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On coretractable modules
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Abstract. Let R be any ring. We prove that every right R-module is coretractable
if and only if R is right perfect and every right R-module is small coretractable if and
only if all torsion theories on R are cohereditary. We also study mono-coretractable
modules. We show that coretractable modules are a proper generalization of mono-
coretractable modules.
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1. Introduction

Let M be an R-module. M is called coretractable if Hom(M /N, M)
is nonzero for all proper submodules N of M (see [2]). Amini, Ershad and
Sharif study these modules and proved in [2, Theorem 2.14] that R is a right
Kasch ring if and only if Ry is a coretractable module. Recall that a module
M is a Kasch module if every simple module in ¢[M] can be embedded in M
(see [3]). Therefore Ry is a Kasch module if and only if Rp is a coretractable
module by [2, Theorem 2.14]. In Section 2, firstly we generalize this result
(see Theorem 2.1). Mainly the purpose of Section 2 is to investigate rings
whose all right modules are coretractable (see Theorem 2.7). We also prove
that being coretractable is a Morita invariant property.

Let R be any ring and let M be any module. We will call M mono-
coretractable if for every submodule N of M there is a monomorphism from
M/N to M. Mono-coretractable modules are defined as co-epi-retractable
modules in [7]. We should also note that saying “Rp is mono-coretractable”
is the same with saying “R is a co-pri ring” in [7]. In Section 3, we study
mono-coretractable modules. We are giving an example of a coretractable
module which is not mono-coretractable (see Example 3.6).

Throughout this paper rings will have a nonzero identity element and
modules will be unitary right modules. We follow [1], [4] and [5] for the
terms not defined here.
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2. Coretractable Modules

Let M be an R-module. M is called coretractable if Hom(M /N, M)
is nonzero for all proper submodules N of M. Let R be a commutative
domain. Then Rgr cannot be coretractable. For, let A be a nonzero proper
right ideal of R. Let f : R/A — R be any R-homomorphism. Since
f(R/JA)A = 0, f = 0. This is also clear by [10, Proposition 1.44]. Let
Mp be a module such that any simple module in o[M] is M-cyclic, i.e.,
isomorphic to a factor module of M. In this case if M is coretractable, then
M is a Kasch module. Because, let S be a simple module in o[M]. Then
S = M/N for some submodule N of M. Since M is coretractable, there is
a nonzero homomorphism from M/N to M. Thus there exists a nonzero
homomorphism, which is a monomorphism, from S to M. Therefore M
is Kasch. On the other hand, if M is a finitely generated Kasch module,
then it is easy to see that M is a coretractable module. So we can give the
following result which generalizes [2, Theorem 2.14]:

Theorem 2.1 Let Mg be a finitely generated self-generator module. Then
M is coretractable if and only if it is Kasch.

Theorem 2.1 gives us several examples as we see in the following:

Example 2.2 (1) Let F be a field. Then the ring R = FxFxFx--- is
not a Kasch ring and so R is not coretractable as an R-module.

(2) Suppose that R is a semiperfect ring in which Soc(Rpg) is essential in g R.
Then R is right Kasch by [10, Lemma 1.48], and so Rp is coretractable.

(3) Assume that R is a right self-injective, semiperfect ring with Soc(Rpg)
essential in Rr. Then R is right and left Kasch by [10, Lemma 1.49]
and so Rr and gR are coretractable.

(4) (see [10, Page, 214]) Let pVp and pPp be nonzero bimodules over a
division ring D, and suppose a bimap VxV — P is given. Write
R=[D,V,P]=D &V & P and define a multiplication on R by

(d+ v +p)(d1 + v +p1) = ddl + (dvl + Udl) + (dpl “+ vuy +pd1).

Then R is a (an associative) ring. The ring R has a matrix representation
as
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By [10, Proposition 9.14], R is right and left Kasch, and so Rr and gR
are coretractable.

Following [12], if for any module M, Z(M) = N{N | M/N is small} =
M, then M is called noncosingular.

Proposition 2.3 Let R be a right perfect ring. Let M be a noncosingular
projective right R-module. Then M 1is coretractable if and only if M is
semisimple.

Proof. The sufficiency is clear. Conversely, suppose that M is core-
tractable. Let IV be a proper submodule of M. Then there exists a nonzero
homomorphism f : M/N — M. Let Ker f = T/N. Since M/T is non-
cosingular by [12, Proposition 2.4], Im f is noncosingular. Then by [12,
Lemma 2.3(2)], Im f is coclosed in M. Since M is lifting, Im f is a direct
summand of M. So, T is a proper direct summand of M, which contains
N. This means that N cannot be essential in M. Thus M is semisimple. []

Lemma 2.4 Let M be a quasi-injective module and N < M. Then N is
coretractable if and only if for all submodules L of M contained properly in
N, the set

Ar={f:M — M| f(N) CN,LCKerf,N ¢ Ker f}

18 monempty.

Proof. (=) Let N be coretractable and L a proper submodule of N. Then
there exists a nonzero homomorphism f : N/JL — N. Let i : N — M
and i, : N/L — M/L be inclusion maps. Since M is M/L-injective,
there exists a nonzero homomorphism ¢ : M/L — M such that gi;, = if.
Consider the nonzero homomorphism g : M — M, where w : M — M /L
is the natural epimorphism. It is easy to see that L C Ker gm, N ¢ Ker gm
and gm(N) C N. Therefore Ay, is nonempty.

(<) Let L be a proper submodule of N. By hypothesis, the set Ay, is
nonempty. Therefore there exists a nonzero homomorphism f : M — M
such that f(N) C N, L C Ker f and N € Ker f. Define the homomorphism



94 D. Keskin Tiutinct and B. Kalebogaz

g: N/L — N, g(n+ L) = f(n). Clearly, g is nonzero. Thus N is core-
tractable. O

Proposition 2.5 Let Rgr be injective and I a nonzero proper right ideal
of R. Then Ig is coretractable if and only if for any right ideal J of R with
J G I, there exists a nonzero element x of R such that 0 # xI C I and
xJ = 0.

Proof. (=) Let Ir be coretractable. Let J be any right ideal of R with
J & I. By Lemma 2.4, A; is nonempty. Then there exists a nonzero
homomorphism f : R — R such that f(I) C I, J C Ker f and I ¢ Ker f.
Let f(1) = 2. Then  # 0,0 # I C I and zJ = 0.

(<) Let L be a proper submodule of I. By hypothesis, there exists a
nonzero element x of R such that 0 # I C I and zL = 0. Define the
homomorphism f: R — R, f(r) = ar. Since f(1) =x # 0, f # 0. Since
f(I) = xI, then f(I) C I and I ¢ Ker f. Since zL = 0, L C Ker f. By
Lemma 2.4, Iy is coretractable. O

Let M be a module. We say that M is small coretractable if
Hom(M /N, M) is nonzero for all small submodules N of M.

Lemma 2.6 Let M be a module with projective cover (P,«). Then M
is small coretractable if and only if there exists a nonzero f € Hom(P, M)
such that P/ Ker f is a small coretractable module.

Proof.  Necessity: Since P/Kera = M, this is clear.
Sufficiency: Let K be a small submodule of M. Then (a=*(K) + Ker f)/
Ker f <« P/Ker f. Since P/Ker f is small coretractable, there exists a
nonzero homomorphism 3 : P/(a~}(K) + Ker f) — P/ Ker f. Define the
homomorphism n : M/K — P/a"'(K) by m + K — p+ o }(K) where
a(p) =m,p € P and m € M. It follows that Hom(M /K, M) is nonzero. [J
Let R be a ring. If every right R-module is coretractable, then R is
right and left perfect and right Kasch (see [2, Theorems 2.14 and 3.10]). Let
R be any ring. We will say that R satisfies (C) if every right R-module is

coretractable. Now we give the following characterizations. Note that these
characterizations are left and right symmetric by [14, Theorem 2.4].

Theorem 2.7 For a ring R the following are equivalent:

(1) R satisfies (C).
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(2) R is right perfect and every right R-module is small coretractable.

(3) R is right perfect and for every right R-module M, there exists a nonzero
f € Hom(P,M) such that P/Ker f is a small coretractable module,
where P is the projective cover of M.

(4) R is right perfect and for all right R-modules M and X, Hom(X, M) =
0 if and only if Hom(P, M) = 0, where P is the projective cover of X .

(5) All torsion theories on R are cohereditary.

Proof. (1) = (2) is clear.

(2) & (3) follows by Lemma 2.6.

(2) = (4): Let (P, «) be the projective cover of X. Assume Hom(P, M)
# 0. Then there exists a nonzero homomorphism 3 from P to M. Since
Kera <« P, (Kera + Kerf)/Ker3 <« P/Kerf. Then there exists a
nonzero homomorphism 7 : P/(Kera + Ker3) — P/Ker 3. Therefore
Hom(X, M) # 0. The converse is easy.

(4) = (5): Let (7,F) be a torsion theory on R, N < M € F and
X € 7. Then Hom(X, M) = 0. By (4), Hom(P, M) = 0, where P is the
projective cover of X. Hence Hom(X, M/N) =0, and so M/N € F.

(5) = (1): Let M be a nonzero right R-module and N a proper sub-
module of M. Let (7,F) be a torsion theory cogenerated by M. Note that
M e F. By (5), M/N € F. Thus Hom(M /N, M) # 0 (see [5, 7.2]). O

Given any ring R, we call a nonzero right R-module M a weak generator
for Mod-R if, for each nonzero right R-module X, Hom(M, X ) # 0.

Theorem 2.8 Let R be a ring with Jacobson radical J such that the ring
R/J is simple artinian. Then the following are equivalent:

(1) R is right and left semi-artinian.

(2) every nonzero right (left) R-module is a weak generator for Mod-R.
(3) R satisfies (C).

(4) R is right and left perfect.

Proof. (1) = (2): By [11, Variation of Corollary 3.6].
(2) = (3) and (4) = (1) are clear.
(3) = (4): By [2, Theorem 3.10]. O

Note that Homp(M,N) = Homp,;(M,N) for each ideal I of R and
M, N € Mod-R/I. Therefore the class of rings satisfying (C) is closed under
homomorphic images.
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Theorem 2.9 Being coretractable is a Morita invariant property.

Proof. Let R and S be two Morita equivalent rings. Assume that F' : Mod-
R — Mod-S and G : Mod-S — Mod-R are two category equivalences.
Let Mg be a coretractable object in Mod-R. Let N be a proper submodule
of F(M). Now we have the exact sequence

0—N-—FM)— F(M)/N —0
in Mod-S. By [1, Proposition 21.4],
00— G(N) — M — G(F(M)/N) —0

is exact in Mod-R. Therefore M/G(N) = G(F(M)/N). Since My, is core-
tractable, Hompr(M/G(N), M) # 0. Hence

Homp(M/G(N), M) = Homg(F(M)/N, F(M))

implies that F'(M) is coretractable in Mod-S. O
The following corollary is well-known for right Kasch rings:

Corollary 2.10 Let Rp be a coretractable module (namely, R is right
Kasch). Then the ring M, (R) of all n x n matrices with entries in R is
coretractable as a right module over itself (namely, it is right Kasch).

Corollary 2.11 Let R satisfy (C). Then the ring M, (R) of all n x n
matrices with entries in R satisfies (C).

3. Mono-coretractable Modules

We call an R-module M mono-coretractable if for every submodule N of
M there is a monomorphism from M/N to M. Mono-coretractable modules
are defined as co-epi-retractable modules in [7]. Let I be a nonzero proper
ideal of a principal ideal domain R. Then it is easy to see that the R-module
R/I is mono-coretractable (see also [7, Corollary 1.5]). Firstly we give the
following easy characterization (may be it is known):

Lemma 3.1  The following are equivalent for a module M :

(1) M is mono-coretractable.
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(2) There exist monomorphisms M — N and N — M for some mono-
coretractable module N .

(3) There exists a monomorphism from M to K for some mono-
coretractable submodule K of M.

Proof. (1) = (2) is clear.

(2) = (3): Let : M — N, : N — M be monomorphisms and N
a mono-coretractable module. Let Im 8 = K. Now we have the monomor-
phism fa: M — K. Since N = K, K is a mono-coretractable submodule
of M.

(3) = (1): Let ¢ : M — K be a monomorphism with K a mono-
coretractable submodule of M. Let L be a submodule of M. Consider the
monomorphism « : M/L — K/N defined by a(m+ L) = p(m)+ N, where
N = ¢(L). Since K is mono-coretractable, there exists a monomorphism
0 : K/N — K. Now we have the monomorphism i« : M/L — M, where
1 : K — M is the inclusion map. Thus M is mono-coretractable. U

Note that the Priifer p-group Z(p>) and Q/Z are noncosingular and
mono-coretractable Z-modules. But they are not discrete. Now we give the
following:

Proposition 3.2  The following are equivalent for a noncosingular module
M:

(1) M is semisimple.
(2) M is discrete mono-coretractable.

Proof. (1) = (2) is clear.

(2) = (1): Let N be a proper submodule of M. Then there exists a
monomorphism « : M/N — M. Since M /N is noncosingular, a(M/N) is
noncosingular and so it is a coclosed submodule of M. Since M is lifting,
a(M/N) is a direct summand of M, and since M has (D), N is a direct
summand of M. Thus M is semisimple. O

Noncosingular condition in Proposition 3.2 is not superfluous:

Example 3.3 It is easy to see that the Z-module Z/4Z is mono-
coretractable. On the other hand, it is discrete, but not noncosingular and
not semisimple.
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Proposition 3.4 If R is a ring such that every projective right R-module
is mono-coretractable, then R is a QF -ring.

Proof. Let X be an injective right R-module. Since every module is an
epimorphic image of a free (projective) module, there exists an epimorphism
a : P — X with P projective. By hypothesis, P is mono-coretractable
and so P/Kera = A < P for some submodule A of P. Since P/Kera« is
injective, A is a direct summand of P. Therefore A is projective. Thus X
is projective. Hence R is a QF-ring. U

Remark 3.5 (1) We should note that some of the dual results to the
results in this paper can be found in [6], [8] and [13].

(2) There exist projective modules which are not mono-coretractable. For
example, let R be the ring [£ L], where F is any field. Then Rp is not
coretractable and so it is not mono-coretractable.

(3) Note that in [7, Corollary 1.9], it is proved that if R and rR are mono-
coretractable, then R is a QQF-ring. And it is given in Example 1.10 in
[7] that there exists a QF-ring R with Rr not mono-coretractable. With
the help of this example we show that any coretractable module need
not be mono-coretractable.

Example 3.6 For any division ring K, let R be the 4-dimensional K-ring
consisting of matrices of the form

a x 00
OéZObOO
0 00by
0 00 a

By [7, Example 1.10], Rg is not mono-coretractable, but it is a Q F-ring. By
[9, Corollary, 19.17], R is a cogenerator ring. Therefore Ry, is coretractable.
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