{jk}(p) such that, at the point p,

\frac{1}{\sqrt{-1}}[L_{j},\overline{L}_{k}]-c_{jk}(p)L_{0}\in \mathscr{C}+\overline{\mathscr{C}}

It is customary to call

(0. 5) \mathscr{L}(p)=(c_{jk}(p))_{1\leq j,k\leq n}

the Levi matrix of the system L=(L_{1}, \cdots, L_{n}) at the point p\in U. Note that
(0.5) is a self-adjoint n\cross n matrix with complex entries. The associated
quadratic form \mathscr{L}(p)v\cdot\overline{v}/2(v\in C^{n}) is called the Levi form of the system L.
Actually it not only depends on the choice of L_{1} , \cdots , L_{n} but also on that of
L_{0} . However, when true, the following is an intrinsic property of the CR
structure \mathscr{C} :

(0. 6) At every point of \Omega the Levi form (of some – of any –system
L_{0}, L_{1} , \cdots , L_{n} defined in the neighborhood of that point) is non-
degenerate and has exactly n-1 eigenvalues of one sign and
one of the opposite sign.

In the present paper we shall solely deal with CR structures that satisfy
Condition (0. 6).

Let us underline the fact that, when n=1 , in which case dim \Omega=3 ,
Condition (0. 6) simply means that the Levi constant ( =1\cross 1 matrix) is
nowhere zero, or equivalently, that

(0. 7) L,\overline{L}, [L,\overline{L}] are linearly independent.

In [4] L. Nirenberg gave the first example of a CR structure on R^{3}

satisfying (0. 7) such that any germ of CR function at the origin, of class
C^{1} , is constant. Nirenberg’s example is a perturbation of the Lewy structure,

which agrees with the latter to infinite order at the origin. The Lewy
structure on R^{3} is the one defined by the vector field
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L= \frac{\partial}{\partial\overline{z}}-iz\frac{\partial}{\partial u}

(coordinates in R^{3} are x, y, u, and z=x+iy).
In [2] the present authors showed that, if (0. 6) holds (now for any

n\geq 1) , an otherwise arbitrary CR structure can be perturbed in such a way
as to obtain a new CR structure, agreeing with the original one to infinite
order at a given point p_{0} , and which is not locally integrable at p_{0}(i. e. , there
is no neighborhood of p_{0} in which the new structure is locally integrable).

DEFINITION 0. 1. We say that two CR structures in \Omega, \mathscr{C}^{(j)}(j=1,2)

agree to infifinite order at a point p of 42, if there is an open neighborhood
U of p in \Omega, and for each j=1,2, a basis L_{1}^{(j)} , \cdots , L_{n}^{(j)} of \mathscr{C}^{(j)} in U such
that

(0. 8) for every k=1 , \cdots , n, L_{k}^{(1)}-L_{k}^{(2)} vanish to infifinite order at p.
The reader will easily check that the condition in Def. 0. 1 is equivalent to
the following property :

(0. 9) given any germ of C^{\infty} section L^{(1)} of \mathscr{C}^{(1)} at p there is a germ
of C^{\infty} section L^{(2)} of \mathscr{C}^{(2)} at p such that L^{(1)}-L^{(2)} vanishes to

infifinite order at p.
The first result proved in the present work improves the corresponding
result in [2] :

THEOREM I. Let the CR structure \mathscr{C} on \Omega satisfy Condition (0. 6).
Then, given any point p_{0} of \Omega , there is a CR structure {?}(p_{0}) on \Omega,

also satisfying (0. 6), agreeing with \mathscr{C} to infifinite order at p_{0}, and such that
the following is true:

(0. 10) The differential at p_{0} of every germ at p_{0} of CR function (in

the sense of {?}(p_{0})) , of class C^{1}, vanishes.

The proof of Th. I (Sections 1 to 4) is by construction. The modified
structure \tilde{\mathscr{C}}(p_{0}) coincides with the original one, \mathscr{C} , in the complement of
an arbitrarily small neighborhood of p_{0} .

Our second result applies rather to linear bases, over some open subset
of \Omega, of the CR bundle \mathscr{C} . We show that they can be approximated, on
compact subsets and for the C^{\infty} topology on the coefficients of the vector
fields, by aberrant systems. We call aberrant any system L=(L_{1}, \cdots, L_{n}) of
n smooth vector fields in an open subset \Omega’ of \Omega (defining a CR structure
on \Omega’ ) that has the following property:
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(0. 11) Whatever p\in\Omega’ and \delta>0 , every germ at p of a C^{1+\delta} solution of
the homogeneous differential equations

(0. 12) L_{j}h=0 , j=1 , \cdots , n ,

is the germ of a constant function.
Note that if such a system L is sufficiently close to a basis of \mathscr{C} over some
compact set, it will automatically possess Property (0. 6) there. In practice
we may limit our attention to systems L that have that property.

REMARK. When n\geq 2 every system L that has Property (0. 6) is hyp0-
elh.ptic and even 1/2-subelliptic (see [1]). In particular, any distribution solu-
tion of (0. 12) in an arbitrary open subset of \Omega’ is a C^{\infty} function in that
subset. Thus Condition (0. 11) is equivalent to the following one:
(0. 13) Whatever p\in\Omega’ every germ at p of a distribution solution of

(0. 12) is the germ of a constant function.
THEOREM II . Suppose that the CR structure \mathscr{C} has Property (0. 6)

Any linear basis of \mathscr{C} over a neighborhood of a compact subset K of f2 is
the limit, for the C^{\infty} topology on a possibly smaller open neighborhood of
K, of a sequence of systems of vector fifields which have Property (0. 11).

Needless to say the only bases of \mathscr{C} we consider here are made up of
C^{\infty} sections of \mathscr{C} .

The proof of Th. II is based on Th. I and on a Baire’s category argu-
ment inspired by the classical work of Hans Lewy [3]. Thus the proof is
not constructive, in contrast with that of Th. I and with Nirenberg’s con-
struction in [4], The reader will notice that the solutions (of class C^{1+\delta} for
some \delta>0 when n=1) of the aberrant homogeneous equations, in any open
subset of \Omega , are locally constant. In Nirenberg’s example the open sets had
to contain a central point. And the aberrant systems, far from being rare,
are in fact dense. It is highly likely that, if one is willing to define to
appropriate C^{\infty} topology on the set of CR structures satisfying (0. 6), the latter
assertion could be precisely restated as the density of the aberrant CR struc-
tures. We have not attempted to do so here.

The present article is essentially self-contained. Some portions of the
reasoning of [2] have therefore been repeated.

1. Perturbations of locally integrable structures

We begin by considering a locally integrable CR structure on \Omega . An
arbitrary point p_{0} of 12 has an open neighborhood U in which there are
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(real) local coordinates x_{1} , \cdots , x_{n} , y_{1} , \cdots,y_{n} , u and n+1C^{\infty} CR functions
z_{1} , \cdots , z_{n} , w, such that

(1. 1) z_{j}=x_{j}+iy_{j} (i=\sqrt{-1}, j=1, \cdots, n) ;
w=u+i\phi(z,\overline{z}, u)

We shall always assume that the coordinates and the CR functions (1. 1) all
vanish at the point p_{0} . Henceforth we refer to it as “the origin” (and identify
U to an open neighborhood of the origin in R^{2n+1}). It is standard to effect
some simplifications of the Taylor expansion of \phi about the origin, by means
of holomorphic substitutions of (z_{1}, \cdots, z_{n}, w) . One may suppose that

(1. 2) \phi(z,\overline{z}, u)=\sum_{j,k=1}^{n}c_{jk}z_{j}\overline{z}_{k}+O(|z||u|+|u|^{2}+|z|^{3})

It is well known that the hypothesis that the Levi form of the structure
(at p_{0}) is nondegenerate is equivalent with the property

(1. 3) det (c_{jk})\neq 01

The hypothesis (0. 6) about the signature of the Levi form means that,

possibly after a nonsingular C-linear transformation of z we may assume

(1. 4) \phi(z,\overline{z}, u)=|z_{1}|^{2}-|z’|^{2}+O(|z||u|+|u|^{2}+|z|^{3}) ,

where we have used the notation \acute{z}=(Z_{2}^{ },\cdots, z_{n}) .
Observing that dz_{j}, d\overline{z}_{k} (j, k=1, \cdots, n) , together with dw, make up

a linear basis of CT_{p}^{*}\Omega at every point p of U we introduce the dual basis
of CT_{p}\Omega . This defines 2n+1 smooth vector fields in U, M_{0}, M_{1}, \cdots , M_{n} ,
L_{1} , \cdots , L_{n} , by the conditions:

L_{j}z_{k}=L_{j}w=0 , L_{j}\overline{z}_{k}=\delta_{jk} (Kronecker index)
(1. 5)

M_{j}\overline{z}_{k}=M_{j}w=0 : M_{j}z_{k}=\delta_{jk} , if j, k=1, \cdots , n’.
(1. 6) M_{0}z_{k}=M_{0}\overline{z}_{k}=0’. k=1, \cdots , nr, M_{0}w=1

It follows immediately from (1. 5)-(1.6) that, everywhere in U,

[L_{j}, L_{k}]=[L_{j}, M_{l}]=[M_{l}, M_{m}]=0 ,
(1. 7) j, k=1 , \cdots , n , l, m=0,1 , \cdots , n

More explicit descriptions of those vector fields are easy to obtain. First of
all,

(1. 8) M_{0}=w_{u}^{-1_{\frac{\partial}{\partial u}}}
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Then

(1. 9) L_{j}= \frac{\partial}{\partial\overline{z}_{j}}-w_{\overline{x}_{j}}M_{0} , M_{j}= \frac{\partial}{\partial z_{j}}-w_{z_{j}}M_{0j} j=1, \cdots , n .

Tn slightly different notation, for j=1 , \cdots , n ,

(1. 10) L_{j}= \frac{\partial}{\partial\overline{z}_{j}}-i\lambda_{j}\frac{\partial}{\partial u}’. M_{j}= \frac{\partial}{\partial z_{j}}-i\mu_{j}\frac{\partial}{\partial u} ,

where

(1. 11) \lambda_{j}=\phi-/\approx_{j}(1+i\phi_{u})’. \mu_{j}=\phi_{z_{j}}/(1+i\phi_{u})

The commutation relations (1. 7) are then equivalent to the equations

(1. 12) L_{j}\lambda_{k}=L_{k}\lambda_{j} , L_{f}\mu_{k}=M_{k}\lambda_{j} , M_{j}\mu_{k}=M_{k}\mu_{j} ,

if j, k=1, \cdots
,\cdot n’.

(1. 13) L_{j}w_{u}^{-1}=-iM_{0}\lambda_{j} , M_{j}w_{u}^{-1}=-iM_{0}\mu_{j} , j=1, \cdots , nt

We shall also make use of the following differential operator

(1. 14) M= \sum_{k=1}^{n}z_{k}M_{k}c

Note that

(1. 15) M= \sum_{k=1}^{n}z_{k^{\frac{\partial}{\partial z_{k}}}}-i\mu\frac{\partial}{\partial u} ,

where

(1. 16) \mu=\sum_{k=1}^{n}z_{k}\mu_{k} .

Evidently M commutes with each L_{j} , which is equivalent to saying that

(1. 17) L_{j}\mu=M\lambda_{j} , j=1, \cdots , nt

For use below we note that L_{j}\overline{w}=L_{j}(w+\overline{w})=2L_{j}u, i . e. ,

(1. 18) L_{j}\overline{w}=-2i\lambda_{j} .
Likewise,

(1. 19) M\overline{w}=-2i\mu .
Let us denote by u, v the coordinates in R^{2} . Consider any function

f\in C^{\infty}(R^{2}) whose support is contained in the sector

(1. 20) \{(u, v)\in R^{2} ; |u|\leq v\}
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Possibly after contracting U about the origin we may state:

Lemma 1. 1. Whatever the integer m, the function f(w)/z_{1}^{m} is smooth
in U and vanishes to infifinite order on the subspace z_{1}=0 .

PROOF. Let v=\phi(z,\overline{z}, u) (then w=u+iv). From (1. 4) &(1. 20) we
derive

|u|+|z’|^{2}\leq|z_{1}|^{2}+const(|z||u|+|u|^{2}+|z|^{3})

on supp (tow). As a consequence, and provided U is small enough, we have

|u|+|z|^{2}\leq const . |z_{1}|^{2} , \forall(z, u)\in supp(fow) .

When z_{1}arrow 0 in C^{1} , the point (z, u) converges to the origin in U and w
converges to 0 in the sector (1. 20). It suffices then to note that f vanishes
to infinite order at the origin.

Let g be another C^{\infty} function in R^{2} with support contained in the sector
(1. 20). Let us set

(1. 21) F= \frac{f(w)/z_{1}}{1+f(w)/w_{u}z_{1}}
,\cdot

G= \frac{g(w)/z_{1}^{2}}{1-\mu g(w)/z_{1}^{2}} .

We are assuming, henceforth, that U is small enough that both |f(w)/w_{u}z_{1}|

and |g(w)\mu/z_{1}^{2}| are very small compared to one. This is possible thanks to
Lemma 1. 1.

Lemma 1. 2. The (smooth) vector fifields in U,

(1. 22) \tilde{L}_{j}=L_{j}+i\lambda_{j}FM_{0} , j=1, \cdots , n,\cdot

commute pairwise. So do the vector fifields
(1. 23) L_{j}^{\#}=L_{j}+\lambda_{j}GM,, j=1 , \cdots , n

Note that there is no \sqrt{-1} in front of \lambda_{f} in Eq. (1. 20).

PROOF. Straightforward differentiation shows that

(1. 24) L_{j}F+F^{2}L_{j}(w_{u}^{-1})=[1+f(w)/w_{u}z_{1}]^{-2}L_{j}[f(w)/z_{1}] ,

(1. 25) L_{f}G-G^{2}L_{j}\mu=[1-\mu g(w)/z_{1}^{2}]^{-2}L_{j}[g(w)/z_{1}^{2}] .

By virtue of (1. 18),

L_{j}[f(w)/z_{1}]=-2i\lambda_{j}f--(w)/z_{1} , L_{j}[g(w)/z_{1}^{2}]=-2i\lambda_{f}g_{\overline{w}}(w)/z_{1}^{2} .
If we combine this with (1. 24) &(1. 25) respectively we see that there are
C^{\infty} functions F_{1} , G_{1} in U such that
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(1. 26) L_{j}F+F^{2}L_{j}(w_{u}^{-1})=F_{1}\lambda_{j} ,

(1. 27) L_{j}G-G^{2}L_{j}\mu=G_{1}\lambda_{j}
,\cdot

for every j=1, \cdots , n We have (cf. (1. 7))

[\tilde{L}_{j}, L_{k}]=[L_{j}(\lambda_{k}F)-L_{k}(\lambda_{f}F)]iM_{0}

-F^{2}(\lambda_{f}M_{0}\lambda_{k}-\lambda_{k}M_{0}\lambda_{j})M_{0}=i\psi_{0}M_{0} .
If we take (1. 12) and (1. 13) into account, we get

\psi_{0}=\lambda_{k}[L_{j}F+F^{2}L_{f}(w_{u}^{-1})]-\lambda_{j}[L_{k}F+F^{2}L_{k}(w_{u}^{-1})]\equiv 0 by (1. 26)

Likewise,

[L_{j}^{t}, L_{k}^{l}]=\psi M ,

with
\psi=\lambda_{k}L_{j}G-\lambda_{j}L_{k}G+G^{2}(\lambda_{f}M\lambda_{k}-\lambda_{k}M\lambda_{f})

=\lambda_{k}(L_{j}G-G^{2}L_{j}\mu)-\lambda_{f}(L_{k}G-G^{2}L_{k}\mu) by (1. 17)

It suffices to apply (1. 27) to conclude that \psi vansihes identically.

COROLLARY 1. 1. Suppose that fg vanishes identically. Then the n

smooth vector fifields in U,

(1. 28) \Lambda_{j}=L_{j}+\lambda_{j}(iFM_{0}+GM) , j=1 , \cdots , n,\cdot

commute pairwise.

PROOF. Indeed, at each point of U, \Lambda_{j} is equal to infinite order either
to L_{j} for every j, or to L_{j}^{l} for every j.

REMARK 1. 1. For every j=1 , \cdots , n , L_{j}-\Lambda_{j} vanishes to infinite order
at the origin.

2. Reduction to the case n=1

Let t=(t_{1}, \cdots, t_{n})\in R^{n} be a point such that

(2. 1) t_{1}^{2}-(t_{2}^{2}+\cdots+t_{n}^{2})=1

We shall always assume that |t|\leq’R<+\infty(R>1) . In the sequel \zeta will
denote a complex variable (in C^{1}). Fixing t as said, we call U^{t} the image
of a suitably small open neighborhood of the origin in C^{1}\cross R^{1} under the
mapping (\zeta, u)\mapsto(z_{1^{ }},\cdots, z_{n}, u) , defined by the equations

(2. 2) z_{j}=\zeta t_{j} , j=1, \cdots , n
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Thus U^{t} is a smooth 3-dimensional submanifold of U. We shall use the
notation

(2. 3) \phi^{t}(\zeta,\overline{\zeta}, u)=\phi(\zeta t,\overline{\zeta}t, u)j w^{t}=u+i\phi^{t}(\zeta,\overline{\zeta}, u)t

According to (1. 4) we have

(2. 4) \phi^{t}=|\zeta|^{2}+O(|\zeta||u|+|u|^{2}+|\zeta|^{3})

The functions \zeta , w^{t} define a CR structure on U^{t} . The CR bundle of
this structure is spanned by the vector field

(2. 5) L^{t}= \frac{\partial}{\partial\overline{\zeta}}-i\lambda^{t}\frac{\partial}{\partial u}j \lambda^{t}=\phi\frac{t}{\zeta}/w_{u}^{t}

It is readily checked that, along U^{t} ,

(2. 6) L^{t}= \sum_{j=1}^{n}t_{j}L_{j} , \lambda^{t}=\sum_{f=1}^{n}t_{f}\lambda_{j} .

We may also introduce the vector fields

(2. 7) M^{t}= \sum_{j=1}^{n}t_{j}M_{j}=\frac{\partial}{\partial\zeta}-i\mu^{t}\frac{\partial}{\partial u} , \mu^{t}=\phi_{r}^{t}\backslash /w_{u}^{t} ,

(2. 8) M_{0}^{t}=(w_{u}^{t})^{-1} \frac{\partial}{\partial u}

Since the vector field M (see (1. 15)) annihilates all the functions t_{j}z_{k}-t_{k}z_{f}

(j, k=1, \cdots, n) at every point of U^{t} it is tangent to this submanifold, and
we have, along U^{t} ,

(2. 9) M=\zeta M^{t} .
(There is an awkwardness in the notation : \mu^{t} is not the restriction of the
function \mu of (1. 16) to U^{t} , but \zeta\mu^{t} is.) If then we call F^{t} and G^{t} the
restrictions to U^{t} of the functions F and G defined in (1. 21) we may consider
the analogue in U^{t} of the vector fields (1. 28) :

(2. 10) \Lambda^{t}=\sum_{j=1}^{n}t_{j}\Lambda_{j}|_{\sigma^{t}}=L^{t}+\lambda^{t}(iF^{t}M_{0}^{\iota}+G^{t}\zeta M^{t}) .

We consider now an arbitrary C^{1} solution h of the system of equations,
in an open neighborhood U_{*}\subset U of the origin,

(2. 11) \Lambda_{j}h=0 , j=1 , \cdots , n .

If h^{t} denotes the restriction of h to U^{t}\cap U_{*} we have, there,

(2. 12) \Lambda^{t}h^{t}=0 .
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In the next section we are going to show that there exist functions f and g

as in (1. 21) such that, whatever the vector t verifying (2. 1) (and |t|\leq R),

the equation (2. 12) implies that the differential of h^{t} vanishes at the origin.
Let us show here that the latter, in turn, implies

(2. 13) dh|_{0}=0 .
Indeed we have

(2. 14) \frac{\partial h^{t}}{\partial u}(0,0)=\frac{\partial h}{\partial u}|_{0} ,

(2. 15) \frac{\partial h^{t}}{\partial\zeta}(0,0)=\sum_{j=1}^{n}t_{j}\frac{\partial h}{\partial z_{j}}|_{0} , \frac{\partial h^{t}}{\partial\overline{\zeta}}(0,0)=\sum_{j=1}^{n}t_{j}\frac{\partial h}{\partial\overline{z}_{f}}|_{0}

Thus, if dh^{t}=0 at the origin all the right-hand sides in (2. 14) &(2. 15)

vanish at the origin. But the set of vectors t such that (2. 1) and |t|\leq R

hold generate the whole space R^{n} , and thus the vanishing of those right-
hand sides allows us to conclude that (2. 13) is valid.

3. The case n=1

We return to the CR-structure on the 3-dimensional manifold U^{t} defined
by the functions \zeta , w^{t} (Sect. 2).

We notice that, when u=0, there is an open disk in \zeta-plane, centered
at the origin, \Delta , such that

\phi^{t}>0 in \Delta\backslash \{0\}

Recall that \phi^{t}=0 when \zeta=u=0 . Consequently, and possibly after contracting
\Delta , there is a C^{\infty} function of (u, t) in an open subset of R^{n+1} , \mathscr{Q} , which we
describe below, \zeta_{0}^{t}(u) , valued in \Delta , such that

(3. 1) \zeta_{0}^{t}(0)=0 .

(3. 2) C^{-1}|\zeta-\zeta_{0}^{t}(u)|^{2}\leq

|\phi^{t}(\zeta, \zeta, u)-\phi_{0}^{t}(u)|\leq C|\zeta-\zeta_{0}^{t}(u)|^{2} , \zeta\in\Delta ,

where

(3. 3) \phi_{0}^{t}(u)=\phi^{t}(\zeta_{0}^{t}(u),\overline{\zeta_{0}^{t}(u)}, u) , (u, t)\in \mathscr{Q} ,

and C is a constant >0 . The subset \mathscr{Q} is a product U_{0}\cross\Theta, with U_{0} a
suitably small interval in R^{1} centered at zero, and \Theta a suitable open neigh-
borhood of the subset of R^{n} defined by (2. 1) and by |t|\leq R . We may then
find a number \epsilon>0 such that the sector in the (u, v) -plane
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|u|<\epsilon v

lies above the curve v=\phi_{0}^{t}(u) . whatever t\in\Theta .
By virtue of (3. 2) there is \delta>0 such that, given any point (u, v)\in R^{2}

such that

(3. 4) v>\phi_{0}^{t}(u) , u^{2}+v^{2}<\delta^{2} , |u|<\epsilon v,\cdot

the equation

(3. 5) \phi^{t}(\zeta,\overline{\zeta}, u)=v

defines a smooth closed curve \gamma^{t}(u, v) in \zeta-plane, contained in the disk \Delta and
winding around \zeta_{0}^{t}(u) .

Following [2] we select two sequences \{A_{j}\} , \{B_{j}\}(j=1,2, \cdots) of compact

subsets of the plane converging to {0}, and further submitted to the requir-
ement that every one of them be convex and contained in the region (3. 4)

and that they be pairwise disjoint, more precisely that

(3. 6) the projections on the u-axis of the A_{j} and of the B_{k} be pair-
wise disjoint (for all j, k=1 , \cdots).

We also require that the interior of each A_{j} and of each B_{k} be nonempty.

We choose the functions f, g in (1. 21) as follows:

(3. 7) f\equiv 0 in the complement of \bigcup_{j=1}^{+\infty}A_{j}, g\equiv 0 in the complement of
\bigcup_{j=1}^{+\infty}B_{j} ;

(3. 8) for every j=1,2, \cdots , f>0 (resp., g>0) in the interior of A_{f} (resp.

B_{f}) .
LEMMA 3. 1. Let P, Q be two continuous functions in an open neigh-

borhood of the origin, U_{*}^{t} , in U^{t} such that there is a C^{1} function \chi in U_{*}^{t}

satisfying there

(3. 9) L^{t}X=(fow^{t})P+(gow^{t})Q .

Then necessarily P=Q=0 at the origin.

PROOF. For the sake of simplicity we shall omit the superscripts t and

reason as if U_{*}^{t} were equal to U^{t} . It will be evident that the reasoning

applies when U_{*}^{t} is smaller. We call \mathscr{G} the complement in the set (3. 4) of

the union of all the sets A_{j} and B_{k} ; note that \mathscr{G} is open. When w\in \mathscr{G}

we have

(3. 10) L\chi\equiv 0 .
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Consider then the function of w=u+iv in \mathscr{G} ,

I(w)=\gamma(u5_{v)}^{\chi(\zeta,\overline{\zeta},u)d\zeta},(

We contend that, in \mathscr{G} , I(w) vanishes identically. It suffices to show that

(3. 11) \frac{\partial I}{\partial\overline{w}}\equiv 0

For then I(w) is holomorphic in \mathscr{G} . But I(w) tends to zero as w converges
to any point of the curve v=\phi_{0}(u) . simply because the cycle \gamma(u, v) con”

tracts to a point. By taking advantage of (3. 6) and of the fact that the
compact sets A_{j} and B_{j} are convex, the propagation of zeros of a hol0-
morphic function at once implies that I(w)\equiv 0 in \mathscr{G} , as the latter set is

connected.
Eq. (3. 5) defines a smooth map

\mathscr{G}\cross S^{1}\ni(u+iv, \theta)\mapsto\zeta(u, v, \theta)\in\Delta

Because of (3. 10) we have, in \mathscr{G} (cf. (2. 7), (2. 8)),

d\chi=M\chi d\zeta+M_{0}\chi dw ,

and thus \chi_{\overline{w}}=(M\chi)\zeta_{\overline{w}} , \chi_{\theta}=(M\chi)\zeta_{\theta} .
For each fixed u+iv\in \mathscr{G} , as \theta winds around the unit circle S^{1}, \zeta(u, v, \theta)

winds around \zeta_{0}(u) on the curve \gamma(u, v) . Thus we have

I(w)= \int_{0}^{2\pi}\chi(\zeta,\overline{\zeta}, u)\zeta_{\theta}d\theta ,\cdot
\zeta=\zeta(u, v, \theta)1

Consequently,

I_{\overline{w}}= \int_{0}^{2\pi}[(M\chi)\zeta_{\overline{w}}\zeta_{\theta}+\chi\zeta_{\overline{w}\theta}]d\theta

= \int_{0}^{2\pi}\frac{\partial}{\partial\theta}(\chi\zeta_{\overline{w}})d\theta

whence (3. 11).
Availing ourselves once again of (3. 6) we select smooth closed curves in

\mathscr{G} , c_{j}, c_{j}’ such that, for each j=1,2, \cdots , c_{f} (resp., c_{j}’) winds around (once)

A_{j} (resp., B_{j}) and whose interior does not intersect any other set A_{k} nor

any B_{l} (resp., any other set B_{k} nor any A_{l}) for k, l=1,2, \cdots , k\neq j . Since

I(w)\equiv 0 in \mathscr{G} , we have trivially

(3. 12) \S\S c_{f}\gamma(u,v)\chi(\zeta,\overline{\zeta}, u)d\zeta dw=0
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and likewise for c_{j}’ . For each j, the mapping

(u+iv, \theta)\mapsto(\zeta(u, v, \theta) , u)

is a diffeomorphism of c_{j}\cross S^{1} onto a 2-dimensional torus T_{j}\subset\Delta\cross U_{0} . Call
\hat{T}_{j} its interior. When c_{j}’ is substituted for c_{j} we use the notation T_{j}’ and
\hat{T}_{f}’ . By (3. 12) the integral of the tw0-form \chi d\zeta\wedge dw on T_{j} (resp., T_{j}’) is
equal to zero. By Stokes’ theorem the integral on \hat{T}_{j} (resp., \hat{T}_{j}’) of

d(\chi dz\wedge dw)=L\chi d\overline{z}\Lambda dz\Lambda dw

must also be zero. According to (3. 9) we have, for every j=1,2, \cdots ,

(3. 13) \int_{\hat{\tau}_{j}}f(w)P(z,\overline{z}, u)w_{u}dxdydu=0 ,

(3. 14) \int_{\hat{\tau}_{j}}, g(w)Q(z,\overline{z}, u)w_{u}dxdydu =0 ,

Note that the intersection of supp (iow) with \hat{T}_{j} is defined by the fact that
w\in A_{j} . The intersection of supp (gow) with \hat{T}_{j}’ is likewise defined by the
fact that w\in B_{j} . And f (resp., g), which is nonnegative everywhere, is
strictly positive at some point of A_{j} (resp. B_{f}). As jarrow+0 the solid tori
\hat{T}_{j} and ’\hat{I}_{j}^{Y}’ converge to the set {0}, and w_{u} converges to one. If P were
\neq 0 at the origin, as jarrow+\infty the argument of the integrand in (3. 13) would
not vary enough for that equation to hold, and the same is true for Q and
(3. 14).

We shall apply Lemma 3. 1 to the function \chi=h^{t} , the trace on U^{t} of
a C^{1} solution of (2. 11). By (1. 21) we have

F^{t}=fow^{t}/\zeta(t_{1}+fow^{t}/w_{u}^{t}\zeta)’’

G^{t}=gow^{t}/\zeta^{2}(t_{1}^{2}-\mu^{t}(gow^{t})/\zeta)

(see remark following (2. 9)). In view of (2. 10) we therefore take
P=-i\zeta^{-1}\lambda^{t}(t_{1}w_{u}^{t}+fow^{t}/\zeta)^{-1}\chi_{u} ,

Q=-\zeta^{-1}\lambda^{t}(t_{1}^{2}-\mu^{t}(gow^{t})/\zeta)^{-1}M^{t}\chi 1

Note that P and Q are indeed continuous (including at the origin), as Lemma
3. 1 requires. By (2. 4) we see that, on support of fow^{t} and gow^{t} , \phi^{\frac{t}{\zeta}}-\zeta

vanishes to second order at the origin. Since w_{u}^{t}|_{0}=1 the same is true of
\lambda^{t}-\zeta . Likewise, on those supports, \mu^{t}-\overline{\zeta} vanishes to second order at the

origin, and therefore M^{t}|_{0}= \frac{\partial}{\partial\zeta} . If P=Q=0 at the origin it follows that

we have
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\chi_{u}=\chi_{\zeta}=0

at the same point. But the equation (2. 12) implies then that we must also
have \chi_{\overline{\zeta}}=0 at the origin, whence dh^{t}|_{0}=0 , which is what we sought.

4. End of the proof of Theorem I. Proof of Theorem II

We now consider an abstract CR structure \mathscr{C} on f2 whose Levi from
is nowhere degenerate and has a signature that conforms to the hypothesis
(0. 6) (see Introduction). Given any point p_{0} of 12 we can find a local chart
(U_{ X_{1}},, \cdots, x_{n}, y_{1}, \cdots, y_{n}, u) centered at p_{0} such that the CR bundle is spanned
over U by the vector fields

(4. 1) L_{j}= \frac{\partial}{\partial\overline{z}_{j}}-i\lambda_{j^{\frac{\partial}{\partial u}}}-\sum_{k=1}^{n}\lambda_{jk}\frac{\partial}{\partial z_{k}} , j=1, \cdots , n’.
with

(4. 2) \lambda_{j}=\lambda_{jk}=0 at p_{0} for all j, k=1, \cdots , n

(That the above local chart is centered at p_{0} means that all the local coor-
dinates x_{j}, y_{k} , u vanish at p_{0} .) Condition (4. 2) allows us to solve the follow-
ing “initial value problems”

L_{j}\zeta_{j’}=0 . \zeta_{j’}-z_{j’}=0(|z|^{2}+u^{2}) , j’=1, \cdots , n ,
(4. 3)

L_{j}\omega=0 , \omega-u=0(|z|^{2}+u^{2}) , j=1, \cdots , n ,

in the ring of formal power series (in x_{j}, y_{k} , u). Having done this we select
at random n+1C^{\infty} functions Z_{1} , \cdots , Z_{n} , w whose Taylor expansions at the
origin are equal to the formal power series \zeta_{1}, \cdots , \zeta_{n} , \omega respectively. We
have then
(4.4) L_{j}Z_{k} , L_{j}w vanish to infifinite order at p_{0}(j, k=1, \cdots, n)

Possibly after contracting U about p_{0} we have the right to use Re Z_{j} , Im Z_{k} ,

Re w as local coordinates (this follows from (4. 3)). These functions we
presently call x_{j}, y_{k} , u respectively. In the new coordinates the vector fields
L_{j} still have the expressions (4. 1) but now with the additional properties that

(4. 5) i\lambda_{j}-w_{\epsilon_{j}}/w_{u} and \lambda_{jk} vanish to infifinite order at p_{0} for all j, k=
1 , \cdots , n .

Define then the vector fields in U

(4. 6) L_{j}^{0}= \frac{\partial}{\partial\overline{z}_{j}}-w_{\overline{z}_{j}}w_{u}^{-1}\frac{\partial}{\partial\iota\iota} , j=1 , \cdots , n

For each j, L_{j}-L_{j}^{0} vanishes to infinite order at p_{0} . The L_{j}^{0} commute
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pairwise and they define a CR structure \mathscr{C}^{0} on U, obviously integrable.
Possibly after contracting U about p_{0} we may assume that the Levi form
of \mathscr{C}^{0} satisfies Condition (0. 6) of the Introduction.

The argument in Sections 1, 2, 3 shows how to construct vector fields
\Lambda_{1} , \cdots , \Lambda_{n} , having the following properties:

(4. 7) \Lambda_{j}-L_{j}^{0} vanishes to infifinite order at p_{0}(j=1, \cdots, n) ;

(4. 8) any C^{1} function h in an open neighborhood U_{*}\subset U of p_{0} which
satisfifies, in U_{*} ,

(4. 9) \Lambda_{j}h=0 , j=1, \cdots , n,
is such that dh|_{p_{0}}=0

Property (4. 7) implies that, for each j, L_{f}-\Lambda_{j} vanishes to infinite order at p_{0} .
Let g\in C^{\infty}(R^{2n+1}) vanish identically outside the ball of radius one and be

identically equal to one inside the ball of radius 1/2. It is elementary that,
given any sequence of numbers r_{\nu}\searrow 0 , if we define

g_{\nu}(x, y, u)=g(x/r_{\nu}, y/r_{\nu}, u/r_{\nu})j

then the coefficients of g_{\nu}(L_{j}-\Lambda_{j}) converge to zero in C^{\infty}(U) . Define then

(4. 10) L_{j}^{(\nu)}=g_{\nu}\Lambda_{j}+(1-g_{\nu})L_{jj} j=1, \cdots , n .
Note that, for each j, L_{j}^{(\nu)}=\Lambda_{f} when g_{\nu}=1 , in particular in a full neigh-
borhood of the origin, and L_{j}^{(v)}=L_{f} in the complement of supp g_{\nu} . Moreover,
the coefficients of L_{j}^{(\nu)} converge to the corresponding ones of L_{j}, in C^{\infty}(U) .

Call \mathscr{C}^{(\nu)} the CR structure on \Omega which is equal to the original CR
structure \mathscr{C} in \Omega\backslash supp g_{\nu} , and to the one defined by the vector fields L_{j}^{(\nu)}

in U. This makes sense in view of what has just been said. Whatever \nu ,
every germ of C^{1} CR function at p_{0} in the sense of \mathscr{C}^{(\nu)} has a differential
that vanishes at p_{0} .

We now proceed with the proof of Th. II.
Let \Omega’ be an open subset of \Omega with compact closure. Suppose that the

boundary of \Omega’ is a C^{\infty} hypersurface, and that \Omega’ lies on one side only of it.
Then every C^{\infty} function in the closure \overline{\Omega}’ of \Omega’ extends as a C^{\infty} function to
the whole of \Omega . Let (CT\Omega)^{n} denote the Whitney sum over f2 of n copies
of the vector bundle CT\Omega , and C^{\infty}(\overline{\Omega}’ ; (CT\Omega)^{n}) the space of C^{\infty} sections
of (CT\Omega)^{n} over \overline{\Omega}’ , equipped with its natural C^{\infty} topology. It is a Fr\’echet
space; its topology can be defined by a metric for which it is a complete
metric space. Let \gamma^{n}(\overline{\Omega}’) denote the closed subspace consisting of those
systems of vector fields, L=(L_{1}, \cdots, L_{n}) , satisfying the formal integrability
condition
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(4. 11) at every point p of \overline{\Omega}’ . for every pair j, k=1 , \cdots , n , the bracket
[L_{j}, L_{k}] is a linear combination of L_{1} , \cdots , L_{n} .

The additional condition that L_{1} , \cdots , L_{n} be linearly independent at every
point of \overline{\Omega}’ defines an open subset of \gamma^{n}(\overline{\Omega}’) , and the further condition that
the system L obeys (0. 6) defines an open subset of the latter open subset,
which we assume nonempty and denote by

\gamma^{(n-1,1)}(\overline{\Omega}’)

The Baire’s category theorem applies to this set (equipped with the induced
topology).

Let us use a Riemannian metric in \Omega and the associated norm on the
cotangent spaces. Let \{U_{m}\}(m=1,2, \cdots) be a sequence of open balls making
up a basis of the topology of \Omega’ . For any m call \mathscr{A}_{m} the subset of \gamma^{(n-1,1)}(\overline{\Omega}’)

consisting of those systems L that have the following property:

(4. 12) There is a solution of class C^{1+1/m}, h, of the equations

(4. 13) L_{j}h=0 , j=1 , \cdots , n_{q,\prime}

in \overline{U}_{m} whose norm in C^{1\dagger 1/m}(\overline{U}_{m}) does not exceed m and is such,
moreover, that, everywhere in U_{m} ,

(4. 14) m^{-1}\leq|dh|

Let L^{(\nu)}(\nu=1,2, \cdots) be a sequence in \mathscr{A}_{m} converging to a system
L\in\gamma^{(n-1,1)}(\overline{\Omega}’) . For each \nu we can select a solution h^{(\nu)}\in C^{1+1/m}(\overline{U}_{m}) of the
equations L_{j}^{(_{\nu})}h=0 , j=1 , \cdots , m, such that |dh^{(\nu)}|\geq m^{-1} . By the compactness
of the embedding C^{1+1/m}(\overline{U}_{m})arrow C^{1}(\overline{U}_{m}) and possibly after replacing the se-
quence \{h^{(\nu)}\} by one of its subsequences, we may assume that it converges
in C^{1}(\overline{U}_{m}) to a solution h of (4. 13)-which must also satisfy (4. 14). In other
words the closure \overline{\mathscr{A}}_{m} of \mathscr{A}_{m} in \gamma^{(n-1,1)}(\overline{\Omega}’) is contained in the subset \mathscr{B}_{m}

of \gamma^{(n-1,1\rangle}(\overline{\Omega}’) consisting of the systems L that have the following property:

(4. 15) There is a C^{1} solution h of the homogeneous equations (4. 13) in
U_{m} such that (4. 14) holds.

But the interior of \mathscr{B}_{m} must be empty. For the reasoning in Sections 1, 2,
3 and in the first part of the present section has shown that, given any
point of U_{m}, p, and any system L\in \mathscr{B}_{m} , there is another system L\in\gamma^{(n-1,1)}(\overline{\Omega}’)

which is as close as we wish to L in the C^{\infty} sense, and is such that every
C^{1} solution in U_{m} of the equations L_{j}h=0(j=1, \cdots, n) must satisfy dh|_{p}=0 .
Just apply that reasoning in an open neighborhood \Omega’ of \overline{\Omega}’ to which L
has been extended – in the place of \Omega .
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The above implies that the complement of the union of the sets \overline{\mathscr{A}}_{m}

is dense in \gamma^{(n-1,1)}(\overline{\Omega}’) , and so is therefore the complement of the union of
the sets \mathscr{A}_{m} . Let L be an element of the latter complement, and h a
C^{1+\delta} solution of Eq. (4. 13) in some open subset U of \Omega’ (for some \delta>0).

If dh were different from zero at some point p of U there would be an
infinite sequence of integers m\geq 1 and a constant c>0 such that the C^{1+\delta}

norm of h in \overline{U}_{m} is \leq c and that, in the same set,

c^{-1}\leq|dh|

By taking m large enough that m^{-1}\leq{\rm Min}(\delta, c) , we would be able to conclude
that h is of class C^{1+1/m} and satisfies (4. 14) in U_{m} and therefore that L\in \mathscr{A}_{rn},

contrary to our hypothesis. We reach thus the conclusion that every system

L in the complement of the union of the sets \mathscr{A}_{m} has Property (0. 11)

(Introduction). This obviously completes the proof of Th. II.
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