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A semi-group formula for the Riesz potentials
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Abstract. The purpose of this article is to establish a semi-group formula for the

Riesz potentials of Lp-functions. As preparations, we study the Lizorkin space Φ(Rn)

and investigate integral estimates of the Riesz potentials of functions in the spaces

Lp:r,s(Rn).
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1. Introduction

Let Rn be the n-dimensional Euclidean space. Throughout this paper
let 0 < α < ∞ and 1 < p < ∞. For real numbers r and s we define the
spaces Lp:r,s(Rn) as follows:

Lp:r,s(Rn) =
{

f : ‖f‖p:r,s =
( ∫

Rn

|f(x)|p|x|rp(1+| log |x||)spdx

)1/p

< ∞
}

.

We simply write Lp:0,0(Rn) = Lp(Rn) and ‖f‖p:0,0 = ‖f‖p. Let Gα(x) be
the Bessel kernel of order α defined by

Gα(x) =
1

(4π)α/2Γ(α/2)

∫ ∞

0

e−π|x|2/δe−δ/(4π)δ(α−n)/2 dδ

δ
.

Since the Bessel kernel Gα(x) is integrable ([St, Proposition 2 in Chap. V]),
for f ∈ Lp(Rn) the Bessel potential of order α of f

Gαf(x) =
∫

Gα(x− y)f(y)dy

belongs to Lp(Rn). For the Bessel potentials, it is known that the following
semi-group formula holds ([St, 3.3 in Chap. V]):

Gα+βf = Gα(Gβf), f ∈ Lp(Rn).

2000 Mathematics Subject Classification : 31B15, 46E30.



2 T. Kurokawa

The purpose of this article is to establish a semi-group formula for the Riesz
potentials of Lp-functions. Let N be the set of nonnegative integers and 2N
stands for the set of nonnegative even numbers. The Riesz kernel κα(x) of
order α is given by

κα(x) =
1

γα,n

{|x|α−n, α− n /∈ 2N

(δα,n − log |x|)|x|α−n, α− n ∈ 2N

with

γα,n =

{
πn/22αΓ(α/2)/Γ((n− α)/2), α− n /∈ 2N

(−1)(α−n)/22α−1πn/2Γ(α/2)((α− n)/2)!, α− n ∈ 2N

and

δα,n =
Γ′(α/2)
2Γ(α/2)

+
1
2

(
1 +

1
2

+ · · ·+ 1
(α− n)/2

− C
)
− log π

where C is Euler’s constant. For a function f we define the Riesz potential
Uαf of order α of f as follows:

Uαf(x) =
∫

κα(x− y)f(y)dy

if it exists. If α − (n/p) < 0, then for f ∈ Lp(Rn), Uαf exists and satisfies
the following inequality ([SW, Theorem B*]):

‖Uαf‖p,−α,0 ≤ C‖f‖p.

However, if α − (n/p) ≥ 0, then for an Lp-function f , Uαf does not neces-
sarily exist. To consider the Riesz potentials of Lp-functions we introduce
the Riesz kernels of type (α, k). For an integer k we set

κα,k(x, y) = κα(x− y)−
∑

|γ|≤k

xγ

γ!
Dγκα(−y)

where we regard the second term of the right-hand side as zero if k ≤ −1,
and γ = (γ1, . . . , γn) is a multi-index, xγ = xγ1

1 . . . xγn
n (x = (x1, . . . , xn)),
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Dγ = Dγ1
1 . . . Dγn

n (Dj = ∂/∂xj), γ! = γ1! . . . γn! and |γ| = γ1 + · · · + γn.
We also denote

pα,k(x, y) = −
∑

|γ|≤k

xγ

γ!
Dγκα(−y).

For a function f we define the Riesz potential Uα,kf and the Riesz polyno-
mial Pα,kf of type (α, k) of f as follows:

Uα,kf(x) =
∫

κα,k(x, y)f(y)dy, Pα,kf(x) =
∫

pα,k(x, y)f(y)dy

if they exist. The Riesz polynomial Pα,kf is a polynomial of degree k if it
exists.

Our plan is as follows. In Section 2 we introduce and study the Lizorkin
space Φ(Rn). The Lizorkin space Φ(Rn) has been studied by several authors
(cf. [Sa], [SKM]). It is known that Φ(Rn) is invariant with respect to the
Riesz potential oparator and a semi-group formula for the Riesz potentials
of functions in Φ(Rn) holds. We establish the fact that certain subspaces
of Φ(Rn) are dense in Lp(Rn) (Proposition 2.9). In Section 3 we give
integral estimates for the Riesz potentials of type (α, k) of functions in the
spaces Lp:r,s(Rn) (Theorem 3.2 and Corollary 3.8). In particular, it turns
out that for a function f ∈ Lp:r,s(Rn), Uα,kf exists if r > −n/p′ and
α + r − (n/p) /∈ N where k is the integral part of α + r − (n/p). In Section
4 we prove a semi-group formula for the Riesz potentials of Lp-functions
(Theorem 4.4). Throughout this paper we use the symbol C for a generic
positive constant whose value may be different at each occurrence.

2. The Lizorkin space Φ(Rn)

We denote the Schwartz space on Rn by S(Rn). That is, S(Rn) is the
space of all C∞-functions ϕ in Rn such that

qγ,δ(ϕ) = sup
x∈Rn

|xγDδϕ(x)| < ∞

for all multi-indices γ and δ. The space S(Rn) is a Fréchet space with a
countable family of semi-norms {qγ,δ}. For a function f ∈ S(Rn) the Riesz
potential Uαf(x) exists for any x ∈ Rn. Moreover in case k < α, Uα,kf(x)



4 T. Kurokawa

and Pα,kf(x) exist for any x ∈ Rn and

Uα,kf(x) = Uαf(x) + Pα,kf(x). (2.1)

The Lizorkin space Φ(Rn) is defined by

Φ(Rn) =
{

ϕ ∈ S(Rn) :
∫

ϕ(x)xγdx = 0 for all γ

}

([SKM, Section 25 in Chap. 5]). Further, we introduce the space Ψ(Rn) as
follows:

Ψ(Rn) = {ψ ∈ S(Rn) : Dγψ(0) = 0 for all γ}.

The Fourier transform Ff and the inverse Fourier transforms Ff of an
integrable function f are defined by

Ff(x) =
∫

e−ix·yf(y)dy, Ff(x) =
∫

eix·yf(y)dy = Ff(−x)

where x · y = x1y1 + · · · + xnyn. By the Fourier inversion formula, for
ϕ ∈ S(Rn) we have the equality

FFϕ = FFϕ = (2π)nϕ. (2.2)

Noting that

Dγ(Fϕ)(0) =
∫

ϕ(y)(−iy)γdy (2.3)

and
∫
Fψ(y)(iy)γdy = (2π)nDγψ(0) (2.4)

for ϕ,ψ ∈ S(Rn), we see that

Φ(Rn) = F(Ψ(Rn)), Ψ(Rn) = F(Φ(Rn)). (2.5)

The symbol S ′(Rn) (the space of tempered distributions) stands for the



A semi-group formula for the Riesz potentials 5

topological dual space of S(Rn). We use the notation 〈u, ϕ〉 for the canonical
bilinear form on S ′(Rn) × S(Rn). For u ∈ S ′(Rn) we define the Fourier
transform Fu (resp. the inverse Fourier transform Fu) to be the element
of S ′(Rn) whose value at ϕ ∈ S(Rn) is 〈Fu, ϕ〉 = 〈u,Fϕ〉 (resp. 〈Fu, ϕ〉 =
〈u,Fϕ〉. The Fourier transform of the Riesz kernel κα ∈ S ′(Rn) is given by

Fκα(x) = (2π)αPf.|x|−α (2.6)

where Pf. stands for the pseudo function ([Sc, Section 4 in Chap VII]). We
note that for ψ ∈ Ψ(Rn)

〈Pf.|x|−α, ψ〉 =
∫
|x|−αψ(x)dx. (2.7)

The Lizorkin space Φ(Rn) has the following properties.

Proposition 2.1 ([SKM, Theorem 25.1], [Sa, Theorem 2.16]) For ϕ ∈
Φ(Rn), Uαϕ belongs to Φ(Rn) and

Uα+βϕ = Uα(Uβϕ).

Proposition 2.2 ([Sa, Theorem 2.7]) The Lizorkin space Φ(Rn) is dense
in Lp(Rn).

We establish that not only the space Φ(Rn) is dense in Lp(Rn), but
also certain subspaces of Φ(Rn) are dense in Lp(Rn). For α > 0 and a
nonnegative integer k with k < α, the space Φα,k(Rn) is defined by

Φα,k(Rn) =
{

ϕ ∈ Φ(Rn) :
∫

ϕ(x)Dγκα(x)dx = 0 for |γ| ≤ k

}
.

In the remainder of this section we prove that if α − (n/p) /∈ N, then the
space Φα,[α−(n/p)](Rn) is dense in Lp(Rn) where [α− (n/p)] is the integral
part of α− (n/p).

To prove the above fact we prepare five lemmas and one remark.
The first lemma is proved by the similar way to [Ku, Lemma 2.2].

Lemma 2.3 For a nonnegative integer k there exists a function θ(t) ∈
Φ(R1) such that
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Diθ(0) =
{

1, i = 0
0, i = 1, . . . , k

(2.8)

where Diθ is the derivative of order i of θ.

Lemma 2.4 For a nonnegative integer k there exists a function ζ(x) ∈
Φ(Rn) such that

Dδζ(0) =
{

1, δ = 0
0, 0 < |δ| ≤ k.

(2.9)

Proof. By Lemma 2.3 there exists θ(t) ∈ Φ(R1) which satisfies (2.8). We
put ζ(x) = θ(x1) . . . θ(xn). It is clear that ζ ∈ Φ(Rn). Moreover we have

ζ(0) = θ(0) . . . θ(0) = 1

and for 0 < |δ| ≤ k

Dδζ(0) = Dδ1θ(0) . . . Dδnθ(0) = 0

because there exists i such that δi 6= 0. Thus we obtain the lemma. ¤

Lemma 2.5 For a nonnegative integer k there exist functions {ζγ}|γ|≤k ⊂
Φ(Rn) such that

Dδζγ(0) =
{

1, δ = γ

0, δ 6= γ
(2.10)

for |δ|, |γ| ≤ k.

Proof. By Lemma 2.4 there exists a function ζ ∈ Φ(Rn) which satisfies
(2.9). For |γ| ≤ k we put

ζγ(x) = ωγ(x)ζ(x)

where ωγ(x) = xγ/γ!. It is clear that ζγ ∈ Φ(Rn) for |γ| ≤ k. We prove
(2.10). By Leipniz’s formula we have

Dδζγ(x) = Dδ(ωγ(x)ζ(x)) =
∑

η≤δ

(
δ
η

)
Dηωγ(x)Dδ−ηζ(x)
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where
(

δ
η

)
=

(
δ1

η1

)
· · ·

(
δn

ηn

)
and

(
δi

ηi

)
=

δi!
ηi!(δi − ηi)!

.

Since

Dηωγ(x) =

{
ωγ−η(x), η ≤ γ,

0, otherwise,

we see that

Dδζγ(0) =
∑

η≤min(δ,γ)

(
δ
η

)
ωγ−η(0)Dδ−ηζ(0)

where min(δ, γ) = (min(δ1, γ1), . . . ,min(δn, γn)). In case of δ = γ, by (2.9)
and the fact that

ωγ(0) =
{

1, γ = 0
0, γ 6= 0,

(2.11)

we have

Dδζγ(0) = Dγζγ(0) =
∑

η≤γ

(
γ
η

)
ωγ−η(0)Dγ−ηζ(0) =

(
γ
γ

)
ω0(0)ζ(0) = 1.

Next, let δ 6= γ. There are two cases. Firstly we consider the case that there
exists i such that δi < γi. For η ≤ min(δ, γ) we obtain that ηi ≤ δi < γi,
and hence γ − η > 0. Therefore by (2.11) ωγ−η(0) = 0 for η ≤ min(δ, γ),
and hence Dδζγ(0) = 0. Secondly we consider the case that there exists i

such that δi > γi. For η ≤ min(δ, γ) we obtain that ηi ≤ γi < δi, and hence
δ − η > 0. Therefore by (2.9) Dδ−ηζ(0) = 0 for η ≤ min(δ, γ), and hence
Dδζγ(0) = 0. Consequently, we see that Dδζγ(0) = 0 for δ 6= γ. Thus we
obtain (2.10) and complete the proof of the lemma. ¤

Lemma 2.6 For α > 0 and a nonnegative integer k with k < α, there
exist functions {µγ}|γ|≤k ⊂ Φ(Rn) such that

∫
µγ(x)Dδκα(x)dx =

{
1, γ = δ

0, γ 6= δ
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for |γ|, |δ| ≤ k.

Proof. By the previous lemma there exist functions {ζγ}|γ|≤k ⊂ Φ(Rn)
which satisfy (2.10). We put

µγ(x) =
(−1)|γ|

(2π)α+n
F(|ξ|αFζγ(ξ))(x)

for |γ| ≤ k. Since ζγ ∈ Φ(Rn), by (2.5) we see that Fζγ(ξ) ∈ Ψ(Rn),
|ξ|αFζγ(ξ) ∈ Ψ(Rn) and µγ(x) ∈ Φ(Rn). Since κα ∈ S ′(Rn) and µγ ∈
Φ(Rn) ⊂ S(Rn), we can consider

I =
1

(2π)n

〈F(Dδκα),Fµγ

〉
.

By (2.2) we have

I =
1

(2π)n

〈
Dδκα,FFµγ

〉
=

〈
Dδκα, µγ

〉
.

Moreover, since Dδκα(x) is locally integrable and Dδκα(x)µγ(x) is inte-
grable for |δ| < α, we have

I =
∫

Dδκα(x)µγ(x)dx (2.12)

for |δ|, |γ| ≤ k(< α). On the other hand, since Fκα(ξ) = (2π)αPf.|ξ|−α in
S ′(Rn) by (2.6), we have

I =
(2π)α(−i)|δ|

(2π)n

〈
ξδPf.|ξ|−α,Fµγ

〉

=
(2π)α(−i)|δ|

(2π)n

〈
ξδPf.|ξ|−α,

(−1)|γ|

(2π)α+n
FF(|ξ|αFζγ(ξ))

〉

=
(−i)|δ|

(2π)n

〈
ξδPf.|ξ|−α, (−1)|γ||ξ|αFζγ(ξ)

〉

=
(−i)|δ|

(2π)n

〈
Pf.|ξ|−α, (−1)|γ|ξδ|ξ|αFζγ(ξ)

〉
.
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Since (−1)|γ|ξδ|ξ|αFζγ(ξ) ∈ Ψ(Rn), by (2.7) and (2.10) we obtain that

I =
(−i)|δ|

(2π)n

∫
|ξ|−α(−1)|γ|ξδ|ξ|αFζγ(ξ)dξ

=
(−i)|δ|(−1)|γ|

(2π)ni|δ|

∫
(iξ)δFζγ(ξ)dξ

=
(−1)|δ|+|γ|

(2π)n
Dδ(FFζγ)(0) = (−1)|δ|+|γ|Dδζγ(0)

=
{

1, δ = γ

0, δ 6= γ
(2.13)

for |δ|, |γ| ≤ k. By (2.12) and (2.13) we get

∫
µγ(x)Dδκα(x)dx =

{
1, δ = γ

0, δ 6= γ

for |δ|, |γ| ≤ k. Thus we obtain the lemma. ¤

Here, we remark the following fact.

Remark 2.7 Let H(x) = |x|2` log |x| where ` is a nonnegative integer.
Then

DδH(x) =

{
P (x) log |x|+ Q(x), |δ| ≤ 2`

Q(x), |δ| ≥ 2` + 1

where P (x) is a homogeneous polynomial of degree 2` − |δ| and Q(x) is a
homogeneous function of degree 2`− |δ|.
Lemma 2.8 Let α − (n/p) > 0 and α − (n/p) /∈ N. Then there exist
functions {µγ.m}|γ|≤[α−(n/p)],m=1,2,... ⊂ Φ(Rn) such that

( i ) for |γ|, |δ| ≤ [α− (n/p)]

∫
µγ,m(x)Dδκα(x)dx =

{
1, γ = δ

0, γ 6= δ

and
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( ii ) for |γ| ≤ [α− (n/p)]

‖µγ,m‖p → 0 (m →∞).

Proof. Since [α − (n/p)] < α, by Lemma 2.6 there exist functions
{µγ}|γ|≤[α−(n/p)] ⊂ Φ(Rn) such that

∫
µγ(x)Dδκα(x)dx =

{
1, γ = δ

0, γ 6= δ
(2.14)

for |γ|, |δ| ≤ [α− (n/p)]. We put

µγ,m(x) =
1

mα−|γ|µγ

(
x

m

)

for |γ| ≤ [α− (n/p)] and m = 1, 2, . . . . It is clear that µγ,m ∈ Φ(Rn). First
we consider the case that α − n is not a nonnegative even number. In this
case Dδκα(x) is a homogeneous function of degree α − n − |δ|. Hence for
|γ|, |δ| ≤ [α− (n/p)], by the change of variables we have

∫
µγ,m(x)Dδκα(x)dx

=
1

mα−|γ|

∫
µγ

(
x

m

)
Dδκα(x)dx = m|γ|−α+n

∫
µγ(y)Dδκα(my)dy

= m|γ|−|δ|
∫

µγ(y)Dδκα(y)dy =
{

1. γ = δ

0, γ 6= δ

on account of (2.14). Next we consider the case that α− n is a nonnegative
even number. In this case, since [α − (n/p)] ≤ α − n, by Remark 2.7 for
|δ| ≤ [α− (n/p)]

Dδκα(x) = P (x) log |x|+ Q(x)

where P (x) is a homogeneous polynomial of degree α−n−|δ| and Q(x) is a
homogeneous function of degree α−n− |δ|. Hence for |γ|, |δ| ≤ [α− (n/p)],
we have
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∫
µγ,m(x)Dδκα(x)dx

=
1

mα−|γ|

∫
µγ

(
x

m

)
Dδκα(x)dx

= m|γ|−α+n

∫
µγ(y)Dδκα(my)dy

= m|γ|−α+n

∫
µγ(y)(P (my) log(m|y|) + Q(my))dy

= m|γ|−α+n

∫
(µγ(y)(mα−n−|δ|P (y)(log m + log |y|) + mα−n−|δ|Q(y))dy

= m|γ|−|δ|
( ∫

µγ(y)(P (y) log |y|+ Q(y))dy + log m

∫
µγ(y)P (y)dy

)

= m|γ|−|δ|
∫

µγ(y)Dδκα(y)dy

because P (y) is a polynomial and µγ ∈ Φ(Rn). Therefore, by (2.14)

∫
µγ,m(x)Dδκα(x)dx =

{
1, γ = δ

0, γ 6= δ

for |γ|, |δ| ≤ [α − (n/p)]. Thus we obtain (i). Further, by the change of
variables we have

‖µγ,m‖p =
( ∫

|µγ,m(x)|pdx

)1/p

=
( ∫

1
m(α−|γ|)p

∣∣∣∣µγ

(
x

m

)∣∣∣∣
p

dx

)1/p

= m(n/p)−α+|γ|
( ∫

|µγ(y)|pdy

)1/p

.

Since α−(n/p) /∈ N , the condition |γ| ≤ [α−(n/p)] implies (n/p)−α+ |γ| <
0, and hence ‖µγ,m‖p → 0 (m →∞) for |γ| ≤ [α − (n/p)]. This shows (ii).
Thus we complete the proof of the lemma. ¤

Now we prove the denseness of Φα,[α−(n/p)](Rn) in Lp(Rn).

Proposition 2.9 Let α− (n/p) /∈ N. Then the space Φα,[α−(n/p)](Rn) is
dense in Lp(Rn).
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Proof. Since Φ(Rn) is dense in Lp(Rn) by Proposition 2.2, it is sufficient
to show that Φα,[α−(n/p)](Rn) is dense in Φ(Rn) with respect to Lp(Rn)-
norm. In case α − (n/p) < 0, Φα,[α−(n/p)](Rn) = Φ(Rn), and hence
the assertion is obvious. Let α − (n/p) > 0. Then there exist functions
{µγ,m}|γ|≤[α−(n/p)],m=1,2,... ⊂ Φ(Rn) which satisfy (i) and (ii) in Lemma
2.8. For ϕ ∈ Φ(Rn) we put

0ϕm(x) = ϕ(x)−
∑

|δ|≤[α−(n/p)]

( ∫
ϕ(y)Dδκα(y)dy

)
µδ,m(x).

It is clear that ϕm ∈ Φ(Rn). Moreover for |γ| ≤ [α−(n/p)], by (i) in Lemma
2.8 we have

∫
ϕm(x)Dγκα(x)dx

=
∫

ϕ(x)Dγκα(x)dx

−
∑

|δ|≤[α−(n/p)]

( ∫
ϕ(y)Dδκα(y)dy

)( ∫
µδ,m(x)Dγκα(x)dx

)

=
∫

ϕ(x)Dγκα(x)dx−
∫

ϕ(y)Dγκα(y)dx = 0.

Hence ϕm ∈ Φα,[α−(n/p)](Rn). Further, by (ii) in Lemma 2.8 we obtain

‖ϕm − ϕ‖p ≤
∑

|δ|≤[α−(n/p)]

∣∣∣∣
∫

ϕ(y)Dδκα(y)dy

∣∣∣∣‖µδ.m‖p → 0 (m →∞).

Namely, ϕm converges to ϕ with respect to Lp(Rn)-norm as m →∞. Thus
Φα.[α−(n/p)](Rn) is dense in Φ(Rn) with respect to Lp(Rn)-norm. This
completes the proof of Proposition 2.9. ¤

3. Riesz potentials on the spaces Lp:r,s(Rn)

As defined in section 1, for p > 1 and r, s ∈ R the spaces Lp:r,s(Rn) are
given by
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Lp:r,s(Rn) =
{

f : ‖f‖p:r,s =
( ∫

Rn

|f(x)||x|rp(1+ | log |x||)spdx

)1/p

< ∞
}

.

In this section we investigate integral estimates for Riesz potentials of func-
tions in Lp:r,s(Rn). To do so we introduce a kernel Kα,`(x) = Kα(x)(1 +
log |x|)` (α > 0, ` ∈ N) where Kα(x) is a homogeneous function of degree
α − n which is infinitely differentiable in Rn − {0}. For multi-index γ we
see that

DγKα,`(x) =
min(|γ|,`)∑

=0

Hγ,j(x)(1 + log |x|)`−j

where Hγ.j(x) is a homogeneous function of degree α− n− |γ|. Hence

|DγKα,`(x)| ≤ C|x|α−n−|γ|(1 + | log |x||)`. (3.1)

Further, for an integer k we set

Kα,`:k(x, y) = Kα,`(x− y)−
∑

|γ|≤k

xγ

γ!
DγKα,`(−y)

where we regard the second term of the right-hand side as zero if k ≤ −1.
For x ∈ Rn we put `x = {tx : 0 ≤ t ≤ 1} and denote by d(y, `x) the distance
between y and `x.

Lemma 3.1 Let k be a nonnegative integer. Then for d(y, `x) > |x|/2

|Kα,`:k(x, y)| ≤ C|x|k+1|y|α−n−k−1(1 + | log |y||)`.

Proof. Let x = 0. Then d(y, `x) > |x|/2 means y 6= 0. For y 6= 0 we see
that

Kα,`:k(0, y) = Kα,`(−y)−Kα,`(−y) = 0,

and the right-hand side of the required inequality is zero. Hence the lemma
holds. Let x 6= 0. We note that Kα,`(z−y) is a C∞-function as a function of
z in Rn−{y}. Therefore, for d(y, `x) > |x|/2, Kα,`(z− y) is a C∞-function
as a function of z in the open set Ux = {z : d(z, `x) < |x|/2}. Noting that
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`x ⊂ Ux for z ∈ Ux and Ux contains 0, we apply the integral remainder
formula for Taylor’ theorem to Kα,`(z − y) in Ux. Then we get

Kα,`(z − y) =
∑

|γ|≤k

zγ

γ!
DγKα,`(−y) + (k + 1)

×
∑

|γ|=k+1

∫ |z|

0

(|z| − t)k

γ!
(z′)γDγKα,`(tz′ − y)dt

for z ∈ Ux where z′ = z/|z| (z 6= 0) and 0′ = 0. In particular, since x

belongs to Ux, we have

Kα,`:k(x, y) = (k + 1)
∑

|γ|=k+1

∫ |x|

0

(|x| − t)k

γ!
(x′)γDγKα,`(tx′ − y)dt.

We also note that d(y, `x) > |x|/2 implies that |y|/3 < |tx′ − y| < 3|y| for
0 ≤ t ≤ |x|. Therefore by (3.1), for d(y, `x) > |x|/2

|Kα,`:k(x, y)|

≤ (k + 1)
∑

|γ|=k+1

∫ |x|

0

(|x| − t)k

γ!
|DγKα,`(tx′ − y)|dt

≤ C(k + 1)
∑

|γ|=k+1

∫ |x|

0

(|x| − t)k

γ!
|tx′ − y|α−n−|γ|(1 + | log |tx′ − y||)`dt

≤ C
∑

|γ|=k+1

|y|α−n−|γ|(1 + | log |y||)`

∫ |x|

0

(|x| − t)kdt

= C|x|k+1|y|α−n−k−1(1 + | log |y||)`.

Thus we obtain the lemma. ¤

For a function f we set

Kα,`:kf(x) =
∫

Kα,`:k(x, y)f(y)dy.

The main purpose of this section is to prove the following integral estimate.
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Let (1/p) + (1/p′) = 1.

Theorem 3.2 Let α > 0, p > 1, r > −n/p′, ` ∈ N, s ∈ R and α + r −
(n/p) /∈ N. Then for k = [α + r − (n/p)]

‖Kα,`:kf‖p:−r−α,s−` ≤ C‖f‖p:−r,s.

For k, ` ∈ N and r, s ∈ R we set

Kr,s
α,`:k(x, y) = |x|−α−r(1 + | log |x||)s−`Kα,`:k(x, y)|y|r(1 + | log |y||)−s

and

Kr,s
α,`:kf(x) =

∫
Kr,s

α,`:k(x, y)f(y)dy.

Obviously, in order to prove Theorem 3.2 it is sufficient to show the following
proposition.

Proposition 3.3 Let α > 0, p > 1, r > −n/p′, ` ∈ N, s ∈ R and
α + r − (n/p) /∈ N. Then for k = [α + r − (n/p)]

‖Kr,s
α,`:kf‖p ≤ C‖f‖p.

To show Proposition 3.3 we prepare four lemmas. The first lemma is a
special case of the inequality by G. O. Okikiolu [Ok, Theorem 2.1].

Lemma 3.4 Let K(x, y) be a nonnegative measurable function on Rn ×
Rn. Suppose that there are a measurable function ϕ(x) > 0 on Rn and
constants M1 > 0, M2 > 0 such that

∫
ϕ(y)p′K(x.y)dy ≤ Mp′

1 ϕ(x)p′ (3.2)

∫
ϕ(x)pK(x.y)dx ≤ Mp

2 ϕ(y)p. (3.3)

If the operator K is defined by

Kf(x) =
∫

K(x, y)f(y)dy,
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then

‖Kf‖p ≤ M1M2‖f‖p.

Lemma 3.5 Let α > 0, ` ∈ N, r > −n/p′ and s ∈ R. Then

( ∫ ∣∣∣∣
∫

|x−y|≤3|x|/2

|x|−α−r(1 + | log |x||)s−`|x− y|α−n(1 + | log |x− y||)`|y|r

×(1 + | log |y||)−sf(y)dy

∣∣∣∣
p

dx

)1/p

≤ C‖f‖p.

Proof. Let

K(x, y) =





|x|−α−r(1 + | log |x||)s−`|x− y|α−n

× (1 + | log |x− y||)`|y|r(1 + | log |y||)−s,
|x− y| ≤ 3|x|/2

0, |x− y| > 3|x|/2.

The condition r > −n/p′ implies that −((r+n)/p′) < r/p, and hence we can
take a number a such that −((r + n)/p′) < a < r/p. For the above K(x, y)
and ϕ(x) = |x|a(1 + | log |x||)b with b > max(s/p′, (`− s)/p) we prove (3.2)
and (3.3). First we have

I(x) =
∫

ϕ(y)p′K(x, y)dy

=
∫

|x−y|≤3|x|/2

|y|ap′(1 + | log |y||)bp′ |x|−α−r(1 + | log |x||)s−`|x− y|α−n

× (1 + | log |x− y||)`|y|r(1 + | log |y||)−sdy

=
∫

|x′−(y/|x|)|≤3/2

|y|ap′+r(1 + | log |y||)bp′−s|x|−α−r(1 + | log |x||)s−`

|x|α−n

∣∣∣∣x′ −
y

|x|

∣∣∣∣
α−n(

1 +
∣∣∣∣ log

(
|x|

∣∣∣∣x′ −
y

|x|

∣∣∣∣
)∣∣∣∣

)`

dy.

By putting z = y/|x|, we obtain
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I(x) =
∫

|x′−z|≤3/2

|x|ap′+r|z|ap′+r(1 + | log(|x||z|)|)bp′−s|x|−r−n

× (1 + | log |x||)s−`|x′ − z|α−n(1 + | log(|x||x′ − z|)|)`|x|ndz.

Noting that 1+ | log(uv)| ≤ (1+ | log u|)(1+ | log v|) for u, v > 0 and bp′−s >

0, we get

I(x) = |x|ap′(1 + | log |x||)bp′
∫

|x′−z|≤3/2

|z|ap′+r(1 + | log |z||)bp′−s

× |x′ − z|α−n(1 + | log |x′ − z||)`dz.

Since α > 0 and a > −((r + n)/p′), the integral

∫

|x′−z|≤3/2

|z|ap′+r(1 + | log |z||)bp′−s|x′ − z|α−n(1 + | log |x′ − z||)`dz

exists and is a constant. Hence

I(x) ≤ C|x|ap′(1 + | log |x||)bp′ = Cϕ(x)p′ .

Next we have

J(y) =
∫

ϕ(x)pK(x, y)dx

=
∫

|x|≥2|x−y|/3

|x|ap(1 + | log |x||)bp|x|−α−r(1 + | log |x||)s−`|x− y|α−n

× (1 + | log |x− y||)`|y|r(1 + | log |y||)−sdx

=
∫

|x/|y||≥2|(x/|y|)−y′|/3

|x|ap−α−r(1 + | log |x||)bp+s−`|y|α−n

∣∣∣∣
x

|y| − y′
∣∣∣∣
α−n

×
(

1 +
∣∣∣∣ log

(
|y|

∣∣∣∣
x

|y| − y′
∣∣∣∣
)∣∣∣∣

)`

|y|r(1 + | log |y||)−sdx.

By putting w = x/|y|, we get
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J(y) =
∫

|w|≥2|w−y′|/3

|y|ap−α−r|w|ap−α−r(1 + | log(|w||y|)|)bp+s−`|y|α−n+r

× |w − y′|α−n(1 + | log(|y||w − y′|)|)`(1 + | log |y||)−s|y|ndw.

Noting that bp + s− ` > 0, we have

J(y) ≤ |y|ap(1 + | log |y||)bp

∫

|w|≥2|w−y′|/3

|w|ap−r−α(1 + | log |w||)bp+s−`

× |w − y′|α−n(1 + | log |w − y′||)`dw.

Since α > 0 and a < r/p, the integral

∫

|w|≥2|w−y′|/3

|w|ap−r−α(1+ | log |w||)bp+s−`|w−y′|α−n(1+ | log |w−y′||)`dw

exists and is a constant. Hence

J(y) ≤ C|y|ap(1 + | log |y||)bp = Cϕ(y)p.

Thus we obtain (3.2) and (3.3). This proves the lemma by Lemma 3.4. ¤

Lemma 3.6 Let t− (n/p) > 0 and u ∈ R. Then

( ∫ ∣∣∣∣
∫

|y|≤2|x|
|x|−t(1 + | log |x||)−u|y|t−n(1 + | log |y||)uf(y)dy

∣∣∣∣
p

dx

)1/p

≤ C‖f‖p.

Proof. Let

K(x, y) =

{|x|−t(1 + | log |x||)−u|y|t−n(1 + | log |y||)u, |y| ≤ 2|x|
0, |y| > 2|x|.

For the above K(x, y) and ϕ(x) = |x|−n/(pp′)(1 + | log |x||)b with b >

max(−u/p′, u/p) we prove (3.2) and (3.3). First, by bp′ + u > 0 we have
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I(x) =
∫

ϕ(y)p′K(x, y)dy

=
∫

|y|≤2|x|
|y|−n/p(1 + | log |y||)bp′ |x|−t(1 + | log |x||)−u|y|t−n

× (1 + | log |y||)udy

= |x|−t(1 + | log |x||)−u

∫

|y/|x||≤2

|x|t−(n/p)−n

∣∣∣∣
y

|x|

∣∣∣∣
t−(n/p)−n

×
(

1 +
∣∣∣∣ log

(
|x|

∣∣∣∣
y

|x|

∣∣∣∣
)∣∣∣∣

)bp′+u

dy

≤ |x|−(n/p)−n(1 + | log |x||)bp′
∫

|y/|x||≤2

∣∣∣∣
y

|x|

∣∣∣∣
t−(n/p)−n

×
(

1 +
∣∣∣∣ log

∣∣∣∣
y

|x|

∣∣∣∣
∣∣∣∣
)bp′+u

dy.

By putting z = y/|x| we get

I(x) ≤ |x|−n/p(1 + | log |x||)bp′
∫

|z|≤2

|z|t−(n/p)−n(1 + | log |z||)bp′+udz

= C|x|−n/p(1 + (| log |x||)bp′ = Cϕ(x)p′

because of t− (n/p) > 0. Next, by bp− u > 0 we have

J(y) =
∫

ϕ(x)pK(x, y)dx

=
∫

|x|≥|y|/2

|x|−n/p′(1 + | log |x||)bp|x|−t(1 + | log |x||)−u|y|t−n

× (1 + | log |y||)udx

= |y|t−n(1 + | log |y|)u

∫

|x/|y||≥1/2

|y|−t−(n/p′)
∣∣∣∣

x

|y|

∣∣∣∣
−t−(n/p′)

×
(

1 +
∣∣∣∣ log

(
|y|

∣∣∣∣
x

|y|

∣∣∣∣
)∣∣∣∣

)bp−u

dx
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≤ |y|−(n/p′)−n(1 + | log |y||)bp

∫

|x/|y||≥1/2

∣∣∣∣
x

|y|

∣∣∣∣
−t−(n/p′)

×
(

1 +
∣∣∣∣ log

∣∣∣∣
x

|y|

∣∣∣∣
∣∣∣∣
)bp−u

dx.

By putting w = x/|y| we obtain

J(y) ≤ |y|−n/p′(1 + | log |y||)bp

∫

|w|≥1/2

|w|−t−(n/p′)(1 + | log |w||)bp−udw

= C|y|−n/p′(1 + | log |y||)bp = Cϕ(y)p

because t− (n/p) > 0 implies −t− (n/p′) < −n. Thus we obtain (3.2) and
(3.3). Therefore the lemma is proved by Lemma 3.4. ¤

Lemma 3.7 Let t− (n/p) < 0 and u ∈ R. Then

( ∫ ∣∣∣∣
∫

|y|≥|x|/2

|x|−t(1 + | log |x||)−u|y|t−n(1 + | log |y||)uf(y)dy

∣∣∣∣
p

dx

)1/p

≤ C‖f‖p.

Proof. We denote the left-hand side by I. Since the Jacobian of the change
of variables y = z/|z|2 is 1/|z|2n, by the change of variables and putting
g(z) = |z|−2n/pf(z/|z|2) we have

I =
( ∫ ∣∣∣∣

∫

|z|≤2/|x|
|x|−t(1 + | log |x||)−u|z|n−t

(
1 +

∣∣∣∣ log
1
|z|

∣∣∣∣
)u

× |z|2n/p|z|−2n/pf

(
z

|z|2
)

1
|z|2n

dz

∣∣∣∣
p

dx

)1/p

=
( ∫ ∣∣∣∣

∫

|z|≤2/|x|
|x|−t(1 + | log |x||)−u|z|−n−t+(2n/p)

× (1 + | log |z||)ug(z)dz

∣∣∣∣
p

dx

)1/p

.

Again by using the change of variables x = w/|w|2 we get



A semi-group formula for the Riesz potentials 21

I =
( ∫ ∣∣∣∣

∫

|z|≤2|w|
|w|t

(
1 + | log

1
|w| |

)−u

|z|−n−t+(2n/p)

× (1 + | log |z||)ug(z)dz

∣∣∣∣
p

dw

|w|2n

)1/p

=
( ∫ ∣∣∣∣

∫

|z|≤2|w|
|w|t−(2n/p)(1 + | log |w||)−u|z|−t+(2n/p)−n

× (1 + | log |z||)ug(z)dz

∣∣∣∣
p

dw

)1/p

.

By putting v = −t + (2n/p), we see that

I =
( ∫ ∣∣∣∣

∫

|z|≤2|w|
|w|−v(1+| log |w||)−u|z|v−n(1+| log |z||)ug(z)dz

∣∣∣∣
p

dw

)1/p

.

Since t − (n/p) < 0 implies v − (n/p) > 0, Lemma 3.6 gives I ≤ C‖g‖p.
Noting that ‖g‖p = ‖f‖p, we obtain the lemma. ¤

Now we are in a position to prove Proposition 3.3.

Proof of Proposition 3.3. We put I = ‖Kr,s
α,`:kf‖p. In case of α + r −

(n/p) > 0 we have

I =
( ∫ ∣∣∣∣

∫

d(y,`x)≤|x|/2

|x|−α−r(1 + | log |x||)s−`Kα,`:k(x, y)|y|r

× (1 + | log |y||)−sf(y)dy

+
∫

d(y,`x)>|x|/2

|x|−α−r(1 + | log |x||)s−`Kα,`:k(x, y)|y|r

× (1 + | log |y||)−sf(y)dy

∣∣∣∣
p

dx

)1/p

≤
( ∫ ( ∫

d(y,`x)≤|x|/2

|x|−α−r(1 + | log |x||)s−`

×
∣∣∣∣Kα,`(x− y)−

∑

|γ|≤k

xγ

γ!
DγKα,`(−y)

∣∣∣∣
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× |y|r(1 + | log |y||)−s|f(y)|dy

)p

dx

)1/p

+
( ∫ ( ∫

d(y,`x)>|x|/2

|x|−α−r(1 + | log |x||)s−`|Kα,`:k(x, y)||y|r

× (1 + | log |y||)−s|f(y)|dy

)p

dx

)1/p

= I1 + I2.

Since d(y, `x) ≤ |x|/2 implies that |x−y| ≤ 3|x|/2 and |y| ≤ 3|x|/2, by (3.1)
we see that

I1 ≤
( ∫ ( ∫

|x−y|≤3|x|/2

|x|−α−r(1 + | log |x||)s−`|Kα,`(x− y)||y|r

× (1 + | log |y||)−s|f(y)|dy

)p

dx

)1/p

+
∑

|γ|≤k

1
γ!

( ∫ ( ∫

|y|≤3|x|/2

|x|−α−r+|γ|(1 + | log |x||)s−`|DγKα,`(−y)|

× |y|r(1 + | log |y||)−s|f(y)|dy

)p

dx

)1/p

≤ C

( ∫ ( ∫

|x−y|≤3|x|/2

|x|−α−r(1 + | log |x||)s−`|x− y|α−n

× (1 + | log |x− y||)`|y|r(1 + | log |y||)−s|f(y)|dy

)p

dx

)1/p

+ C
∑

|γ|≤k

( ∫ ( ∫

|y|≤3|x|/2

|x|−(α+r−|γ|)(1 + | log |x||)s−`|y|α+r−|γ|−n

× (1 + | log |y||)`−s|f(y)|dy

)p

dx

)1/p

= I11 + I12.

Since α > 0, r > −n/p′, ` ∈ N and s ∈ R, Lemma 3.5 gives that I11 ≤
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C‖f‖p. The conditions α + r− (n/p) > 0 and α + r− (n/p) /∈ N imply that
α + r − |γ| − (n/p) > 0 for |γ| ≤ k = [α + r − (n/p)]. Hence, by Lemma 3.6
we get

I12 ≤ C
∑

|γ|≤k

‖f‖p = C‖f‖p.

By Lemma 3.1 and the fact that d(y, `x) > |x|/2 implies |y| > |x|/2, we see
that

I2 ≤
( ∫ ( ∫

|y|>|x|/2

|x|−(α+r−k−1)(1 + | log |x||)s−`|y|α+r−k−1−n

× (1 + | log |y||)`−s|f(y)|dy

)p

dx

)1/p

.

Since k = [α + r − (n/p)], we have α + r − k − 1 − (n/p) < 0, and hence
Lemma 3.7 gives I2 ≤ C‖f‖p. Consequently I ≤ C‖f‖p. Next we consider
the case α + r − (n/p) < 0. In this case, since Kα,`:k(x, y) = Kα,`(x − y),
by (3.1) we have

I =
( ∫ ∣∣∣∣

∫
|x|−α−r(1 + | log |x||)s−`Kα,`(x− y)|y|r

× (1 + | log |y||)−sf(y)dy

∣∣∣∣
p

dx

)1/p

≤ C

( ∫ ( ∫

d(y,`x)≤|x|/2

|x|−α−r(1 + | log |x||)s−`|x− y|α−n

× (1 + | log |x− y||)`|y|r(1 + | log |y||)−s|f(y)|dy

)p

dx

)1/p

+ C

( ∫ ( ∫

d(y,`x)>|x|/2

|x|−α−r(1 + | log |x||)s−`|x− y|α−n

× (1 + | log |x− y||)`|y|r(1 + | log |y||)−s|f(y)|dy

)p

dx

)1/p

= J1 + J2.
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Since d(y, `x) ≤ |x|/2 implies |x− y| ≤ 3|x|/2, the conditions α > 0, ` ∈ N,
r > −n/p′ and s ∈ R allows us to apply Lemma 3.5 to J1. Then we get
J1 ≤ C‖f‖p. Since d(y, `x) > |x|/2 implies |y| > |x|/2 and |y|/3 < |x− y| <
3|y|, the condition α + r − (n/p) < 0 and Lemma 3.7 gives

J2 ≤
( ∫ ( ∫

|y|>|x|/2

|x|−α−r(1 + | log |x||)s−`|y|α+r−n

× (1 + | log |y||)`−s|f(y)|dy

)p

dx

)1/p

≤ C‖f‖p.

Therefore I ≤ C‖f‖p. Thus we complete the proof of Proposition 3.3. ¤

By applying Theorem 3.2 to the Riesz potentials we obtain the following
corollary.

Corollary 3.8 Let r > −n/p′, s ∈ R and α + r − (n/p) /∈ N. Then for
k = [α + r − (n/p)]

{‖Uα,kf‖p,−α−r,s ≤ C‖f‖p,−r,s, α− n /∈ 2N

‖Uα,kf‖p,−α−r,s−1 ≤ C‖f‖p,−r,s, α− n ∈ 2N.

4. A semi-group formula for Riesz potentials of Lp-functions

In Section 2 we stated that for ϕ ∈ Φ(Rn), Uβϕ ∈ Φ(Rn) and hence
Uα(Uβϕ) ∈ Φ(Rn). Moreover, we refered to the fact that the equality
Uα+βϕ = Uα(Uβϕ) holds for ϕ ∈ Φ(Rn). Let f ∈ Lp(Rn). We consider
the case β − (n/p) /∈ N and α + β − (n/p) /∈ N. According to Theorem
3.2 Uβ,[β−(n/p)]f belongs to Lp,−β,−1(Rn). Therefore again by Theorem
3.2 Uα,[α+β−(n/p)](Uβ,[β−(n/p)]f) belongs to Lp,−α−β,−2(Rn). On the other
hand, it follows also from Theorem 3.2 that Uα+β,[α+β−(n/p)]f belongs to
Lp,−α−β,−1(Rn). The purpose of this section is to prove that the both are
equal (a semi-group formula).

We begin with some remarks.

Remark 4.1 We denote by L1
loc(R

n) the space of all locally integrable
functions in Rn. If r > −n/p′, then Lp,−r,s(Rn) ⊂ L1

loc(R
n).
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Remark 4.2 Let f ∈ Lp,−r,s(Rn) ∩ S(Rn). Then the Riesz polynomial
Pα,kf of type (α, k) of f exists for k < α + r − (n/p).

Remark 4.3 Let r − (n/p) > 0, r − (n/p) /∈ N, s ∈ R and P (x) is a
polynomial of degree [r − (n/p]. If P (x) ∈ Lp,−r,s(|x| ≤ 1), then P = 0
where

Lp,−r,s(|x| ≤ 1) =
{

f :
∫

|x|≤1

|f(x)|p|x|−rp(1 + | log |x||)spdx < ∞
}

.

Now we prove our main theorem.

Theorem 4.4 Let β − (n/p) /∈ N, α + β − (n/p) /∈ N and f ∈ Lp(Rn).
Then

Uα+β,[α+β−(n/p)]f = Uα,[α+β−(n/p)](Uβ,[β−(n/p)]f).

Proof. Let f ∈ Lp(Rn). Since Φβ,[β−(n/p)](Rn) is dense in Lp(Rn) by
Proposition 2.9, there exists a sequence {ϕm} ⊂ Φβ,[β−(n/p)](Rn) such that
ϕm converges to f in Lp(Rn) as m → ∞. Since ϕm ∈ Φ(Rn), Propoition
2.1 gives

Uα+β(ϕm) = Uα(Uβϕm). (4.1)

Moreover, since ϕm ∈ Φ(Rn) ⊂ S(Rn) and [α+β− (n/p)] < α+β, by (2.1)
we have

Uα+β,[α+β−(n/p)]ϕm = Uα+βϕm + Pα+β,[α+β−(n/p)]ϕm. (4.2)

On the other hand, the fact ϕm ∈ Φβ,[β−(n/p)](Rn) gives Pβ,[β−(n/p)]ϕm = 0,
and hence Uβ,[β−(n/p)]ϕm = Uβϕm. By using Proposition 2.1 and Theorem
3.2 we see that Uβϕm ∈ Φ(Rn)∩Lp,−β,−1(Rn). The fact Uβϕm ∈ Φ(Rn) im-
plies the existence of Uα(Uβϕm), and the fact Uβϕm ∈ Φ(Rn)∩Lp,−β,−1(Rn)
gives the existence of Pα,[α+β−(n/p)](Uβϕm) by [α+β−(n/p)] < α+β−(n/p)
and Remark 4.2. Hence

Uα,[α+β−(n/p)](Uβ,[β−(n/p)]ϕm) = Uα,[α+β−(n/p)](Uβϕm)

= Uα(Uβϕm) + Pα,[α+β−(n/p)](Uβϕm). (4.3)
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By (4.1), (4.2) and (4.3) we obtain

Uα+β,[α+β−(n/p)]ϕm − Uα,[α+β−(n/p)](Uβ,[β−(n/p)]ϕm)

= Pα,[α+β−(n/p)](Uβϕm)− Pα+β,[α+β−(n/p)]ϕm. (4.4)

Since β − (n/p) /∈ N and α + β − (n/p) /∈ N, Theorem 3.2 implies that
the left-hand side of (4.4) belongs to Lp,−α−β,−2(Rn). Theorefore the right-
hand side of (4.4) also belongs to Lp,−α−β,−2(Rn), and is a polynomial of
degree [α + β − (n/p)]. This shows that the right-hand side of (4.4) is zero
by Remark 4.3. Thus we obtain

Uα+β,[α+β−(n/p)]ϕm = Uα,[α+β−(n/p)](Uβ,[β−(n/p)]ϕm). (4.5)

Next we consider the limit process as m →∞ in (4.5). Since ϕm converges
to f in Lp(Rn) as m → ∞ and α + β − (n/p) /∈ N, by Theorem 3.2
Uα+β,[α+β−(n/p)]ϕm converges to Uα+β,[α+β−(n/p)]f in Lp,−α−β,−1(Rn), and
hence in L1

loc(R
n) as m → ∞ by α + β > 0 > −n/p′ and Remark 4.1. On

the other hand, Uβ,[β−(n/p)]ϕm converges to Uβ,[β−(n/p)]f in Lp,−β,−1(Rn)
as m →∞ on account of β − (n/p) /∈ N and Theorem 3.2. Hence by using
Theorem 3.2 again, we see that Uα,[α+β−(n/p)](Uβ,[β−(n/p)]ϕm) converges to
Uα,[α+β−(n/p)](Uβ,[β−(n/p)]f) in Lp,−α−β,−2(Rn), and hence in L1

loc(R
n) as

m →∞ because of α + β − (n/p) /∈ N. This fact and (4.5) implies that

Uα+β,[α+β−(n/p)]f = Uα,[α+β−(n/p)](Uβ,[β−(n/p)]f).

We complete the proof in Theorem 4.4. ¤

Finaly, we give an improvement of the integral estimates in corollary 3.8
by using the semi-group formula in Theorem 4.4.

Corollary 4.5 Let α − (n/p) /∈ N and f ∈ Lp(Rn). Then for k =
[α− (n/p)]

‖Uα,kf‖p,−α,0 ≤ C‖f‖p.

Proof. In case of α−n /∈ 2N, this is nothing but Corollary 3.8. Let α−n ∈
2N. We can take positive numbers β and ζ such that α = β+ζ, β−n /∈ 2N,
ζ − n /∈ 2N and ζ − (n/p) /∈ N. Since α − (n/p) = β + ζ − (n/p) /∈ N and
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ζ − (n/p) /∈ N, by using the semi-group formula in Theorem 4.4 we see that

Uα,kf = Uβ+ζ,[β+ζ−(n/p)]f = Uβ,[β+ζ−(n/p)](Uζ,[ζ−(n/p)]f).

Moreover, by β + ζ − (n/p) /∈ N and β − n /∈ 2N Theorem 3.2 implies that

‖Uα,kf‖p,−α,0 =
∥∥Uβ,[β+ζ−(n/p)](Uζ,[ζ−(n/p)]f)

∥∥
p,−β−ζ,0

≤ C‖Uζ,[ζ−(n/p)]f‖p,−ζ,0. (4.6)

Further, since ζ − (n/p) /∈ N, ζ − n /∈ 2N, by Theorem 3.2 again we have

‖Uζ,[ζ−(n/p)]f‖p,−ζ,0 ≤ C‖f‖p,0,0 = ‖f‖p. (4.7)

By combining (4.6) and (4.7) we obtain the required estimate. ¤
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