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On a second order rational systems of difference equations
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Abstract. In this paper we study the periodicity and the form of the solutions of

the following systems of difference equations of order two

xn+1 =
ynxn−1

±xn−1 ± yn

, yn+1 =
xnyn−1

±xn ± yn−1
, n ∈ N0,

with nonzero real numbers initial conditions.

Key words: Periodic solutions, system of difference equations.

1. Introduction

Difference equations appear naturally as discrete analogues and as nu-
merical solutions of differential and delay differential equations having appli-
cations in biology, ecology, economy, physics and so on. So, recently there
has been an increasing interest in the study of qualitative analysis of ra-
tional difference equations and systems of difference equations. Although
difference equations are very simple in form, it is extremely difficult to un-
derstand thoroughly the behaviors of their solutions. See [1]–[15], [36] and
the references cited therein.

Periodic solutions of difference equations have been investigated by
many researchers, and various methods have been proposed for the existence
and qualitative properties of the solution. For example, the periodicity of
the positive solutions of the rational difference equations system

xn+1 =
1
yn

, yn+1 =
yn

xn−1yn−1
,

was studied by Cinar in [2].
Elabbasy et al. [3] has obtained the solution of particular cases of the

following general system of difference equations
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30 N. Touafek and E. M. Elsayed

xn+1 =
a1 + a2yn

a3zn + a4xn−1zn
, yn+1 =

b1zn−1 + b2zn

b3xnyn + b4xnyn−1
,

zn+1 =
c1zn−1 + c2zn

c3xn−1yn−1 + c4xn−1yn + c5xnyn
.

In [11], Elsayed et al. studied the periodic nature and the form of the
solutions of the following nonlinear difference equations systems of order
three

xn+1 =
xnyn−2

yn−1(±1± xnyn−2)
, yn+1 =

ynxn−2

xn−1(±1± ynxn−2)
.

In [22], Kurbanli et al. dealt with the periodicity of solutions of the system
of rational difference equations

xn+1 =
xn−1 + yn

xn−1yn − 1
, yn+1 =

yn−1 + xn

yn−1xn − 1
.

Özban [25] has investigated the positive solutions of the system of rational
difference equations

xn+1 =
1

yn−k
, yn+1 =

yn

xn−myn−m−k
.

Touafek et al. [29] investigated the periodic nature and gave the form of the
solutions of the following systems of rational difference equations

xn+1 =
xn−3

±1± xn−3yn−1
, yn+1 =

yn−3

±1± yn−3xn−1
.

In [30] Yalçınkaya investigated the sufficient condition for the global asymp-
totic stability of the following system of difference equations

zn+1 =
tnzn−1 + a

tn + zn−1
, tn+1 =

zntn−1 + a

zn + tn−1
.

Also, Yalçınkaya [31] has obtained the sufficient conditions for the global
asymptotic stability of the system of two nonlinear difference equations
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xn+1 =
xn + yn−1

xnyn−1 − 1
, yn+1 =

yn + xn−1

ynxn−1 − 1
.

Yang et al. [35] has investigated the behavior of the positive solutions of the
systems

xn =
a

yn−p
, yn =

byn−p

xn−qyn−q
.

Similar nonlinear systems of rational difference equations were investigated
see [16]–[37].

Our aim in this paper is to consider the following systems of difference
equations

xn+1 =
ynxn−1

±xn−1 ± yn
, yn+1 =

xnyn−1

±xn ± yn−1
, n ∈ N0

with nonzero real numbers initial conditions.

Definition 1 (Periodicity) A sequence {xn}∞n=−k is said to be periodic
with period p if xn+p = xn for all n ≥ −k.

Definition 2 (Fibonacci Sequence) The sequence {Fm}∞m=0 = {0, 1, 1, 2,

3, 5, 8, 13, . . . } i.e., Fm = Fm−1 + Fm−2, m ≥ 2, F0 = 0, F1 = 1 is called
Fibonacci Sequence.

2. Main Results

2.1. The system: xn+1 = xn−1yn/(xn−1 + yn), yn+1 = xnyn−1/

(xn + yn−1)
In this section, we study the solutions of the system of the difference

equations

xn+1 =
xn−1yn

xn−1 + yn
, yn+1 =

xnyn−1

xn + yn−1
, (1)

where n ∈ N0 and the initial conditions are arbitrary nonzero real numbers
such that y0/x−1, x0/y−1 /∈ {−(Fn+1/Fn), n = 1, 2, . . . , }.

The following theorem is devoted to the form of the solutions of system
(1).
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Theorem 1 Suppose that {xn, yn} are solutions of system (1). Then for
n = 0, 1, 2, . . . , we have

x2n−1 =
x−1y0

x−1F2n + y0F2n−1
, x2n =

x0y−1

x0F2n + y−1F2n+1
,

y2n−1 =
x0y−1

y−1F2n + x0F2n−1
, y2n =

x−1y0

y0F2n + x−1F2n+1
,

where {Fn}∞n=0 = {0, 1, 1, 2, 3, 5, 8, 13, . . . }, F−1 = 1.

Proof. For n = 0 the result holds. Now suppose that n > 0 and that our
assumption holds for n− 1. That is,

x2n−3 =
x−1y0

x−1F2n−2 + y0F2n−3
, x2n−2 =

x0y−1

x0F2n−2 + y−1F2n−1
,

y2n−3 =
y−1x0

y−1F2n−2 + x0F2n−3
, y2n−2 =

y0x−1

y0F2n−2 + x−1F2n−1
.

It is concluded from Eq.(1) that

x2n =
y2n−1x2n−2

y2n−1 + x2n−2
=

(
x2n−2y2n−3

x2n−2 + y2n−3

)
x2n−2

(
x2n−2y2n−3

x2n−2 + y2n−3

)
+ x2n−2

=
x2n−2y2n−3

2y2n−3 + x2n−2

=

(
x0y−1

x0F2n−2 + y−1F2n−1

)(
y−1x0

y−1F2n−2 + x0F2n−3

)

(
2y−1x0

y−1F2n−2 + x0F2n−3

)
+

(
x0y−1

x0F2n−2 + y−1F2n−1

)

=

(
(x0y−1)2

(x0F2n−2 + y−1F2n−1)(y−1F2n−2 + x0F2n−3)

)

(
y−1x0(y−1F2n−2 + x0F2n−3 + 2x0F2n−2 + 2y−1F2n−1)

(y−1F2n−2 + x0F2n−3)(x0F2n−2 + y−1F2n−1)

)

=
x0y−1

y−1F2n−2 + x0F2n−3 + 2x0F2n−2 + 2y−1F2n−1

=
x0y−1

y−1(F2n−2 + F2n−1) + y−1F2n−1 + x0(F2n−3 + F2n−2) + x0F2n−2
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=
x0y−1

y−1F2n + y−1F2n−1 + x0F2n−1 + x0F2n−2

=
x0y−1

y−1F2n+1 + x0F2n
,

and

y2n =
x2n−1y2n−2

x2n−1 + y2n−2
=

(
y2n−2x2n−3

y2n−2 + x2n−3

)
y2n−2

(
y2n−2x2n−3

y2n−2 + x2n−3

)
+ y2n−2

=
y2n−2x2n−3

2x2n−3 + y2n−2

=

(
y0x−1

y0F2n−2 + x−1F2n−1

)(
x−1y0

x−1F2n−2 + y0F2n−3

)

(
2x−1y0

x−1F2n−2 + y0F2n−3

)
+

(
y0x−1

y0F2n−2 + x−1F2n−1

)

=

(
(y0x−1)2

(y0F2n−2 + x−1F2n−1)(x−1F2n−2 + y0F2n−3)

)

(
x−1y0(x−1F2n−2 + y0F2n−3 + 2y0F2n−2 + 2x−1F2n−1)

(x−1F2n−2 + y0F2n−3)(y0F2n−2 + x−1F2n−1)

)

=
y0x−1

x−1F2n−2 + y0F2n−3 + 2y0F2n−2 + 2x−1F2n−1

=
y0x−1

x−1(F2n−2 + F2n−1) + x−1F2n−1 + y0(F2n−3 + F2n−2) + y0F2n−2

=
y0x−1

x−1F2n + x−1F2n−1 + y0F2n−1 + y0F2n−2

=
y0x−1

x−1F2n+1 + y0F2n
.

Similarly, one can prove the other relations. The proof is complete. ¤

Lemma 1 Every positive solution of system (1) is bounded and lim
n→∞

xn =
lim

n→∞
yn = 0.

Proof. Eq.(1) shows that

xn+1 =
xn−1yn

xn−1 + yn
<

xn−1yn

yn
= xn−1,
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yn+1 =
xnyn−1

xn + yn−1
<

xnyn−1

xn
= yn−1,

or

xn+1 < xn−1, yn+1 < yn−1.

Then, the subsequences {x2n−1}∞n=0, {x2n}∞n=0, {y2n−1}∞n=0, {y2n}∞n=0 are
decreasing and so are bounded from above by M, N respectively since M =
max{x−1, x0}, N = max{y−1, y0}. ¤

Example 1 In order to illustrate the results of this section and to support
our theoretical discussion, we consider an interesting numerical example for
the difference system (1) with the initial conditions x−1 = 0.8, x0 = 3,
y−1 = 2 and y0 = 0.7. (See Fig. 1).

Figure 1. This figure shows the behavior of the solution of
the system (1) with the initial values as in example (1).

Similar to the previous theorem, we can prove the following theorem:

Theorem 2 The solutions of the following system of difference equations

xn+1 =
xn−1yn

xn−1 − yn
, yn+1 =

xnyn−1

−xn − yn−1
,

where n ∈ N0 and the initial conditions are arbitrary nonzero real num-
bers such that y0/x−1, /∈ {Fn+1/Fn, n = 1, 2, . . . , } and x0/y−1 /∈
{−(Fn+1/Fn), n = 1, 2, . . . , }, are given by the following expressions for
n = 0, 1, 2, . . .
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x2n−1 =
(−1)n+1x−1y0

x−1F2n − y0F2n−1
, x2n =

(−1)nx0y−1

x0F2n + y−1F2n+1
,

y2n−1 =
(−1)nx0y−1

x0F2n−1 + y−1F2n
, y2n =

(−1)nx−1y0

x−1F2n+1 − y0F2n
.

2.2. The system: xn+1 = xn−1yn/(xn−1 + yn), yn+1 = xnyn−1/

(xn − yn−1)
In this section, we study the solutions of the system of the difference

equations

xn+1 =
xn−1yn

xn−1 + yn
, yn+1 =

xnyn−1

xn − yn−1
, (2)

where n ∈ N0 and the initial conditions are arbitrary nonzero real numbers
with x0 6= y−1 and x−1 6= −y0.

Theorem 3 Suppose that {xn, yn} are solutions of system (2). Also,
assume that x−1, x0, y−1 and y0 are arbitrary nonzero real numbers with
x0 6= y−1 and x−1 6= −y0. Then, every solution of Eq.(2) is a periodic
solution with period twelve and given by the following formulas for n =
0, 1, 2, . . .

x12n−1 = x−1, x12n = x0, x12n+1 =
x−1y0

x−1 + y0
,

x12n+2 = y−1, x12n+3 = y0, x12n+4 =
x0y−1

x0 − y−1
,

x12n+5 = −x−1, x12n+6 = −x0, x12n+7 =
−x−1y0

x−1 + y0
,

x12n+8 = −y−1, x12n+9 = −y0, x12n+10 =
−x0y−1

x0 − y−1
,

y12n−1 = y−1, y12n = y0, y12n+1 =
x0y−1

x0 − y−1
,

y12n+2 = −x−1, y12n+3 = −x0, y12n+4 = − x−1y0

x−1 + y0
,

y12n+5 = −y−1, y12n+6 = −y0, y12n+7 =
−x0y−1

x0 − y−1
,

y12n+8 = x−1, y12n+9 = x0, y12n+10 =
x−1y0

x−1 + y0
.
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Proof. For n = 0 the result holds. Now suppose that n > 0 and that our
assumption holds for n− 1, that is,

x12n−13 = x−1, x12n−12 = x0, x12n−11 =
x−1y0

x−1 + y0
,

x12n−10 = y−1, x12n−9 = y0, x12n−8 =
x0y−1

x0 − y−1
,

x12n−7 = −x−1, x12n−6 = −x0, x12n−5 =
−x−1y0

x−1 + y0
,

x12n−4 = −y−1, x12n−3 = −y0, x12n−2 =
−x0y−1

x0 − y−1
,

y12n−13 = y−1, y12n−12 = y0, y12n−11 =
x0y−1

x0 − y−1
,

y12n−10 = −x−1, y12n−9 = −x0, y12n−8 = − x−1y0

x−1 + y0
,

y12n−7 = −y−1, y12n−6 = −y0, y12n−5 =
−x0y−1

x0 − y−1
,

y12n−4 = x−1, y12n−3 = x0, y12n−2 =
x−1y0

x−1 + y0
.

From Eq.(2), we see that

x12n−1 =
x12n−3y12n−2

x12n−3 + y12n−2
=

−y0

(
x−1y0

x−1 + y0

)

−y0 +
(

x−1y0

x−1 + y0

)

=
−x−1y0

(x−1 + y0)
(
− 1 +

(
x−1

x−1 + y0

))

=
−x−1y0

(−x−1 − y0 + x−1)
= x−1,

y12n−1 =
x12n−2y12n−3

x12n−2 − y12n−3
=

(
− x0y−1

x0 − y−1

)
x0

(
− x0y−1

x0 − y−1

)
− x0
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=
x0y−1

(x0 − y−1)
((

y−1

x0 − y−1

)
+ 1

)

=
x0y−1

(y−1 + x0 − y−1)
= y−1,

x12n =
y12n−1x12n−2

x12n−2 + y12n−1
=

y−1

(
− x0y−1

x0 − y−1

)

(
− x0y−1

x0 − y−1

)
+ y−1

=
(−x0y−1)

(x0 − y−1)
((

− x0

x0 − y−1

)
+ 1

)

=
(−x0y−1)

(−x0 + x0 − y−1)
= x0,

y12n =
x12n−1y12n−2

x12n−1 − y12n−2
=

x−1

(
x−1y0

x−1 + y0

)

x−1 −
(

x−1y0

x−1 + y0

)

=
x−1y0

(x−1 + y0)
(

1−
(

y0

x−1 + y0

))

=
x−1y0

(x−1 + y0 − y0)
= y0.

Similarly, one can prove the other relations. The proof is complete. ¤

Example 2 We consider a numerical example for the difference equations
system (2) with the initial conditions x−1 = 0.8, x0 = 3, y−1 = 2 and
y0 = 0.7. (See Fig. 2).

The following cases can be proved similarly.

Theorem 4 Assume that {xn, yn} are solutions of the system

xn+1 =
xn−1yn

xn−1 − yn
, yn+1 =

xnyn−1

−xn + yn−1
,
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Figure 2. This figure shows the periodicity of the solution
of the system (2) with the initial values as in example (2).

with the initial conditions which are arbitrary nonzero real numbers. Then,
every solution of this system is periodic with period six and

x6n−1 = x−1, x6n = x0, x6n+1 =
x−1y0

x−1 − y0
,

x6n+2 = −y−1, x6n+3 = −y0, x6n+4 =
x0y−1

x0 − y−1
,

y6n−1 = y−1, y6n = y0, y6n+1 =
x0y−1

−x0 + y−1
,

y6n+2 = −x−1, y6n+3 = −x0, y6n+4 =
x−1y0

−x−1 + y0
,

Or equivalently,

{xn}∞n=0 =
{

x−1, x0,
x−1y0

x−1 − y0
, −y−1, −y0,

x0y−1

x0 − y−1
, x−1, x0, . . .

}
,

{yn}∞n=0 =
{

y−1, y0,
x0y−1

−x0 + y−1
, −x−1, −x0,

x−1y0

−x−1 + y0
, y−1, y0, . . .

}
,

where x0 6= y−1 and x−1 6= y0.

2.3. The system: xn+1 = xn−1yn/(xn−1 − yn), yn+1 = xnyn−1/

(xn + yn−1)
In this section, we study the solutions of the system of the difference

equations
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xn+1 =
xn−1yn

xn−1 − yn
, yn+1 =

xnyn−1

xn + yn−1
, (3)

where n ∈ N0 and the initial conditions are arbitrary nonzero real numbers
with y−1/x0 /∈ {−(Fn+1/Fn), n = 1, 2, . . . , } and x−1/y0 /∈ {Fn/Fn+2, n =
1, 2, . . . , } ∪ {1}.
Theorem 5 If {xn, yn} are solutions of system (3). Then the solutions
of system (3) are given by the following formulas for n = 0, 1, 2, . . .

x2n =
x0y−1

x0Fn + y−1Fn−1
, x2n−1 =

x−1y0

x−1Fn − y0Fn−2
,

y2n =
y0x−1

x−1Fn+2 − y0Fn
, y2n−1 =

y−1x0

y−1Fn + x0Fn+1
,

where {Fn}∞n=0 = {0, 1, 1, 2, 3, 5, 8, 13, . . . }, F−2 = −1, F−1 = 1.

Lemma 2 Every positive solution of the equation yn+1 = xnyn−1/(xn +
yn−1) is bounded and lim

n→∞
yn = 0.

Example 3 See Figure 3, for the initial conditions x−1 = 5, x0 = 0.11,
y−1 = 0.4 and y0 = 3 when we consider system (3).

Figure 3. This figure shows the solution of the system
(3) with the initial values as in example (3).

Theorem 6 The solutions of the system

xn+1 =
xn−1yn

xn−1 + yn
, yn+1 =

xnyn−1

−xn + yn−1
,
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where n ∈ N0 and the initial conditions are arbitrary nonzero real numbers
with x−1/y0 /∈ {−(Fn+1/Fn), n = 1, 2, . . . , } and y−1/x0 /∈ {Fn/Fn+2, n =
1, 2, . . . , } ∪ {1} are given for n = 0, 1, 2, . . . , by

x2n =
x0y−1

y−1Fn+2 − x0Fn
, x2n−1 =

x−1y0

x−1Fn + y0Fn+1
,

y2n =
y0x−1

x−1Fn−1 + y0Fn
, y2n−1 =

y−1x0

y−1Fn − x0Fn−2
.

2.4. The system: xn+1 = (xn−1yn)/(xn−1−yn), yn+1 = xnyn−1/

(xn − yn−1)
In this section, we investigate the solutions of the following system of

the difference equations

xn+1 =
xn−1yn

xn−1 − yn
, yn+1 =

xnyn−1

xn − yn−1
, (4)

where n ∈ N0 and the initial conditions are arbitrary nonzero real numbers
with x−1/y0 /∈ {Fn+1/Fn, n = 1, 2, . . . , } and y−1/x0 /∈ {Fn/Fn+2, n =
1, 2, . . . , } ∪ {1}.
Theorem 7 Assume that {xn, yn} are solutions of system (4). Then for
n = 0, 1, 2, . . .

x2n =
(−1)n+1x0y−1

x0Fn − y−1Fn+2
, x2n−1 =

(−1)n+1x−1y0

x−1Fn − y0Fn+1
,

y2n =
(−1)ny0x−1

x−1Fn−1 − y0Fn
, y2n−1 =

(−1)n+1y−1x0

x0Fn−2 − y−1Fn
, where F−2 = −1.

Example 4 Consider the difference system equation (4) with the initial
conditions x−1 = 0.5, x0 = 0.13, y−1 = 0.7 and y0 = −0.3. (See Fig. 4).

Theorem 8 Suppose that {xn, yn} are solutions of the following difference
equations system

xn+1 =
xn−1yn

xn−1 + yn
, yn+1 =

xnyn−1

−xn − yn−1
,

where n ∈ N0 and the initial conditions are arbitrary nonzero real
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Figure 4. This figure shows the solution of the difference equations
system (4) with the initial values as given in example (4).

numbers with y−1/x0 /∈ {−(Fn+1/Fn), n = 1, 2, . . . , } and x−1/y0 /∈
{−(Fn/Fn+2), n = 1, 2, . . . , } ∪ {−1}. Then for n = 0, 1, 2, . . .

x2n =
(−1)nx0y−1

x0Fn + y−1Fn−1
, x2n−1 =

(−1)n+1x−1y0

x−1Fn + y0Fn−2
,

y2n =
(−1)ny0x−1

x−1Fn+2 + y0Fn
, y2n−1 =

(−1)ny−1x0

x0Fn+1 + y−1Fn
.

Remark 1 The solutions of the following systems can be also obtained.

xn+1 =
xn−1yn

−xn−1 + yn
, yn+1 =

xnyn−1

xn + yn−1
,

xn+1 =
xn−1yn

−xn−1 + yn
, yn+1 =

xnyn−1

xn − yn−1
,

xn+1 =
xn−1yn

−xn−1 + yn
, yn+1 =

xnyn−1

−xn + yn−1
,

xn+1 =
xn−1yn

−xn−1 + yn
, yn+1 =

xnyn−1

−xn − yn−1
,

xn+1 =
xn−1yn

−xn−1 − yn
, yn+1 =

xnyn−1

xn + yn−1
,

xn+1 =
xn−1yn

−xn−1 − yn
, yn+1 =

xnyn−1

xn − yn−1
,

xn+1 =
xn−1yn

−xn−1 − yn
, yn+1 =

xnyn−1

−xn + yn−1
,
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xn+1 =
xn−1yn

−xn−1 − yn
, yn+1 =

xnyn−1

−xn − yn−1
.
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[14] Erdoğan M. E., Cinar C. and Yalçınkaya I., On the dynamics of the re-

cursive sequence. Computers & Mathematics with Applications 61 (2011),

533–537.



Second order systems of difference equations 43

[15] Grove E. A. and Ladas G., Periodicities in Nonlinear Difference Equations.

Chapman & Hall/CRC Press, 2005.

[16] Gu Y. and Ding R., Observable state space realizations for multivariable

systems. Computers & Mathematics with Applications 63(9) (2012), 1389–

1399.

[17] Keying L., Zhongjian Z., Xiaorui L. and Peng L., More on three-dimensional

systems of rational difference equations. Discrete Dynamics in Nature and

Society 2011 (2011), Article ID 178483, 9 pages.

[18] Kurbanli A. S., On the behavior of solutions of the system of rational dif-

ference equations xn+1 = xn−1/(xn−1yn − 1), yn+1 = yn−1/(yn−1xn − 1).

World Applied Sciences Journal 10(11) (2010), 1344–1350.

[19] Kurbanli A. S., On the behavior of solutions of the system of rational dif-

ference equations: xn+1 = xn−1/(xn−1yn − 1), yn+1 = yn−1/(yn−1xn − 1),

zn+1 = zn−1/(zn−1yn− 1). Discrete Dynamics in Nature and Society 2011

(2011), Article ID 932362, 12 pages.

[20] Kurbanli A. S., On the behavior of solutions of the system of rational dif-

ference equations xn+1 = xn−1/(xn−1yn − 1), yn+1 = yn−1/(yn−1xn − 1),

zn+1 = 1/ynzn. Advances in Difference Equations 2011 (2011), 40,

doi:10.1186/1687-1847-2011-40.

[21] Kurbanli A. S., Cinar C. and Erdoğan M., On the behavior of solutions

of the system of rational difference equations xn+1 = xn−1/(xn−1yn − 1),

yn+1 = yn−1/(yn−1xn − 1), zn+1 = xn/(zn−1yn). Applied Mathematics 2

(2011), 1031–1038.

[22] Kurbanli A. S., Cinar C. and Simsek D., On the periodicity of solutions of

the system of rational difference equations xn+1 = (xn−1+yn)/(xn−1yn−1),

yn+1 = (yn−1 +xn)/(yn−1xn−1). Applied Mathematics 2 (2011), 410–413.

[23] Kurbanli A. S., Cinar C. and Yalçınkaya I., On the behavior of positive
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