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Abstract. The aim of this paper is to give the Schwartz kernel theorem for the space

of the tempered distributions on the Heisenberg group.
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1. Introduction

The Heisenberg group is the non-commutative Lie group. The harmonic
analysis on the Heisenberg group is studied by several mathematicians ([2],
[3], [4], [6], [7], [8], [9], [12], [16], [17], [18] and so on).

The aim of this article is to give the Schwartz kernel theorem for the
tempered distributions on the Heisenberg group by means of the heat kernel
method on the Heisenberg group. The heat kernel method, introduced by T.
Matsuzawa in [13], is the method to characterize the generalized functions on
the Euclidean space by the initial value of the solutions of the heat equation.
Especially, in [14], T. Matsuzawa showed the heat kernel method for the
tempered distributions on the Euclidean space. On the other hand, in [11],
J. Kim and M. W. Wong showed the heat kernel method for the tempered
distributions on the Heisenberg group. We apply the heat kernel method
for the tempered distributions on the Heisenberg group to the proof of the
Schwartz kernel theorem for the tempered distributions on the Heisenberg
group.

As an application of the Schwartz kernel theorem for the tempered dis-
tributions, R. Ashino, T. Mandai and A. Morimoto constructed a continu-
ous linear time shift invariant system and considered BIBO (Bounded-Input
Bounded-Output) stability of the continuous linear time shift invariant sys-
tem on the Euclidean space in [1]. Under this idea, we consider BIBO
stability of a continuous linear system constructed by the tempered kernel
distribution on the Heisenberg group.
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2. The Heisenberg group Hd

First of all, we fix some notations. We use a multi-index α ∈ Zd
+,

namely, α = (α1, . . . , αd), where αi ∈ Z and αi ≥ 0. So, for x ∈ Rd,
xα = xα1

1 · · ·xαd

d and ∂α
x = ∂α1

x1
· · · ∂αd

xd
, where ∂

αj
xj = (∂/∂xj)αj . Moreover

∆ =
∑d

j=1(∂
2/∂x2

j ).
Let (x, y, t) and (x′, y′, t′) ∈ Rd × Rd × R = R2d+1. Then we define the

group law of R2d+1 by

(x, y, t)(x′, y′, t′) = (x + x′, y + y′, t + t′ + 2(x′ · y − x · y′)), (2.1)

where x · y =
∑d

j=1 xjyj . The group R2d+1 with respect to the group
law defined by (2.1) is called the Heisenberg group and denoted by Hd.
Its identity element is (0, 0, 0) and the inverse of the element (x, y, t) is
(x, y, t)−1 = (−x,−y,−t). The Heisenberg group Hd is a locally compact
Hausdorff group and its Haar measure is the Lebesgue measure dxdydt.

The left-invariant vector fields on the Heisenberg group Hd as R2d+1 are
represented by

Xj =
∂

∂xj
+ 2yj

∂

∂t
, Xd+j =

∂

∂yj
− 2xj

∂

∂t
and X2d+1 =

∂

∂t

for j = 1, 2, . . . , d and these make a basis for the Lie algebra of Hd.
The sub-Laplacian ∆Hd on Hd is defined by

∆Hd =
2d∑

j=1

X2
j .

We consider the heat operator

∂

∂s
−∆Hd

on Hd × (0,∞).
Let λ > 0. Then we define the dilations δλ by

δλ(x, y, t) = (λx, λy, λ2t)
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for (x, y, t) ∈ Hd.
The homogeneous dimension Q of Hd is given by

Q = 2d + 2.

Moreover, a function u from Hd to C is called the Heisenberg-
homogeneous of degree k ∈ Z if u ◦ δλ = λku for λ > 0. Especially the
Heisenberg-homogeneous of degree of the distance function d defined by

d(x, y, t) = ((x2 + y2)2 + t2)1/4

for (x, y, t) ∈ Hd is one, that is,

d(λx, λy, λ2t) = λd(x, y, t). (2.2)

The distance between two points (x, y, t) and (x′, y′, t′) in Hd is given
by

d
(
(x′, y′, t′)−1(x, y, t)

)
.

Let f and g be suitable functions on Hd. Then we define the convolution
f ∗ g of f with g as follows:

(f ∗ g)(x, y, t) =
∫

Hd

f(x′, y′, t′)g((x′, y′, t′)−1(x, y, t))dx′dy′dt′

for (x, y, t), (x′, y′, t′) ∈ Hd. The convolution on Hd is non-commutative, in
general.

3. The space S(Hd) and its dual space S′(Hd)

Let α ∈ Z2d
+ . Then the functions (Xαϕ)(x, y, t) are defined by

(Xαϕ)(x, y, t) = (Xα1
1 Xα2

2 . . . Xα2d

2d ϕ)(x, y, t)

for a function ϕ ∈ C∞(Hd).
We define the Schwartz class S(Hd) on the Heisenberg group as follows:

Definition 1 For any ϕ ∈ C∞(Hd), we say ϕ ∈ S(Hd) if the function ϕ

satisfies the following condition: For any N ∈ Z+, we have
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‖ϕ‖N = sup
(x,y,t)∈Hd

(1 + d(x, y, t))N
∑

|α|≤N

|Xαϕ(x, y, t)| < ∞.

It is clear from the definition that the space S(Hd) is topologically iso-
morphic of the space S(R2d+1). Moreover, it is known that the Schwartz
class S(Hd) is a Fréchet space in [3].

Definition 2 We denote by S ′(Hd) the dual space of the space S(Hd)
and call it the space of the tempered distributions on the Heisenberg group.
Thus, u ∈ S ′(Hd) if and only if u is a linear functional from S(Hd) to C
and satisfies the following condition: There exist N ∈ Z+ and a positive
constant C such that

∣∣〈u, ϕ〉
∣∣ ≤ C‖ϕ‖N

for any ϕ ∈ S(Hd).

By the definition, we can see that the space S ′(Hd) is topologically
isomorphic of the space S ′(R2d+1).

Let f̌(x, y, t) = f((x, y, t)−1) for (x, y, t) ∈ Hd. Then we define the
convolution u ∗ ϕ of u ∈ S ′(Hd) with ϕ ∈ S(Hd) as follows:

〈u ∗ ϕ,ψ〉 = 〈u, ψ ∗ ϕ̌〉

for any ψ ∈ S(Hd).

4. The heat kernel method for the space S′(Hd)

In [6] and [9], we can find the explicit form of the heat kernel (the
fundamental solutions) Ps(x, y, t) of the heat operator

∂

∂s
−∆Hd

on Hd as follows:

Ps(x, y, t) =





(4πs)−(d+1)

∫ ∞

−∞

(
2τ

sinh 2τ

)d

e(iτt/2s)−(2(|x|2+|y|2)τ/4s tanh 2τ)dτ,

s > 0,

0, s ≤ 0.
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The following properties of the heat kernel Ps(x, y, t) hold:

Proposition 1 ([5]) Let Ps be the heat kernel associated to the sub-
Laplacian ∆Hd . Then the following properties hold :

( i ) Ps(x, y, t) ≥ 0,

( ii )
∫

Hd

Ps(x, y, t)dxdydt = 1,

(iii) Ps(x, y, t) = Ps((x, y, t)−1),

(iv)
(

∂

∂s
−∆Hd

)
Ps(x, y, t) = 0,

(v ) lim
s→+0

Ps = δ in S ′(Hd),

(vi) Pr2s(rx, ry, r2t) = r−QPs(x, y, t), r > 0.

Moreover the heat kernel Ps(x, y, t) has the following estimate:

Proposition 2 ([10]) Let Ps(x, y, t) be the heat kernel associated to the
sub-Laplacian ∆Hd . Then for any α ∈ Z2d

+ and m ∈ Z+, there exist positive
constant a and Cm,α such that

∣∣∣∣
∂m

∂sm
XαPs(x, y, t)

∣∣∣∣ ≤ Cm,αs−m−|α|/2−Q/2e−ad(x,y,t)2/s.

Proposition 3 The heat kernel Ps(x, y, t) is in the space S(Hd) for s > 0.
Moreover for any ϕ ∈ S(Hd), the following property holds:

ϕ ∗ Ps → ϕ ∈ S(Hd)

as s converges to +0.

Proof. Let g = (x, y, t), g′ = (x′, y′, t′) ∈ Hd. Then it is enough to show
that we have for any N1 ∈ Z+, α ∈ Zd

+,

lim
s→+0

sup
g∈Hd

d(g)N1 |Xα(ϕ ∗ Ps)(g)−Xαϕ(g)| = 0

for ϕ ∈ S(Hd).
Since
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d(g)N1 ≤ 2N1
(
d(g′−1

g)N1 + d(g′)N1
)
,

by Proposition 1, we have

d(g)N1 |Xα(ϕ ∗ Ps)(g)−Xαϕ(g)|

=
∣∣∣∣d(g)N1

∫

Hd

Xαϕ(g′)Ps(g′
−1

g)dg′ −Xαϕ(g)
∣∣∣∣

≤ 2N1

∫

Hd

d(g′−1
g)N1Ps(g′

−1
g)|Xαϕ(g′)−Xαϕ(g)|dg′

+ 2N1

∫

Hd

d(g′)N1Ps(g′
−1

g)|Xαϕ(g′)−Xαϕ(g)|dg′

= (I) + (II).

By Proposition (5.4) in [5], for any ε > 0, there exists δ > 0 such that
if d(g′−1

g) ≤ δ, then we have

sup
g,g′∈Hd

∣∣Xαϕ(g′)−Xαϕ(g)
∣∣ ≤ ε.

Moreover since ϕ ∈ S(Hd), there exists a positive constant Mα such that

sup
g∈Hd

|Xαϕ(g)| ≤ Mα.

Now we consider the integral in (I) in the case (Ia); d(g′−1
g) > δ or in

the case (Ib); d(g′−1
g) ≤ δ. In the case (Ia), by Proposition 2, we have

2N1d(g′−1
g)N1Ps(g′

−1
g)

≤ CN1d(g′−1
g)N1s−(d+1)e−(ad(g′−1g)2)/s)

≤ CN1d(g′−1
g)N1e−(ad(g′−1g)2)/2ss−(d+1)e−(ad(g′−1g)2)/2s

≤ C ′N1
sN1/2s−(d+1)e−(ad(g′−1g)2)/2s. (4.1)

Hence by (2.2), (4.1) and
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∫

Hd

e−ad(G)2dG < ∞,

we obtain

2N1

∫

d(g′−1g)>δ

d(g′−1
g)N1Ps(g′

−1
g)|Xαϕ(g′)−Xαϕ(g)|dg′

≤ C ′′N1,αsN1/2s−(d+1)

∫

d(g′−1g)>δ

e−(ad(g′−1g)2)/2sdg′

≤ C ′′N1,αsN1/2s−(d+1)

∫

Hd

e−(ad(g′−1g)2)/2sdg′

= C ′′N1,αsN1/2

∫

Hd

e−ad(G)2dG

= C ′′′N1,αsN1/2

→ 0

as s converges to +0. On the other hand, in the case (Ib), for any ε > 0, we
have

2N1

∫

d(g′−1g)≤δ

d(g′−1
g)N1Ps(g′

−1
g)|Xαϕ(g′)−Xαϕ(g)|dg′

≤ C̃N1,αεδ

∫

Hd

Ps(g′
−1

g)dg′

= C̃N1,αεδ.

In the case (II), we can obtain the same result by a similar argument in
the case (I). Therefore we have

ϕ ∗ Ps → ϕ

in S(Hd) as s converges to +0. ¤

J. Kim and M. W. Wong obtained the following characterization of the
space S ′(Hd). This characterization is called “the heat kernel method”:

Theorem 1 ([11]) For u ∈ S ′(Hd), we put
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Us(x, y, t) = (u ∗ Ps)(x, y, t)

for (x, y, t) ∈ Hd and s > 0. Then the function Us(x, y, t) satisfies the
following four conditions:

( i ) Us(x, y, t) ∈ C∞(Hd × (0,∞)),

( ii )
(

∂

∂s
−∆Hd

)
Us(x, y, t) = 0, (x, y, t) ∈ Hd and s > 0,

(iii) for any ϕ ∈ S(Hd),

〈u, ϕ〉 = lim
s→+0

∫

Hd

Us(x, y, t)ϕ(x, y, t)dxdydt

and
(iv) there exist µ, ν > 0 and a constant C > 0 such that

|Us(x, y, t)| ≤ Cs−µ(1 + d(x, y, t))ν , 0 < s < 1,

for (x, y, t) ∈ Hd.

Conversely every Us(x, y, t) ∈ C∞(Hd×(0,∞)) satisfying the conditions
(ii) and (iv) can be expressed in the form

Us(x, y, t) = (u ∗ Ps)(x, y, t)

with the unique element u ∈ S ′(Hd).

Example 1 Let u be the Dirac’s delta function δ ∈ S ′(Hd). Then we have

Us(x, y, t) = (δ ∗ Ps)(x, y, t) = Ps(x, y, t).

Hence by Proposition 2, there exist positive constants a and C such that

|Us(x, y, t)| = |Ps(x, y, t)| ≤ Cs−d−1e−(ad(x,y,t)2)/s.

5. Schwartz kernel theorem for the space S′(Hd)

As an application of the characterization of the space S ′(Hd), we show
the Schwartz kernel theorem for the space S ′(Hd) as follows:
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Theorem 2 Let k be a continuous linear operator from S(Hd2) to S ′(Hd1).
Then there exists T in S ′(Hd1 ×Hd2) such that

〈kψ, ϕ〉 = 〈T, ϕ⊗ ψ〉,

where ϕ is in S(Hd1) and ψ is in S(Hd2).

Proof. Since k is continuous, the bilinear form B on S(Hd1)× S(Hd2),

B(ϕ,ψ) = 〈kψ, ϕ〉, ϕ ∈ S(Hd1), ψ ∈ S(Hd2)

is separately continuous. Since S(Hd1) and S(Hd2) are the Fréchet space
respectively, B is continuous. Hence we can see that there exist a positive
constant C and N1, N2 ∈ Z+ such that

|〈kψ, ϕ〉| ≤ C‖ϕ‖N1‖ψ‖N2 . (])

We define Rs((x1, y1, t1), (x2, y2, t2)) by

Rs((x1, y1, t1), (x2, y2, t2))

=
〈
kPs((x2, y2, t2)−1(·, ·, ·)), Ps((x1, y1, t1)−1(·, ·, ·))〉

for ((x1, y1, t1), (x2, y2, t2)) ∈ Hd1 ×Hd2 and s > 0.
Now we show Rs converges in S ′(Hd1 ×Hd2) as s → +0. By (]), there

exist a positive constant C and M, N1, N2 ∈ Z+ such that

|Rs((x1, y1, t1), (x2, y2, t2))| ≤ Cs−M (1 + d(x1, y1, t1))N1(1 + d(x2, y2, t2))N2 ,

for (x1, y1, t1) ∈ Hd1 , (x2, y2, t2) ∈ Hd2 and 0 < s < 1.
Moreover we obtain

(
∂

∂s
−∆Hd1+d2

)
Rs((x1, y1, t1), (x2, y2, t2)) = 0

for (x1, y1, t1) ∈ Hd1 , (x2, y2, t2) ∈ Hd2 and 0 < s < 1.
Therefore, by Theorem 1, there exists R0 ∈ S ′(Hd1 ×Hd2) such that

R0 = lim
s→+0

Rs
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in S ′(Hd1 ×Hd2).
Since the Riemann sum of an integral converges in S(Hdj ), j = 1, 2, by

Proposition 1, we have

〈Rs, ϕ⊗ ψ〉 =
∫∫

Hd1×Hd2

Rs((x1, y1, t1), (x2, y2, t2))ϕ(x1, y1, t1)ψ(x2, y2, t2)

× dx1dy1dt1dx2dy2dt2

=
〈

k

∫

Hd2

Ps((x2, y2, t2)−1(·, ·, ·))ψ(x2, y2, t2)dx2dy2dt2,

∫

Hd1

Ps((x1, y1, t1)−1(·, ·, ·))ϕ(x1, y1, t1)dx1dy1dt1

〉

= 〈k[ψ ∗ Ps], ϕ ∗ Ps〉

for ϕ ∈ S(Hd1) and ψ ∈ S(Hd2).
Therefore by Proposition 3, we obtain

〈R0, ϕ⊗ ψ〉 = 〈kψ, ϕ〉,

as s → +0. ¤

6. The translation invariant operator

Let g = (x, y, t) ∈ Hd. Then we define the translation operator Tβ by

[Tβf ](g) = f(β−1g)

for β ∈ Hd. A continuous linear map k : S(Hd) → S ′(Hd) is said to be
translation invariant if

Tβk[ψ] = k[Tβψ]

for any ψ ∈ S(Hd).
By Theorem 2, for any continuous linear system (map) k from S(Hd)

to S ′(Hd), there exists the tempered kernel distribution K ∈ S ′(Hd × Hd)
such that

〈kψ, ϕ〉 = 〈K, ϕ⊗ ψ〉
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for ϕ,ψ ∈ S(Hd).
Now we have the following Proposition 4:

Proposition 4 Let k : S(Hd) → S ′(Hd) be a continuous linear system
and K(g1, g2) be its tempered kernel distribution on Hd×Hd. The system k

is translation invariant if and only if there exists h ∈ S ′(Hd) such that

K(g1, g2) = h(g−1
2 g1),

that is,

k[ψ] = ψ ∗ h

for any ψ ∈ S(Hd).

Proof. Let us prove the converse first. If

K(g1, g2) = h(g−1
2 g1)

for some h ∈ S ′(Hd), then it is clear to see that

k[ψ] = ψ ∗ h

is a translation invariant.
Let us assume that k is translation invariant. Then for any ψ ∈ S(Hd),

〈
K(β−1g1, g2), ψ(g2)

〉
=

〈
K(g1, g2), ψ(β−1g2)

〉

= 〈K(g1, βg2), ψ(g2)〉

for β ∈ Hd. Hence we have

K(β−1g1, g2) = K(g1, βg2)

in S ′(Hd), that is,

K(g1, g2) = K(βg1, βg2). (6.1)

So we obtain

〈K, φ〉 =
〈
K, φ(β−1g1, β

−1g2)
〉

(6.2)
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for any φ ∈ S ′(Hd × Hd). Therefore this completes the proof from the
following Lemma 1. ¤

Lemma 1 If K ∈ S ′(Hd×Hd) satisfies (6.1), then there exists h ∈ S ′(Hd)
so that

K(g1, g2) = h(g−1
2 g1).

Proof. Let ψ ∈ S(Hd) so that

∫

Hd

ψ(g̃)dg̃ = 1. (6.3)

Assume that h satisfies

K(g1, g2) = h(g−1
2 g1).

Since we have

h(ξ1) = K(ξ2ξ1, ξ2),

we can express

〈h, φ〉 = 〈K(ξ2ξ1, ξ2), φ(ξ1)ψ(ξ2)〉, φ ∈ S(Hd).

Next we will show the existence of h. We define h ∈ S ′(Hd) by

〈h(g1), φ(g1)〉 := 〈K(ξ2ξ1, ξ2), φ(ξ1)ψ(ξ2)〉, φ ∈ S(Hd). (6.4)

By (6.4), we have for f ∈ S(Hd),

〈
h(g−1

2 g1), f(g2)φ(g1)
〉

= 〈h(g1), f(g2)φ(g2g1)〉
= 〈K(ξ2ξ1, ξ2), f(g2)φ(g2ξ1)ψ(ξ2)〉. (6.5)

By the coordinate change (ξ1, ξ2, g2) → (ξ−1
2 ξ1, ξ2, g2ξ2), we obtain

(6.5) = 〈K(ξ1, ξ2), f(g2ξ2)φ(g2ξ1)ψ(ξ2)〉. (6.6)

Thus, by (6.2), we have
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(6.6) =
〈
K(ξ1, ξ2), f(ξ2)φ(ξ1)ψ(g−1

2 ξ2)
〉
. (6.7)

So, by (6.3), we obtain

(6.7) = 〈K(ξ1, ξ2), f(ξ2)φ(ξ1)〉.

Hence we have

K(g1, g2) = h(g−1
2 g1). ¤

7. BIBO stability

The BIBO (Bounded-Input Bounded-Output) stability of the continu-
ous linear system is defined as follows:

Definition 3 The continuous linear system k is said to be BIBO stable if
there exists constant C > 0 such that

sup
g∈Hd

|k[ψ](g)| ≤ C sup
g∈Hd

|ψ(g)|

for any ψ ∈ S(Hd).

Theorem 3 Let k[ψ] = ψ ∗ h for h ∈ S ′(Hd) and ψ ∈ S(Hd). Then k is
BIBO stable if and only if Λ ∈M(Hd), where Λ ∈ S ′(Hd) is the kernel of k

and M(Hd) denotes the space of bounded Radon measures on Hd.

Proof. Since it is clear that the sufficient condition holds, it is enough to
show the necessary. If k is BIBO stable, then there exists a constant C > 0
such that

|k[ψ](E)| ≤ C sup
g∈Hd

|ψ(g)|

for ψ ∈ S(Hd), where E = (0, 0, 0). This implies that ψ 7−→ k[ψ](E) is
a bounded Radon measure µ by Riesz’s representation theorem (see [15]).
Therefore we have

k[ψ](E) = 〈µ, ψ〉 =
∫

Hd

ψ(g1)dµ(g1).
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Since the map k is translation invariant, we can see that for any g ∈ Hd,

k[ψ](g) = 〈µ, ψ〉 =
∫

Hd

ψ(g1)dµ(g−1
1 g). ¤

Example 2 Let h = δ ∈ S ′(Hd). Then we have

k[ψ](g) = (ψ ∗ δ)(g) =
∫

Hd

ψ(g′)δ(g′−1
g)dg′ = ψ(g), ψ ∈ S(Hd).

Thus we can see that the kernel of k can be expressed by the Dirac’s measure
and k is BIBO stable.
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