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Minimal unfolded regions of a convex hull and parallel bodies
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Abstract. The minimal unfolded region (or the heart) of a bounded subset Ω in the

Euclidean space is a subset of the convex hull of Ω the definition of which is based

on reflections in hyperplanes. It was introduced to restrict the location of the points

that give extreme values of certain functions, such as potentials whose kernels are

monotone functions of the distance, and solutions of differential equations to which

Aleksandrov’s reflection principle can be applied. We show that the minimal unfolded

regions of the convex hull and parallel bodies of Ω are both included in that of Ω.

Key words: Minimal unfolded region, heart, potential, hot spot, convex body, parallel

body.

1. Introduction

Let Ω be a compact subset of Rm (m ≥ 2). The minimal unfolded
region of Ω was defined independently by the author for general case ([O]),
and by Brasco, Magnanini, and Salani for the convex case ([BMS]), where
it is called the heart of Ω and denoted by ♥Ω. The definition is based on
the reflections in hyperplanes. Roughly speaking, it is a complement of a
region that has no chance to have points where some functions, which can
be defined somehow symmetrically, take the extreme values.

We use the following notation. Let Sm−1 be the unit sphere in Rm. For
a subset X of Rm, let

◦
X,X, and conv(X) be the interior, the closure, the

convex hull of X, respectively. For a unit vector v ∈ Sm−1 and a real number
b, put cap+

v,b(X) = X ∩ {x ∈ Rm : x · v > b}. We write X̃ = conv(X) and
X+

v,b = cap+
v,b(X) when there is no fear of confusion. Let Rv,b be a reflection

of Rm in a hyperplane {x ∈ Rm : x · v = b}.
Definition 1.1 ([O], [BMS]) Let X be a bounded subset of Rm (m ≥ 2)
and v ∈ Sm−1. Define the level of the maximal cap in direction v by

lX(v) = inf{a : Rv,b(X+
v,b) ⊂ X for every b ≥ a}.
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Figure 1. Folding a convex set like
origami.

Figure 2. A minimal unfolded region
of an acute triangle is a quadrilateral
formed by two angle bisectors (bold
lines) and two perpendicular bisectors
(dotted lines).

Define the minimal unfolded region of X by

Uf(X) =
⋂

v∈Sm−1

{x ∈ Rm : x · v ≤ lX(v)}.

The set Ω+
v,lΩ(v) is called the maximal cap in direction v. The level lΩ(v)

plays an important role in this article. When Ω is compact, it satisfies

lΩ(v) = min
{
a : Rv,b

(
Ω+

v,b

) ⊂ Ω for every b ≥ a
}
.

By definition, Uf(Ω) is compact and convex. It is not empty since it
contains the center of mass of Ω. It is not necessarily contained in Ω if Ω
is not convex, as is illustrated in Figure 3. However, it is included in the
convex hull Ω̃ of Ω. The reason is as follows. Let MΩ(v) = maxx∈Ω x · v be
the support function of Ω̃. Then Ω̃ =

⋂
v∈Sm−1{x : x · v ≤ MΩ(v)}. Since

lΩ(v) ≤ MΩ(v) we have Uf(Ω) ⊂ Ω̃. We remark that Uf(Ω) may not be
contained in the interior of Ω. For example, the minimal unfolded region of
an obtuse triangle has a non-empty intersection with the longest edge, as
was mentioned in [BM].

If Ω is convex and symmetric in a q-dimensional hyperplane H (q < m)
then Uf(Ω) is included in H. Especially, the minimal unfolded region of an
m-ball consists of the center. The convexity assumption cannot be dropped,
as is illustrated in Figure 3. Some other properties when Ω is convex can be
found in [BM].

Let us give some examples of functions such that the extreme values are
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attained only in the minimal unfolded region of Ω. This follows from the
symmetry of the functions.

(1) The potentials whose kernels are monotone functions of the distance.
They include, for example, the log potential Rm 3 x 7→ ∫

Ω
log |x − y| dy,

where dy is the standard Lebesgue measure of Rm, Riesz-type potential∫
Ω
|x− y|α−m

dy (α > 0), its generalization to the case when α ≤ 0 and

x ∈ ◦
Ω that can be obtained after renormalization ([O]), and Poisson integral∫

Ω
t(|x − y|2 + t2)−(m+1)/2 dy (t > 0). We remark that the center of mass

is the unique minimum point of
∫
Ω
|x− y|2 dy. The existence of maximum

points of the renormalization of
∫
Ω
|x− y|α−m

dy (α ≤ 0) restricted to
◦
Ω

([O]) shows Uf(Ω)∩ ◦
Ω 6= ∅. The properties of the points where the extreme

values are attained have been studied by Brasco and Magnanini ([BM]), the
author ([O]), and Sakata ([S]). To be precise, the author studied the unique-
ness of the extremal point of the Riesz-type potential and its generalization
on a general set Ω (with some regularity condition on the boundary), Brasco
and Magnanini studied potentials with a monotone kernel when Ω is a con-
vex body, and Sakata gave some sufficient conditions for the uniqueness of
the extremal point for reasonably wide class of potentials.

(2) The solutions of differential equations such that one can apply Alek-
sandrov’s reflection principle (or the moving plane method). Here we assume
that Ω is a bounded domain in Rm to be compatible with literatures in dif-
ferential equations.

Consider the solution u(x, t) of the following heat equation:





ut = ∆u in Ω× (0,∞),

u = 1 on Ω× {0},
u = 0 on ∂Ω× (0,∞).

It is the temperature of a heat conductor Ω at time t under the assumption
that it is equal to 1 at time 0 on Ω and is constantly equal to 0 on the
boundary. A point where u( · , t) attains the maximum is called a hot spot.
When Ω is convex, it is known that there is a unique hot spot. Brasco,
Magnanini, and Salani showed that the hot spot is contained in Uf(Ω)
when Ω is convex using Aleksandrov’s reflection principle ([BMS]).

They showed that one can also apply Aleksandrov’s reflection principle
to the solutions of
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{
∆u + f(u) = 0 and u > 0 in Ω,

u = 0 on ∂Ω,
(1.1)

where f is a locally Lipschitz continuous function, which implies that the
maximum points of solutions of (1.1) belong to Uf(Ω). A remarkable case
is that of the first Dirichlet eigenfunction of the Laplacian, f(t) = λ1(Ω)t.

In both cases, since their argument is based on the moving plane method,
the same assertion also holds even if Ω is not convex. Namely, hot spots or
the maximum points of solutions of (1.1) are contained in Uf(Ω) ∩ Ω.

Let us assume that Ω is a compact subset of Rm again. In this article we
give two types of operations that make the domain bigger and the minimal
unfolded region smaller. First, the minimal unfolded region of the convex
hull of Ω is included in that of Ω, as is illustrated in Figures 3 and 4, which
was an open problem in [O]. Second, if Ωδ denote the closure of a δ-tubular
neighbouhood of Ω,

Ωδ = {x + δu : x ∈ Ω, u ∈ Bm} =
⋃

x∈Ω

Bδ(x), (1.2)

where Bm and Bδ(x) are the unit m-ball and an m-ball with center x and
radius δ, respectively, then the minimal unfolded regions of Ωδ are included
in that of Ω for any δ > 0. In particular, when Ω is convex, the minimal
unfolded region of Ωδ is equal to that of Ω. In this case, Ωδ is called a
δ-parallel body of Ωδ, and is an important notion in convex geometry.

Figure 3. The minimal unfolded re-
gion (inner regular triangle) of a non-
convex set (union of three congruent
discs whose centers are located on the
vertices of the regular triangle).

Figure 4. The minimal unfolded re-
gion of the convex hull consists of a
point which is the intersection of lines
of symmetry.
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2. Minimal unfolded region of a convex hull

Let xy (x, y ∈ Rm) denote the line segment joining x and y. Let Ω̃
denote the convex hull of Ω as before. We use the same notation as in the
previous section.

Lemma 2.1 Let v ∈ Sm−1. We have b ≥ lΩ(v) if and only if xx′ ⊂ Ω for
any x ∈ Ω+

v,b, where x′ = Rv,b(x).

Proof. First observe that xx′ = {Rv,c(x) : b ≤ c ≤ x · v}. Therefore,
xx′ ⊂ Ω for any x ∈ Ω+

v,b if and only if Rv,c(x) ∈ Ω for any c with b ≤ c ≤ x·v
for any x ∈ Ω+

v,b, which is equivalent to Rv,c(x) ∈ Ω for any x ∈ Ω+
v,c for any

c ≥ b, which occurs if and only if Rv,c(Ω+
v,c) ⊂ Ω for every c ≥ b, which is

equivalent to b ≥ lΩ(v). ¤

Lemma 2.2 Let

Ω̃+
v,b = cap+

v,b(conv(Ω)) = conv(Ω) ∩ {x ∈ Rm : x · v > b}

for v ∈ Sm−1 and b ∈ R. Then, for any z ∈ Ω̃+
v,lΩ(v) we have zz′ ⊂ Ω̃, where

z′ = Rv,lΩ(v)(z).

Proof. Since Lemma 2.1 implies that zz′ ⊂ Ω ⊂ Ω̃ for any z ∈ Ω+
v,lΩ(v), we

have only to show the assertion when z 6∈ Ω+
v,lΩ(v). Let z ∈ Ω̃+

v,lΩ(v)\Ω+
v,lΩ(v).

Then there are x, y ∈ Ω such that z ∈ xy. Put x′ = Rv,lΩ(v)(x) and y′ =
Rv,lΩ(v)(y). Since z · v > lΩ(v), there are exactly two cases: either both x

and y are contained in Ω+
v,lΩ(v) or one of them is contained in Ω+

v,lΩ(v) and
the other not.

Case 1. Assume both x and y are contained in Ω+
v,lΩ(v). Any point in

zz′ can be expressed as zt = tz + (1 − t)z′ for some t (0 ≤ t ≤ 1). Put
xt = tx + (1− t)x′ and yt = ty + (1− t)y′. Then zt ∈ xtyt (Figure 5). Since
Lemma 2.1 implies xt, yt ∈ Ω, we have zt ∈ Ω̃, which implies zz′ ⊂ Ω̃.

Case 2. Assume x ∈ Ω+
v,lΩ(v) and y 6∈ Ω+

v,lΩ(v). Suppose z can be
expressed as z = sx+(1−s)y for some s (0 ≤ s ≤ 1). Put z′′ = sx′+(1−s)y.
Then zz′ ⊂ zz′′ (Figure 6). We have zz′′ ⊂ Ω̃ by the same argument as in
the above case, which implies zz′ ⊂ Ω̃. ¤
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Figure 5.

Figure 6.

Remark 2.3 Two operations, the convex hull operation Ω 7→ conv(Ω)
and the capping operation Ω 7→ cap+

v,b(Ω), do not commute in general.
Since conv(cap+

v,b(Ω)) ⊂ {x ∈ Rm : x · v > b} we have

conv
(
cap+

v,b(Ω)
)

= cap+
v,b

(
conv

(
cap+

v,b(Ω)
))

which implies

conv
(
cap+

v,b(Ω)
) ⊂ cap+

v,b(conv(Ω)),

whereas the converse does not necessarily hold (see Figure 7).
Of course, if Ω is convex then conv(cap+

v,b(Ω)) = cap+
v,b(conv(Ω)) for

any v and for any b. We remark that this property does not characterize the
convexity, namely, even if conv(cap+

v,b(Ω)) = cap+
v,b(conv(Ω)) for any v and

for any b, Ω is not necessarily convex. This can be verified by considering an
annulus A = {(ξ, η) : 1 ≤ ξ2 + η2 ≤ 2}. There is a counter example even if
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Figure 7. Ω (left), conv(cap+
v,b(Ω)) (center), and cap+

v,b(conv(Ω)) (right).

we restrict to the case when Ω is homeomorphic to an m-ball, for example,
we can put Ω = D2 × [0, 1]∪A× [1, 2] ⊂ R3, where D2 is a disc with center
the origin and radius 2.

Theorem 2.4 The minimal unfolded region of the convex hull of a compact
subset Ω is included in that of Ω.

Proof. Lemma 2.2 and Lemma 2.1 imply that leΩ(v) ≤ lΩ(v) for any v ∈
Sm−1. Therefore

Uf(Ω̃) =
⋂

v∈Sm−1

{
x ∈ Rm : x · v ≤ leΩ(v)

}

⊂
⋂

v∈Sm−1

{
x ∈ Rm : x · v ≤ lΩ(v)

}
= Uf(Ω). ¤

3. Minimal unfolded region of parallel bodies

A δ-parallel body, or its generalization Ωδ to a non-convex subset given
by (1.2), is a natural object not only in convex geometry but also in potential
theory from a geometric viewpoint.

Theorem 3.1 The minimal unfolded region of Ωδ is included in that of Ω
for every δ > 0. Moreover, if Ω is convex then the minimal unfolded region
of Ωδ is same as that of Ω for every δ > 0.

Proof. (1) To prove the first half, we have only to show lΩδ
(v) ≤ lΩ(v) for

any v ∈ Sm−1 for every δ > 0. Fix δ and v. Lemma 2.1 implies that it is
enough to show that for any x ∈ (Ωδ)+v,lΩ(v) there holds xx′ ⊂ Ωδ, where
x′ = Rv,lΩ(v)(x). By the definition of δ-parallel body, there is y ∈ Ω such
that x ∈ Bδ(y).



182 J. O’Hara

Case 1. Suppose y · v ≤ lΩ(v). Then, since (Bδ(y))+v,lΩ(v) is contained
in the hemisphere of Bδ(y), we have Rv,lΩ(v)

(
(Bδ(y))+v,lΩ(v)

) ⊂ Bδ(y), which
implies xx′ ⊂ Bδ(y) ⊂ Ωδ (Figure 8).

Case 2. Suppose y ∈ Ω+
v,lΩ(v). Then, by Lemma 2.1 we have yy′ ⊂ Ω,

where y′ = Rv,lΩ(v)(y), which implies (yy′)δ = ∪0≤t≤1Bδ(ty′+(1−t)y) ⊂ Ωδ.
Since x′ ∈ Bδ(y′) and (yy′)δ is convex, we have xx′ ⊂ (yy′)δ ⊂ Ωδ (Figure
9).

Figure 8. Figure 9.

(2) Suppose Ω is convex. Let δ > 0 and v ∈ Sm−1. Lemma 2.1 implies
that there is a point x in Ω+

v,lΩ(v) such that xx′ ⊂ Ω, where x′ = Rv,lΩ(v)(x),
and that xx′′ 6⊂ Ω if xx′′ is obtained by extending xx′ to the side of x′,
i.e. x′′ = Rv,b(x) for some b < lΩ(v). It follows that both x and x′ are
on the boundary of Ω. Let Π′ be a supporting hyperplane of Ω at x′, and
put Π = Rv,lΩ(v)(Π′). In general, Π′ may not be uniquely determined,
nevertheless Π = Rv,lΩ(v)(Π′) is a supporting hyperplane of Ω at x, as was
pointed out in Theorem 4.12 of [BMS]. This is because

Rv,lΩ(v)

(
Ω ∩ {x ∈ Rm : x · v < lΩ(v)}) ⊃ Ω ∩ {x ∈ Rm : x · v > lΩ(v)}.

Let n be the “outer” unit normal vector to Π at x. Then we have v · n > 0
since xx′ ⊂ Ω and

−→
x′x = cv for some positive number c. Put y = x+ δn and

y′ = Rv,lΩ(v)(y). Then Bδ(y) ∩ Ω = {x} and Bδ(y′) ∩ Ω = {x′}. It implies
that if we extend yy′ to the side of y′ to obtain yy′′, i.e. y′′ = Rv,b(y) for
some b < lΩ(v), then yy′′ 6⊂ Ωδ, which implies lΩδ

(v) ≥ lΩ(v) by Lemma
2.1. Since we have lΩδ

(v) ≤ lΩ(v) as we saw in the proof of (1), we have
lΩδ

(v) = lΩ(v). Since v was arbitrary, we have Uf(Ωδ) = Uf(Ω). ¤
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Figure 10. Figure 11. Uf(Xδ) 6= Uf(X).

Remark 3.2 On the contrary, if X is not convex, the parallel body could
have a strictly smaller minimal unfolded region. Let X = {0} × [0, 1] ∪
[0, 1]×{0}∪ {1}× [0, 1] and δ = 1. Then, Uf(X) = [0, 1]× [0, 1/2], whereas
Uf(Xδ) is much smaller, as is illustrated in Figure 11.
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