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On a symmetry of complex and real multiplication

Igor V. NIKOLAEV
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Abstract. It is proved that each lattice with complex multiplication by f+/—D cor-
responds to a pseudo-lattice with real multiplication by f’+/D, where f’ is an integer
defined by f.

Key words: complex and real multiplication.

1. Introduction

The paper continues a study of the duality between elliptic curves with
complex multiplication and noncommutative tori with real multiplication
initiated in [5]; let us introduce some notation and basic facts. Fix an
irrational number 0 < 6 < 1; a noncommutative torus is the universal C*-
algebra Ay generated by the unitaries u and v satisfying the commutation
relation vu = e>™%yv (Rieffel, 1981 [6]). Two such tori are stably isomorphic
(Morita equivalent) whenever Ay @ K = Ay ® KC, where K is the C*-algebra
of compact operators; the isomorphism occurs if and only if 8’ = (af + b)/
(cf + d), where a,b,c,d € Z and ad — bc = 1. The K-theory of Ay is Bott
periodic with Ko(A4g) = K1(Ag) = Z2. The range of the trace on projections
of Ap @ K is a subset A = Z + Z0 of the real line (Rieffel, 1981 [6]); A is
called a pseudo-lattice (Manin, 2004 [4]). The torus Ay is said to have real
multiplication if 0 is a quadratic irrationality; we shall denote the set of
such algebras by Agps. The real multiplication entails existence of the non-
trivial endomorphisms of A coming from multiplication by the real numbers
— hence the name. If D > 1 is a square-free integer, we shall write Agg\}[f )
to denote real multiplication by an order Ry of conductor f > 1 in the field
Q(v/D); each torus in Agps can be written in this form (Manin, 2004 [4]).

Let H = {z + iy € C | y > 0} be the upper half-plane and for 7 € H
let C/(Z + Z7) be a complex torus; we routinely identify the latter with a
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non-singular elliptic curve via the Weierstrass g function (Silverman, 1994
[7, pp.6-7]). Recall that two complex tori are isomorphic, whenever 7/ =
(at +b)/(ct +d), where a,b,c,d € Z and ad — bc = 1. If 7 is an imaginary
quadratic number, the elliptic curve is said to have complex multiplication,;
in this case the lattice L = Z + Z71 admits non-trivial endomorphisms given
as multiplication of L by certain complex (quadratic) numbers. Elliptic
curves with complex multiplication are fundamental and have long history
in number theory; we shall denote the set of such curves by Eops. We write
Eé_]\f’f ) to denote the elliptic curve with complex multiplication by an order
MRy of conductor f > 1 in the imaginary quadratic field Q(v/—D); each curve
in Eo s is isomorphic to E(C_MD’f ) for some integers D and f (Silverman, 1994
[7, pp. 95-96)).

There exists a covariant functor between elliptic curves and noncom-
mutative tori; the functor maps isomorphic curves to the stably isomorphic
tori. To give an idea, let ¢ be a closed form on a topological torus; the
trajectories of ¢ define a measured foliation on the torus. By the Hubbard-
Masur theorem, such a foliation corresponds to a point 7 € H. The map
F : H — OH is defined by the formula 7 — 6 = f’m o/ f% ¢, where v,
and 7» are generators of the first homology of the torus. The following is
true: (i) H = 0H x (0,00) is a trivial fiber bundle, whose projection map
coincides with F'; (ii) F' is a functor, which maps isomorphic complex tori
to the stably isomorphic noncommutative tori. We shall refer to F' as the
Teichmdiller functor. It was proved in [5] that F'(Ecpn) € Agw, i.e. F sends
elliptic curves with complex multiplication to the noncommutative tori with
real multiplication. Namely, F(Eé_]\fl)’f )) = Agg\}[f /), where f’ is the least
integer satisfying equation |Cl (Ry/)| = |Cl (Ry)| for the class numbers of
orders Ry and Ry, respectively; the latter constraint is a necessary and

sufficient condition for A%DMf ) to discern non-isomorphic curves Eg\f’f )
having the same endomorphism ring Ry.

Denote by AS%DMf ) a pseudo-lattice corresponding to the torus AEQDMf ); the
Agﬁ}[f ) can be identified with points of the boundary OH of the half-plane
H. Let z,x € Agﬁ}ff ) be a pair of the conjugate quadratic irrationalities and
consider a geodesic half-circle through z and Zz:

zet/? 4 izet/2
et/2 4 je—t/2

Y(x,z) = , —o0 <t < o0. (1)
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A Riemann surface X is said to be associated to A%D]\}If ), if the covering of

the geodesic spectrum of X contains the set {y(z,z) : Vo € AEQDMf )}, see

Definition 1; such a surface will be denoted by X (AE%DMf )). Our main result
can be expressed as follows.

Theorem 1 For every square-free integer D > 1 and integer f > 1
there exists a holorlnorphic map F~1 . X(AE%D]\}[”) — Eg]\f’f), where
FUGET) = ADL)

The note is organized as follows. Section 2 is reserved for notation and
preliminary facts. Theorem 1 is proved in Section 3.

2. Riemann surface X (A%DA}If))

Let X be a Riemann surface; consider the geodesic spectrum of X, i.e.
the set Spec X consisting of all closed geodesics of X. Recall that for the
covering map H — X each geodesic v € Spec X is the image of a geodesic
half-circle F(z,2’) € H with the endpoints x # z’. Denote by S/I;e/cX C H
the set of geodesic half-circles covering the geodesic spectrum of X.

Definition 1 We shall say that the Riemann surface X is associated to
the noncommutative torus Agg\}lf), if {y(z,z) : Vx € A%D]\}[f)} C SpecX; the

associated Riemann surface will be denoted by X (A%D]\}[f )).

Let N > 1 be an integer; by I'; (V) we understand a subgroup of the
modular group SLo(Z) consisting of matrices of the form

{ <‘Z 2) € SLy(Z)

the corresponding Riemann surface H/I'1(N) will be denoted by Xi(N).
The following lemma links X(Agg\’f)) to X1(N).

a,d = 1mod N, CEOmOdN}; (2)

Lemma 1 X(A'DD)~ Xx,(fD).

Proof. Let Agj)\}[f ) be a pseudo-lattice with real multiplication by an order

R in the real quadratic number field Q(v/D); it is known, that A%DMf JCR
and R =Z + (fw)Z, where f > 1 is the conductor of R and
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1+ VD if D = 1mod4,
w= 2 (3)
VD if D =2,3modA4,

see e.g. (Borevich & Shafarevich, 1988 [1, pp. 130-131]) Recall that matrix
(a,b,c,d) € SLy(Z) has a pair of real fixed points = and z if and only if
|a + d| > 2 (the hyperbolic matrix); the fixed points can be found from the
equation x = (ax + b)(cx + d)~! by the formulas:

a—d [(a+d)? —4 _ a—d [(a+d)? —4
v 2¢ + 4¢? ’ v 2¢ 4¢? )

Casel. If D = 1mod4, then formula (3) implies that R = (1+ f/2)Z+
(Vf?D/2)Z. If x € AS%DMf) is fixed point of a transformation (a,b,c,d) €
SLy(Z), then formula (4) implies:

a—d f

2c _<1+2>Zl

(a+d?—4  f?°D ,
12 4=

(5)

for some integer numbers z; and z,. The second equation can be written in
the form (a + d)? — 4 = ¢®f2Dz2; we have therefore (a + d)? = 4mod(fD)
and a + d = +2mod(fD). Without loss of generality we assume a + d =
2mod(fD) since matrix (a,b,c,d) € SLy(Z) can be multiplied by —1. No-
tice that the last equation admits a solution a = d = 1 mod(fD).

The first equation yields us (a —d)/c = (2 + f)z1, where ¢ # 0 since
the matrix (a,b,c,d) is hyperbolic. Notice that a — d = 0mod(fD); since
the ratio (a — d)/c must be integer, we conclude that ¢ = Omod(fD). All
together, we get:

a=1mod(fD), d=1mod(fD), c¢=0mod(fD). (6)

Case Il. If D =2 or 3mod4, then R = Z + (\/f>D)Z. If x € A0S
is fixed point of a transformation (a,b,c,d) € SLy(Z), then formula (4)
implies:
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a—d_z
2¢ !
(7)
(a+d)2_4_ 2D2
462 _f Z2

for some integer numbers z; and z;. The second equation gives (a + d)? —
4 = 4c? f?2D23; therefore (a + d)? = 4mod(fD) and a + d = +2mod(fD).
Again without loss of generality we assume a+d = 2mod(f D) since matrix
(a,b,c,d) € SLy(Z) can be multiplied by —1. The last equation admits a
solution a = d = 1 mod(fD).

The first equation is (a —d)/c = 2z, where ¢ # 0. Since a — d =
Omod(fD) and the ratio (a — d)/c must be integer, one concludes that ¢ =
Omod(fD). All together, we get equations (6). Since all possible cases are
exhausted, Lemma 1 follows. O

Remark 1 There exist other finite index subgroups of SLs(Z) whose
geodesic spectrum contains the set {y(z,z) : Va € A%DMf)}; however I'y (f D)
is a unique group with such a property among subgroups of the principal
congruence group.

Remark 2 Not all geodesics of X;(fD) have form (1); thus the set
{F(z,z) : Vo € A%DJ\}[]C )} is strictly included in the geodesic spectrum of
modular curve X;(fD).

3. Proof of Theorem 1

Recall, that I'(N) := {(a,b,c,d) € SL2(Z) | a,d = 1mod N, b,c =
0mod N} is called a principal congruence group of level N; the corresponding
(compact) Riemann surface will be denoted by X (V) = H/I'(N).

Lemma 2 (Hecke) There exists a holomorphic map X (fD) — E(C;\f’f).

Proof. A detailed proof of this beautiful fact is given in (Hecke, 1928 [3]).

To give an idea of the proof, let R be an order of conductor f > 1
in the imaginary quadratic number field Q(v/—D); consider an L-function
attached to fR:

s eC, (8)
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where P is a prime ideal in R, N(B) its norm and ) a Grossencharacter.
A crucial observation (Section 1) says that the series L(s,1)) converges to a
cusp form w(s) of the principal congruence group I'(fD).

By the Deuring Theorem, L(Eg]\?’f), s) = L(s,9)L(s,1), where
L(E(C_Af’f ),3) is the Hasse-Weil L-function of the elliptic curve and v a
conjugate of the Grossencharacter, see (Silverman, 1994 [7, p.175]); more-
over L(E(C;Vl[)’f), s) = L(w, s), where L(w, s) := > ° | %= and ¢, the Fourier
coefficients of the cusp form w(s). In other words, E(C_J\f[)’f ) is a modular
elliptic curve.

One can now apply the modularity principle: if A,, is an abelian variety
given by the periods of holomorphic differential w(s)ds (and its conjugates)

on X (fD), then the following diagram commutes

b

—-D,f
o™

The holomorphic map X(fD) — E(C_N?’f ) is obtained as a composition of
the canonical embedding ¢ : X (fD) — A,, with the subsequent holomorphic

projection 7 : A, — E(&\?’f). U

Lemma 3 The functor F' acts by the formula Eé;\/[[)’f) — Ag])\}[f/).

Proof. Let Loas be a lattice with complex multiplication by an order SR =
7 4+ (fw)Z in the imaginary quadatic field Q(v/—D); the multiplication by
a € R generates an endomorphism (a, b, c,d) € Ms(Z) of the lattice Lepy.
It is known, that the endomorphisms of lattice Lops and endomorphisms
of the pseudo-lattice Agrys = F(Loas) are related by the following explicit
map [4, p. 524]:

(Z 2) € End(Lon) — <_ac _b d) € End(Aga). (9)

Moreover, one can always assume d = 0 in a proper basis of Lojs. We shall
consider the following two cases.
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Case I. If D = 1mod4 then by (3) R = Z + ((f + /—f2D)/2)Z;
thus the multiplier @ = (2m + fn)/2 + \/(—f?Dn?)/4 for some m,n € Z.

Therefore multiplication by « corresponds to an endomorphism (a, b, ¢,0) €
M>(Z), where

a=Tr(e) =a+a=2m+ fn

b=-1 (10)

2m + fn>2 N f2Dn?

c:N(a):aa:< 5 1

To calculate a primitive generator of endomorphisms of the lattice Lops one
should find a multiplier ag # 0 such that

— mi — min /N(a). 11
v mrggzla!  min () (11)

From the last equation of (10) the minimum is attained for m = —f/2 and
n=1if fiseven or m = —f and n = 2 if f is odd. Thus

j:gx/—D, if f is even

oy =

(12)
+fy/—D, if fisodd.

To find the matrix form of the endomorphism «ag, we shall substitute in (9)
a=d=0,b=—1and c= f2D/4if f is even or ¢ = f2D if f is odd. Thus
the Teichmiiller functor maps the multiplier o into

!
j:;\/ﬁ, if f is even

F(ag) = (13)

+f'/D, if f is odd.

Comparing equations (12) and (13) one verifies that formula F(Eé_]\f’f )) =
A%DMf ) is true in this case.
Case Il. If D = 2 or 3mod4 then by (3) R = Z + (\/—f2D)Z; thus

the multiplier & = m + /—f2Dn? for some m,n € Z. A multiplication by
a corresponds to an endomorphism (a, b, ¢,0) € My(Z), where
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a = Tr(a)=a+a=2m
b = —1 (14)
c = N(a)=aa=m?+ f2Dn?.

We shall repeat the argument of Case I; then from the last equation of (14)
the minimum of |a/| is attained for m = 0 and n = 41. Thus ap = £fv/—D.

To find the matrix form of the endomorphism g we substitute in (9)
a=d=0,b=—1and ¢ = f2D. Thus the Teichmiiller functor maps the
multiplier ag = +£fv/—D into F(ag) = £f’v/D. In other words, formula
F(E(C_J\f’f)) = Ag])\}[f,) is true in this case as well.

Since all possible cases are exhausted, Lemma 3 is proved. O

Lemma 4 For every N > 1 there exists a holomorphic map X1(N) —
X(N).

Proof. Indeed, T'(IV) is a normal subgroup of index N of the group I'1 (NV);
therefore there exists a degree N holomorphic map X;(N) — X (N). O

Theorem 1 follows from Lemmas 1-3 and Lemma 4 for N = fD. U

Remark 3 While this note was in print, the author came across a preprint
(D’Andrea, Fiore & Franco, 2013 [2]). Using the idea of quantum deforma-
tion of the line bundles over elliptic curves, the authors establish a remark-
able formula
0

T—%i€Z+Zi, (15)
where p € Z is the first Chern class of the line bundle. The reader is
encouraged to verify, that Theorem 1 satisfies equation (15) for a line bundle

of the Chern class p = 2f’ with 7 = fv/—D and 6 = v/D.

Acknowledgment I thank the referee for helpful comments.
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