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On a symmetry of complex and real multiplication

Igor V. Nikolaev
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Abstract. It is proved that each lattice with complex multiplication by f
√−D cor-

responds to a pseudo-lattice with real multiplication by f ′
√

D, where f ′ is an integer

defined by f .
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1. Introduction

The paper continues a study of the duality between elliptic curves with
complex multiplication and noncommutative tori with real multiplication
initiated in [5]; let us introduce some notation and basic facts. Fix an
irrational number 0 < θ < 1; a noncommutative torus is the universal C∗-
algebra Aθ generated by the unitaries u and v satisfying the commutation
relation vu = e2πiθuv (Rieffel, 1981 [6]). Two such tori are stably isomorphic
(Morita equivalent) whenever Aθ ⊗K ∼= Aθ′ ⊗K, where K is the C∗-algebra
of compact operators; the isomorphism occurs if and only if θ′ = (aθ + b)/
(cθ + d), where a, b, c, d ∈ Z and ad − bc = 1. The K-theory of Aθ is Bott
periodic with K0(Aθ) = K1(Aθ) ∼= Z2. The range of the trace on projections
of Aθ ⊗ K is a subset Λ = Z + Zθ of the real line (Rieffel, 1981 [6]); Λ is
called a pseudo-lattice (Manin, 2004 [4]). The torus Aθ is said to have real
multiplication if θ is a quadratic irrationality; we shall denote the set of
such algebras by ARM . The real multiplication entails existence of the non-
trivial endomorphisms of Λ coming from multiplication by the real numbers
– hence the name. If D > 1 is a square-free integer, we shall write A

(D,f)
RM

to denote real multiplication by an order Rf of conductor f ≥ 1 in the field
Q(
√

D); each torus in ARM can be written in this form (Manin, 2004 [4]).
Let H = {x + iy ∈ C | y > 0} be the upper half-plane and for τ ∈ H

let C/(Z + Zτ) be a complex torus; we routinely identify the latter with a
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non-singular elliptic curve via the Weierstrass ℘ function (Silverman, 1994
[7, pp. 6–7]). Recall that two complex tori are isomorphic, whenever τ ′ =
(aτ + b)/(cτ + d), where a, b, c, d ∈ Z and ad− bc = 1. If τ is an imaginary
quadratic number, the elliptic curve is said to have complex multiplication;
in this case the lattice L = Z+Zτ admits non-trivial endomorphisms given
as multiplication of L by certain complex (quadratic) numbers. Elliptic
curves with complex multiplication are fundamental and have long history
in number theory; we shall denote the set of such curves by ECM . We write
E

(−D,f)
CM to denote the elliptic curve with complex multiplication by an order

Rf of conductor f ≥ 1 in the imaginary quadratic field Q(
√−D); each curve

in ECM is isomorphic to E
(−D,f)
CM for some integers D and f (Silverman, 1994

[7, pp. 95–96]).
There exists a covariant functor between elliptic curves and noncom-

mutative tori; the functor maps isomorphic curves to the stably isomorphic
tori. To give an idea, let φ be a closed form on a topological torus; the
trajectories of φ define a measured foliation on the torus. By the Hubbard-
Masur theorem, such a foliation corresponds to a point τ ∈ H. The map
F : H → ∂H is defined by the formula τ 7→ θ =

∫
γ2

φ/
∫

γ1
φ, where γ1

and γ2 are generators of the first homology of the torus. The following is
true: (i) H = ∂H × (0,∞) is a trivial fiber bundle, whose projection map
coincides with F ; (ii) F is a functor, which maps isomorphic complex tori
to the stably isomorphic noncommutative tori. We shall refer to F as the
Teichmüller functor. It was proved in [5] that F (ECM ) ⊆ ARM , i.e. F sends
elliptic curves with complex multiplication to the noncommutative tori with
real multiplication. Namely, F (E(−D,f)

CM ) = A
(D,f ′)
RM , where f ′ is the least

integer satisfying equation |Cl (Rf ′)| = |Cl (Rf )| for the class numbers of
orders Rf ′ and Rf , respectively; the latter constraint is a necessary and
sufficient condition for A

(D,f ′)
RM to discern non-isomorphic curves E

(−D,f)
CM

having the same endomorphism ring Rf .
Denote by Λ(D,f)

RM a pseudo-lattice corresponding to the torus A
(D,f)
RM ; the

Λ(D,f)
RM can be identified with points of the boundary ∂H of the half-plane
H. Let x, x̄ ∈ Λ(D,f)

RM be a pair of the conjugate quadratic irrationalities and
consider a geodesic half-circle through x and x̄:

γ̃(x, x̄) =
xet/2 + ix̄e−t/2

et/2 + ie−t/2
, −∞ ≤ t ≤ ∞. (1)
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A Riemann surface X is said to be associated to A
(D,f)
RM , if the covering of

the geodesic spectrum of X contains the set {γ̃(x, x̄) : ∀x ∈ Λ(D,f)
RM }, see

Definition 1; such a surface will be denoted by X(A(D,f)
RM ). Our main result

can be expressed as follows.

Theorem 1 For every square-free integer D > 1 and integer f ≥ 1
there exists a holomorphic map F−1 : X(A(D,f ′)

RM ) → E
(−D,f)
CM , where

F (E(−D,f)
CM ) = A

(D,f ′)
RM .

The note is organized as follows. Section 2 is reserved for notation and
preliminary facts. Theorem 1 is proved in Section 3.

2. Riemann surface X(A(D,f)
RM )

Let X be a Riemann surface; consider the geodesic spectrum of X, i.e.
the set Spec X consisting of all closed geodesics of X. Recall that for the
covering map H → X each geodesic γ ∈ Spec X is the image of a geodesic
half-circle γ̃(x, x′) ∈ H with the endpoints x 6= x′. Denote by S̃pecX ⊂ H
the set of geodesic half-circles covering the geodesic spectrum of X.

Definition 1 We shall say that the Riemann surface X is associated to
the noncommutative torus A

(D,f)
RM , if {γ̃(x, x̄) : ∀x ∈ Λ(D,f)

RM } ⊂ S̃pecX; the
associated Riemann surface will be denoted by X(A(D,f)

RM ).

Let N ≥ 1 be an integer; by Γ1(N) we understand a subgroup of the
modular group SL2(Z) consisting of matrices of the form

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ a, d ≡ 1mod N, c ≡ 0mod N

}
; (2)

the corresponding Riemann surface H/Γ1(N) will be denoted by X1(N).
The following lemma links X(A(D,f)

RM ) to X1(N).

Lemma 1 X(A(D,f)
RM ) ∼= X1(fD).

Proof. Let Λ(D,f)
RM be a pseudo-lattice with real multiplication by an order

R in the real quadratic number field Q(
√

D); it is known, that Λ(D,f)
RM ⊆ R

and R = Z+ (fω)Z, where f ≥ 1 is the conductor of R and
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ω =





1 +
√

D

2
if D ≡ 1mod 4,

√
D if D ≡ 2, 3mod 4,

(3)

see e.g. (Borevich & Shafarevich, 1988 [1, pp. 130–131]) Recall that matrix
(a, b, c, d) ∈ SL2(Z) has a pair of real fixed points x and x̄ if and only if
|a + d| > 2 (the hyperbolic matrix); the fixed points can be found from the
equation x = (ax + b)(cx + d)−1 by the formulas:

x =
a− d

2c
+

√
(a + d)2 − 4

4c2
, x̄ =

a− d

2c
−

√
(a + d)2 − 4

4c2
. (4)

Case I. If D ≡ 1mod 4, then formula (3) implies that R = (1+f/2)Z+
(
√

f2D/2)Z. If x ∈ Λ(D,f)
RM is fixed point of a transformation (a, b, c, d) ∈

SL2(Z), then formula (4) implies:





a− d

2c
=

(
1 +

f

2

)
z1

(a + d)2 − 4
4c2

=
f2D

4
z2
2

(5)

for some integer numbers z1 and z2. The second equation can be written in
the form (a + d)2 − 4 = c2f2Dz2

2 ; we have therefore (a + d)2 ≡ 4mod(fD)
and a + d ≡ ±2mod(fD). Without loss of generality we assume a + d ≡
2mod(fD) since matrix (a, b, c, d) ∈ SL2(Z) can be multiplied by −1. No-
tice that the last equation admits a solution a = d ≡ 1mod(fD).

The first equation yields us (a− d)/c = (2 + f)z1, where c 6= 0 since
the matrix (a, b, c, d) is hyperbolic. Notice that a − d ≡ 0mod(fD); since
the ratio (a− d)/c must be integer, we conclude that c ≡ 0mod(fD). All
together, we get:

a ≡ 1mod(fD), d ≡ 1mod(fD), c ≡ 0mod(fD). (6)

Case II. If D ≡ 2 or 3mod 4, then R = Z + (
√

f2D)Z. If x ∈ Λ(D,f)
RM

is fixed point of a transformation (a, b, c, d) ∈ SL2(Z), then formula (4)
implies:
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



a− d

2c
= z1

(a + d)2 − 4
4c2

= f2Dz2
2

(7)

for some integer numbers z1 and z2. The second equation gives (a + d)2 −
4 = 4c2f2Dz2

2 ; therefore (a + d)2 ≡ 4mod(fD) and a + d ≡ ±2mod(fD).
Again without loss of generality we assume a+d ≡ 2mod(fD) since matrix
(a, b, c, d) ∈ SL2(Z) can be multiplied by −1. The last equation admits a
solution a = d ≡ 1mod(fD).

The first equation is (a− d)/c = 2z1, where c 6= 0. Since a − d ≡
0mod(fD) and the ratio (a− d)/c must be integer, one concludes that c ≡
0mod(fD). All together, we get equations (6). Since all possible cases are
exhausted, Lemma 1 follows. ¤

Remark 1 There exist other finite index subgroups of SL2(Z) whose
geodesic spectrum contains the set {γ̃(x, x̄) : ∀x ∈ Λ(D,f)

RM }; however Γ1(fD)
is a unique group with such a property among subgroups of the principal
congruence group.

Remark 2 Not all geodesics of X1(fD) have form (1); thus the set
{γ̃(x, x̄) : ∀x ∈ Λ(D,f)

RM } is strictly included in the geodesic spectrum of
modular curve X1(fD).

3. Proof of Theorem 1

Recall, that Γ(N) := {(a, b, c, d) ∈ SL2(Z) | a, d ≡ 1mod N, b, c ≡
0mod N} is called a principal congruence group of level N ; the corresponding
(compact) Riemann surface will be denoted by X(N) = H/Γ(N).

Lemma 2 (Hecke) There exists a holomorphic map X(fD) → E
(−D,f)
CM .

Proof. A detailed proof of this beautiful fact is given in (Hecke, 1928 [3]).
To give an idea of the proof, let R be an order of conductor f ≥ 1

in the imaginary quadratic number field Q(
√−D); consider an L-function

attached to R:

L(s, ψ) =
∏

P⊂R

1
1− ψ(P)/N(P)s

, s ∈ C, (8)
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where P is a prime ideal in R, N(P) its norm and ψ a Grössencharacter.
A crucial observation (Section 1) says that the series L(s, ψ) converges to a
cusp form w(s) of the principal congruence group Γ(fD).

By the Deuring Theorem, L(E(−D,f)
CM , s) = L(s, ψ)L(s, ψ̄), where

L(E(−D,f)
CM , s) is the Hasse-Weil L-function of the elliptic curve and ψ̄ a

conjugate of the Grössencharacter, see (Silverman, 1994 [7, p. 175]); more-
over L(E(−D,f)

CM , s) = L(w, s), where L(w, s) :=
∑∞

n=1
cn

ns and cn the Fourier
coefficients of the cusp form w(s). In other words, E

(−D,f)
CM is a modular

elliptic curve.
One can now apply the modularity principle: if Aw is an abelian variety

given by the periods of holomorphic differential w(s)ds (and its conjugates)
on X(fD), then the following diagram commutes

X(fD) ι //

$$JJJJJJJJJ
Aw

π

²²
E

(−D,f)
CM

The holomorphic map X(fD) → E
(−D,f)
CM is obtained as a composition of

the canonical embedding ι : X(fD) → Aw with the subsequent holomorphic
projection π : Aw → E

(−D,f)
CM . ¤

Lemma 3 The functor F acts by the formula E
(−D,f)
CM 7→ A

(D,f ′)
RM .

Proof. Let LCM be a lattice with complex multiplication by an order R =
Z + (fω)Z in the imaginary quadatic field Q(

√−D); the multiplication by
α ∈ R generates an endomorphism (a, b, c, d) ∈ M2(Z) of the lattice LCM .
It is known, that the endomorphisms of lattice LCM and endomorphisms
of the pseudo-lattice ΛRM = F (LCM ) are related by the following explicit
map [4, p. 524]:

(
a b
c d

)
∈ End(LCM ) 7−→

(
a b
−c −d

)
∈ End(ΛRM ). (9)

Moreover, one can always assume d = 0 in a proper basis of LCM . We shall
consider the following two cases.
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Case I. If D ≡ 1mod 4 then by (3) R = Z + ((f +
√
−f2D)/2)Z;

thus the multiplier α = (2m + fn)/2 +
√

(−f2Dn2)/4 for some m,n ∈ Z.
Therefore multiplication by α corresponds to an endomorphism (a, b, c, 0) ∈
M2(Z), where





a = Tr(α) = α + ᾱ = 2m + fn

b = −1

c = N(α) = αᾱ =
(

2m + fn

2

)2

+
f2Dn2

4
.

(10)

To calculate a primitive generator of endomorphisms of the lattice LCM one
should find a multiplier α0 6= 0 such that

|α0| = min
m.n∈Z

|α| = min
m.n∈Z

√
N(α). (11)

From the last equation of (10) the minimum is attained for m = −f/2 and
n = 1 if f is even or m = −f and n = 2 if f is odd. Thus

α0 =




±f

2
√−D, if f is even

±f
√−D, if f is odd.

(12)

To find the matrix form of the endomorphism α0, we shall substitute in (9)
a = d = 0, b = −1 and c = f2D/4 if f is even or c = f2D if f is odd. Thus
the Teichmüller functor maps the multiplier α0 into

F (α0) =




±f ′

2

√
D, if f ′ is even

±f ′
√

D, if f ′ is odd.

(13)

Comparing equations (12) and (13) one verifies that formula F (E(−D,f)
CM ) =

A
(D,f ′)
RM is true in this case.

Case II. If D ≡ 2 or 3 mod 4 then by (3) R = Z + (
√
−f2D)Z; thus

the multiplier α = m +
√
−f2Dn2 for some m,n ∈ Z. A multiplication by

α corresponds to an endomorphism (a, b, c, 0) ∈ M2(Z), where
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



a = Tr(α) = α + ᾱ = 2m

b = −1

c = N(α) = αᾱ = m2 + f2Dn2.

(14)

We shall repeat the argument of Case I; then from the last equation of (14)
the minimum of |α| is attained for m = 0 and n = ±1. Thus α0 = ±f

√−D.
To find the matrix form of the endomorphism α0 we substitute in (9)

a = d = 0, b = −1 and c = f2D. Thus the Teichmüller functor maps the
multiplier α0 = ±f

√−D into F (α0) = ±f ′
√

D. In other words, formula
F (E(−D,f)

CM ) = A
(D,f ′)
RM is true in this case as well.

Since all possible cases are exhausted, Lemma 3 is proved. ¤

Lemma 4 For every N ≥ 1 there exists a holomorphic map X1(N) →
X(N).

Proof. Indeed, Γ(N) is a normal subgroup of index N of the group Γ1(N);
therefore there exists a degree N holomorphic map X1(N) → X(N). ¤

Theorem 1 follows from Lemmas 1–3 and Lemma 4 for N = fD. ¤

Remark 3 While this note was in print, the author came across a preprint
(D’Andrea, Fiore & Franco, 2013 [2]). Using the idea of quantum deforma-
tion of the line bundles over elliptic curves, the authors establish a remark-
able formula

τ − pθ

2
i ∈ Z+ Zi, (15)

where p ∈ Z is the first Chern class of the line bundle. The reader is
encouraged to verify, that Theorem 1 satisfies equation (15) for a line bundle
of the Chern class p = 2f ′ with τ = f

√−D and θ =
√

D.
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