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A semi-group formula for the Riesz potentials

Takahide KUROKAWA
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Abstract. The purpose of this article is to establish a semi-group formula for the
Riesz potentials of LP-functions. As preparations, we study the Lizorkin space ®(R"™)
and investigate integral estimates of the Riesz potentials of functions in the spaces
Lp:r,s(Rn).
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1. Introduction

Let R™ be the n-dimensional Euclidean space. Throughout this paper
let 0 < @ < o0 and 1 < p < oo. For real numbers r and s we define the
spaces LP"5(R™) as follows:

1/p
Lp:r,s(Rn) _ {f . Hf”p:hs — (/Rn |f(1‘)‘p|x’7“p(1—|—| log ‘xH)Spdl‘) < OO}

We simply write LP'O%(R") = LP(R") and ||f]|p.0.0 = ||f]l,- Let Guo(x) be
the Bessel kernel of order « defined by

1 o0 2 dd
— —mlz[/d ,—6/(4m) §(a—n)/2 7
Go(2) (4m)" /2T (0 2) /0 e e ) 5

Since the Bessel kernel G () is integrable ([St, Proposition 2 in Chap. V]),
for f € LP(R™) the Bessel potential of order a of f

Gof(z) = / Galz — y)f (v)dy

belongs to LP(R™). For the Bessel potentials, it is known that the following
semi-group formula holds ([St, 3.3 in Chap. V]):

Garpf =Ga(Gpf),  feLP(R").
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The purpose of this article is to establish a semi-group formula for the Riesz
potentials of LP-functions. Let IN be the set of nonnegative integers and 2N
stands for the set of nonnegative even numbers. The Riesz kernel k. (z) of
order « is given by

I a—n¢2N
Ka(z) = ~

(Gom —log [#])|2]*=", a—n € 2N
with
7"/220T (a/2) /T((n — @) /2), a—n¢2N
Jon = {(—1)<a—">/22a—17rn/2r(a/2)((a —n)/2), a—neaN
and
,
S = M+;<1+;+---+M—c) “log

where C is Euler’s constant. For a function f we define the Riesz potential
U, f of order a of f as follows:

Uaf(z) = / oz — ) f(5)dy

if it exists. If & — (n/p) < 0, then for f € LP(R"™), U, f exists and satisfies
the following inequality ([SW, Theorem B*]):

1Uafllp,~a0 < Cllfp:

However, if & — (n/p) > 0, then for an LP-function f, U, f does not neces-
sarily exist. To consider the Riesz potentials of LP-functions we introduce
the Riesz kernels of type («, k). For an integer k we set

where we regard the second term of the right-hand side as zero if £ < —1,

and v = (71,...,7Vn) is a multi-index, 27 = 2]* ... 2)" (x = (x1,...,2,)),
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DY =D} ...D)» (D;j = 8/0z;), v! = m!...v! and |y] = 1 + - + Yn.
We also denote

x'y
pa,k(xay) = - Z ﬁDvﬁa(_y)‘
!
lvI<k

For a function f we define the Riesz potential U, 1 f and the Riesz polyno-
mial P, . f of type (o, k) of f as follows:

Ui f(2) = / bok (@) f @)y, Papf(@) = / Do (2 9) [ (0)ly

if they exist. The Riesz polynomial P, f is a polynomial of degree k if it
exists.

Our plan is as follows. In Section 2 we introduce and study the Lizorkin
space ®(R"). The Lizorkin space ®(R"™) has been studied by several authors
(cf. [Sa], [SKM]). It is known that ®(R"™) is invariant with respect to the
Riesz potential oparator and a semi-group formula for the Riesz potentials
of functions in ®(R™) holds. We establish the fact that certain subspaces
of ®(R™) are dense in LP(R™) (Proposition 2.9). In Section 3 we give
integral estimates for the Riesz potentials of type (a, k) of functions in the
spaces LP'"*(R"™) (Theorem 3.2 and Corollary 3.8). In particular, it turns
out that for a function f € LP"*(R"™), Uyif exists if r > —n/p’ and
a+1r—(n/p) ¢ N where k is the integral part of o +r — (n/p). In Section
4 we prove a semi-group formula for the Riesz potentials of LP-functions
(Theorem 4.4). Throughout this paper we use the symbol C for a generic
positive constant whose value may be different at each occurrence.

2. The Lizorkin space ®(R")

We denote the Schwartz space on R™ by S(R™). That is, S(R") is the
space of all C*°-functions ¢ in R" such that

@r.5(p) = sup |27 D°p(x)] < o0
zeR™
for all multi-indices v and 6. The space S(R"™) is a Fréchet space with a
countable family of semi-norms {g,,s}. For a function f € S(R™) the Riesz
potential U, f(x) exists for any x € R™. Moreover in case k < «, Uy f(x)
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and P, . f(z) exist for any z € R™ and
Ua,kf<$) - Uaf<x) + Pa,kf<x)' (2'1)

The Lizorkin space ®(R") is defined by

o(R") = {cp eS(R"): /gp(w)aﬂdm =0 for all ’y}

([SKM, Section 25 in Chap. 5]). Further, we introduce the space ¥(R") as
follows:

U(R") ={y e S(R"): D')(0) =0 for all v}.

The Fourier transform Ff and the inverse Fourier transforms Ff of an
integrable function f are defined by

Ff(x) = / Vi (g)dy,  Ff(x) = / ¢V f(y)dy = Ff(—a)

where x -y = z1y1 + -+ + TnYn. By the Fourier inversion formula, for
v € S(R™) we have the equality

FFo=FFp=(2m)"p. (2.2)
Noting that
DY(FR)O) = [ elo)(-iv)dy (2.3
and
[ Fowivydy = @nyD7u0) (2.4)

for p,1 € S(R™), we see that
®(R") = F(¥(R")), Y(R")=F(2R")). (2.5)

The symbol S’(R™) (the space of tempered distributions) stands for the
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topological dual space of S(R"™). We use the notation (u, ) for the canonical
bilinear form on &'(R"™) x S(R™). For u € S'(R"™) we define the Fourier
transform Fu (resp. the inverse Fourier transform Fu) to be the element
of §'(R™) whose value at ¢ € S(R") is (Fu, ) = (u, Fp) (resp. (Fu,p) =
(u, F). The Fourier transform of the Riesz kernel x,, € S'(R") is given by

Fhao(z) = 2m)*Pf. ||~ (2.6)

where Pf. stands for the pseudo function ([Sc, Section 4 in Chap VII]). We
note that for ¢ € ¥(R")

(P ||~ ) = / 2|~ () de (2.7)

The Lizorkin space ®(R™) has the following properties.

Proposition 2.1 ([SKM, Theorem 25.1], [Sa, Theorem 2.16]) For ¢ €
O(R™), Uyp belongs to P(R™) and

Uarpp = Ua(Upp).

Proposition 2.2 ([Sa, Theorem 2.7])  The Lizorkin space ®(R™) is dense
in LP(R™).

We establish that not only the space ®(R"™) is dense in LP(R™), but
also certain subspaces of ®(R"™) are dense in LP(R™). For a > 0 and a
nonnegative integer k with & < «, the space @, ,(R") is defined by

By (R = {90 c DR : /cp(x)mna(x)dx —0 for |y| < k}

In the remainder of this section we prove that if & — (n/p) ¢ N, then the
space @ [o—(n/p)(R") is dense in LP(R") where [o — (n/p)] is the integral
part of a — (n/p).

To prove the above fact we prepare five lemmas and one remark.

The first lemma is proved by the similar way to [Ku, Lemma 2.2].

Lemma 2.3 For a nonnegative integer k there exists a function 0(t) €

®(R) such that
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1, i=0

2.8
0, i=1,...,k (28)

D9(0) = {

where D0 is the derivative of order i of 6.

Lemma 2.4 For a nonnegative integer k there exists a function ((x) €
®(R"™) such that

1, 6=0

2.9
0, 0<|d] <k. (2.9)

Do) = {

Proof. By Lemma 2.3 there exists 0(t) € ®(R') which satisfies (2.8). We
put () = 0(x1)...0(xy,). It is clear that ¢ € ®(R™). Moreover we have

and for 0 < |0 < k
D°¢(0) = D*16(0)...D’*0(0) =0

because there exists i such that §; # 0. Thus we obtain the lemma. O

Lemma 2.5 For a nonnegative integer k there exist functions {¢y}y <k C
®(R™) such that
1, d=x

0 52 (2.10)

D%, (0) = {

for |6, < k.

Proof. By Lemma 2.4 there exists a function ( € ®(R"™) which satisfies
(2.9). For |y| < k we put

where w,(z) = 7/4!. It is clear that ¢, € ®(R") for |y| < k. We prove
(2.10). By Leipniz’s formula we have

DG () = D (wn (2)C(x)) = 3 (2) DV, () D51 ()

n<é
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where
. A
() =G () e ) ==
n m Tin i m!(5z‘ - 771‘)!
Since
Wy—p(z), <7,
Do) - {1
0, otherwise,

we see that

é _ J w 5—n
Do)=Y (n> (0D 1C(0)

n<min(4,7)

where min(d,7y) = (min(d1,v1), ..., min(dy,y,)). In case of § = v, by (2.9)
and the fact that

1, v=0
w,,(()):{O 1%0 (2.11)

we have

D6, (0) = 06,0 = 3 (7) wr-n 007 7760) = (1) n(0)0) = 1.

Y
n<vy

Next, let § # ~. There are two cases. Firstly we consider the case that there
exists ¢ such that ¢; < ;. For n < min(d,v) we obtain that 7, < §; < v,
and hence v —n > 0. Therefore by (2.11) wy—,(0) = 0 for n < min(d,~),
and hence D, (0) = 0. Secondly we consider the case that there exists i
such that §; > ~;. For n < min(d,~y) we obtain that n; < ~; < J;, and hence
§ —n > 0. Therefore by (2.9) D°~7¢(0) = 0 for n < min(é,~), and hence
D’(,(0) = 0. Consequently, we see that D°C,(0) = 0 for § # v. Thus we
obtain (2.10) and complete the proof of the lemma. O

Lemma 2.6 For a > 0 and a nonnegative integer k with k < «, there
exist functions {1y }y<i C ®(R") such that

/M(x)p%a(x)dx - {(1) z; g
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for [, 18] < k.

Proof. By the previous lemma there exist functions {(,}4<x C ®(R")
which satisfy (2.10). We put

B (=1)h! (¢l F
M’y(l’)—w (€] F ¢ (€)) (@)

2.5) we see that F(y(§) € U(R"),

for |y| < k. Since ¢, € ®(R"), by (
®(R"). Since ko, € S'(R™) and p, €

§1°F ¢ (§) € W(R") and py(z) €
®(R™) C S(R™), we can consider

<?(D5/1a),.7:u7>.
By (2.2) we have

I:

( Ka7ff,u/’y> <D K’OHM’Y>

Moreover, since D’k (z) is locally integrable and Dok, (x)u, () is inte-
grable for |§] < a, we have

I= /D‘Sﬁa(:n)uv(:r)dx (2.12)

for |8, |v| < k(< ). On the other hand, since Fry(€) = (27)°Pf.[¢|~% in
S'(R™) by (2.6), we have

1_@;52@513% Fs)

_ @0 pg e CD

- G <g PLIE", Gryern P f<7<£>>>
_ (=W

= Gy (EPLIET (DM (©))

()" —a (_1)hledjgle
= gy (PHIE (G Elel 7, (6)).
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Since (—1)1&2|¢|*F¢, (&) € U(R™), by (2.7) and (2.10) we obtain that

—q)lel
I= ((273)” / €17 (=D)ME|g|" 7, ()dg

A1y
- S [

(_1)\5|+M 5= 164 17| 76
= Sy D FFG)0) = (1)DG 0

[l d=n
e 019

for 0], |v| < k. By (2.12) and (2.13) we get

/Hw(x)D%ga(:c)dx _ {(1) : ;z

for |4], |y| < k. Thus we obtain the lemma. O

Here, we remark the following fact.

Remark 2.7 Let H(z) = |z|?>*log|z| where £ is a nonnegative integer.
Then
P(x)log|z| + Q(x), 0] <2¢
D - { Pl Q@ 19
Q(), 6] >20+1

where P(z) is a homogeneous polynomial of degree 2¢ — |4| and Q(z) is a
homogeneous function of degree 2¢ — |4].

Lemma 2.8 Let a — (n/p) > 0 and o — (n/p) ¢ N. Then there exist
Junctions {fy.m}y|<(a—(n/p)]m=1,2,... C P(R") such that

(1) for v], 18] < er = (n/p)]

/ iy () DO i () it = {(1) 3;5

and
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(ii) for |v] < [a — (n/p)]

H/‘%me —0 (m— o).

Proof. Since [a — (n/p)] < «, by Lemma 2.6 there exist functions
{b5 Fy1<[a=(n/p)) € ®(R™) such that

L, v=94

0 vt (2.14)

/,u,y(x)D‘sma(a;)dx = {

for [, [0] < [a = (n/p)]. We put

_ 1 x
Mv,m(ﬁ) = W#v m

for |y| < [a — (n/p)] and m =1,2,.... It is clear that i, € ®(R™). First
we consider the case that o — n is not a nonnegative even number. In this
case D%k, (x) is a homogeneous function of degree a@ — n — |6]. Hence for
7], [0] < [a — (n/p)], by the change of variables we have

/ 1y () DP i ()

_ b /M <:1>D5na(a:)da: = m'”"“*”/uw(y)D%a(my)dy

ma*|7|

1. v=9¢

— pI-1dl /m(y)D%a(y)dy = {0 £ S

on account of (2.14). Next we consider the case that & —n is a nonnegative
even number. In this case, since [@ — (n/p)] < o — n, by Remark 2.7 for

0] < [a = (n/p)]
D’ka(x) = P(z)log|z| + Q(x)

where P(z) is a homogeneous polynomial of degree « —n — |§| and Q(z) is a
homogeneous function of degree o —n — |J|. Hence for |v|, [§] < [a — (n/p)],
we have
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/ 1y (2) DO o () dee
_ nﬁbo}_ﬂ/uw<§b>D%a(:p)d:ﬂ
= m'”"“*”/uw(y)D%a(my)dy
=l [ () (Plamg) log(omly]) + Q) dy
==t [ () m™P(g) log m -+ log |y + m? " 1Q())dy
=m0 ([ )P 08 ]+ Qi + togm [ s ()P0 )

:mlvl—lé/uv(y)D‘sma(y)dy

because P(y) is a polynomial and p, € ®(R"™). Therefore, by (2.14)

L y=0

/M%m(:p)DMqa(gj)dl‘ = {07 oy

for |v],]9] < [@ — (n/p)]. Thus we obtain (i). Further, by the change of

variables we have
T
ey E

1/p 1
il = ([ lmberae) = ([t
1/p
==l ray)

Since a—(n/p) ¢ N, the condition || < [a—(n/p)] implies (n/p) —a+|y| <
0, and hence ||gty,m|lp — 0 (m — oo) for |y| < [ — (n/p)]. This shows (ii).
Thus we complete the proof of the lemma. O

P 1/p
da:)

Now we prove the denseness of ®, (o (n/p)(R") in LP(R™).

Proposition 2.9 Let o — (n/p) ¢ N. Then the space ®g [o—(n/py(R") is
dense in LP(R™).
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Proof.  Since ®(R") is dense in LP(R™) by Proposition 2.2, it is sufficient
to show that @, (o (n/p)(R™) is dense in ®(R") with respect to LP(R")-
norm. In case a — (n/p) < 0, P4 (a—(n/p)(R") = ®(R"), and hence
the assertion is obvious. Let a — (n/p) > 0. Then there exist functions
{ly,m }yI<[a=(n/p));m=1,2,... C ®(R™) which satisfy (i) and (ii) in Lemma
2.8. For ¢ € ®(R™) we put

Oon@) =ple) = 5 ([ sal)dy Jusm(o)

8] <[a—(n/p)]

It is clear that ¢, € ®(R"™). Moreover for |y| < [a—(n/p)], by (i) in Lemma
2.8 we have

om(2)D kg (2)dz
/

- > ( / sO(y)D‘Sffa(y)dy> ( / ua,m(a:)Dma(:c)dx)

[0|<[ae—(n/p)]
~ [w@ D ra(@)do ~ [ oD ra(w)iz =0,

Hence ¢, € @q [a—(n/p))(R"). Further, by (ii) in Lemma 2.8 we obtain

lom —olls < D

18] <[—(n/p)]

/«p(y)D‘S%a(y)dy'llus.mllp —0 (m— o).

Namely, ¢,, converges to ¢ with respect to LP(R"™)-norm as m — oo. Thus
@y fa—(n/p)(R") is dense in ®(R™) with respect to LP(R™)-norm. This
completes the proof of Proposition 2.9. O

3. Riesz potentials on the spaces LP™*(R™)

As defined in section 1, for p > 1 and r, s € R the spaces LP*"*(R") are
given by



A semi-group formula for the Riesz potentials 13

1/p
LPTS(R™) = {f N Fllpers = (/R ‘f(x)\]x’rp(l—i-]log\x])Spdac) < oo}.

In this section we investigate integral estimates for Riesz potentials of func-
tions in LP"5(R™). To do so we introduce a kernel K, (z) = K, (z)(1 +
log |z|)¢ (e > 0, ¢ € N) where K, (z) is a homogeneous function of degree
a — n which is infinitely differentiable in R™ — {0}. For multi-index v we
see that

min([7.¢)
D'Kap(z) = Y Hyj(@)(1+logz])*

1=0
where H, ;(x) is a homogeneous function of degree o —n — |y|. Hence

DY Ko o()] < Cla]*™ "~ (1 + | log |2 ). (3.1)

Further, for an integer k we set

$’7

Koon(2,y) = Kap(z —y) — Z o

lvI<k

DWKOM(_Z/)

where we regard the second term of the right-hand side as zero if £k < —1.
For z € R™ we put ¢, = {tz : 0 <t < 1} and denote by d(y, ¢,) the distance
between y and ¢,.

Lemma 3.1 Let k be a nonnegative integer. Then for d(y,l,) > |x|/2
| Kaer(z,y)| < ClaMHy[* 77 * (1 + |log lyl])".

Proof. Let x = 0. Then d(y,?;) > |x|/2 means y # 0. For y # 0 we see
that

Ka,@:k(ov y) = Ka,é(_y) - Ka,f(_y) = 07

and the right-hand side of the required inequality is zero. Hence the lemma
holds. Let = # 0. We note that K, ¢(z—y) is a C°°-function as a function of
z in R™ — {y}. Therefore, for d(y, l,) > |z|/2, Ka.(z —y) is a C*-function
as a function of z in the open set U, = {z : d(z,¢;) < |z|/2}. Noting that
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t, C U, for z € U, and U, contains 0, we apply the integral remainder
formula for Taylor’ theorem to K, ¢(2z —y) in U,. Then we get

Kooz —y)= lD"’Kag( y)+(k+1)
lvI<k v
K AL
XY / (=l =2 : ) (¢ DKo (2 — y)dt
i1 7

for z € U, where 2/ = z/|z| (z # 0) and 0’ = 0. In particular, since x
belongs to U,, we have

121 (12| — 1)k
Kopk(z,y) = (k+1) Z / w(x’)VDvKal(tm’ — y)dt.
=170 7

We also note that d(y,¢,) > |x|/2 implies that |y|/3 < |tz’ — y| < 3|y| for
0 <t < |z|. Therefore by (3.1), for d(y, ;) > |x|/2

|Ka,£:k(l‘ay)|
() .
<k+1) > | D Ko (tz’ — y)|dt
i=k+1 "
i (|l’| - t)k / a—n—|v| / ¢
<Ck+1) > |t — (14 |log|ta’ — y||)’dt
=k 70T

||
<C S [yl + oglyl)) / (] — &)t

IvI=k+1

= Ol y|* " F (1 + |log |yl|)".

Thus we obtain the lemma. O

For a function f we set

Koprf(x /Kamﬂcy y)dy.

The main purpose of this section is to prove the following integral estimate.
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Let (1/p) + (1/p) = 1.

Theorem 3.2 Leta>0,p>1,r>-n/p,leN,scRand a+r—
(n/p) ¢ N. Then for k = [a+r — (n/p)]

HKOc,K:kap:—r—a,s—ﬁ < CHpr:—r,s-
Fork,l € N andr,s € R we set
K5 (,y) = o777 (1 + [log |2]1)* Ka e (2, ) [yl" (1 + [log y[|)~*

and
K@ = [ Kty

Obviously, in order to prove Theorem 3.2 it is sufficient to show the following
proposition.

Proposition 3.3 Leta >0, p > 1, r > —n/p’, £ € N, s € R and
a+r—(n/p) ¢ N. Then for k =[a+r— (n/p)]

ISk fllo < CllFllp-

To show Proposition 3.3 we prepare four lemmas. The first lemma is a
special case of the inequality by G. O. Okikiolu [Ok, Theorem 2.1].

Lemma 3.4 Let K(z,y) be a nonnegative measurable function on R™ x
R"™. Suppose that there are a measurable function o(x) > 0 on R™ and
constants My, > 0, My > 0 such that

/ o) K (z)dy < M o(z)” (3.2)
/ (@)K (z.y)dz < MEp(y)". (3.3)

If the operator K is defined by

Kf(x) = / K(z,9)f (y)dy,
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then

I fllp < My M| ]l

Lemma 3.5 Leta>0,{€N,r>—n/p’ and s € R. Then
( / ] / 2" (1 + | ogall)*~“Je — y|*~" (1 + log = — y[)lyl"
o —y|<3x]/2

P 1/p
< (1+ | log lyl])~* £ (4)dy da:) < ISl

Proof. Let

2|77 (1 + |log |a|)* |z — y|*
K(z,y) = x (1+ [log o — yl)ly|"(1 4 |log |y[|)~*,
0, |z —y| > 3|z|/2.

|z —y| < 3z/2

The condition r > —n/p’ implies that —((r+n)/p’) < r/p, and hence we can
take a number a such that —((r +n)/p’) < a < r/p. For the above K(z,y)
and ¢(z) = |z|*(1 + |log|z||)® with b > max(s/p’, (¢ — s)/p) we prove (3.2)
and (3.3). First we have

I(x) = / o) K(z,y)dy
— / %' (1 + [og [yl ||~ (1 + |log ]])* ‘|z — y|*~
|z—y|<3|z|/2

x (1+ |log |z — yl|)“y|" (1 + | log |y||) ~*dy

=/ [y[ "+ (1 + |Log [yI)® ~*J2| =" (1 + [ log [|])*~*
o7~/ 21)|<3/2
x _

a—n L
<1+ log (\x! o -2 )D dy.
| |z

By putting z = y/|x|, we obtain

/ )
|z
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I(x) :/ || PP (1 [og ([ |2)]) P | 7"
|z’ —2|<3/2
x (1 [log |z[)*~ o’ — 2| 7" (1 + [log(|al|a” — 2])|)*||"dz.

Noting that 1+|log(uv)| < (1+]logu|)(1+]logv]|) for u,v > 0 and bp’ —s >
0, we get

I(x) =[] (1 + [log|a|)* / |27 (1 + | log [2]])**~*
|z’ —2]<3/2

x |2’ — 2]*7"(1 4 |log |2’ — z||)"dz=.
Since & > 0 and a > —((r 4+ n)/p’), the integral
/ 2| (1 [log |2 )P % |2 — 2[*7"(1 + [loga’ — 2||)d2

|z’ —2|<3/2

exists and is a constant. Hence
I(z) < Cla| (1 + |log |z]|)"" = Cep(z)"".

Next we have
J(y) = / p(z)P K (z,y)dx

= / |2[*P(1 + |log |z|)*[z|~*~" (1 + |log |z||)* |z — y|*~"

|| >2|z—y|/3

x (1+ |log |z — yl|)“y|" (1 + |log [y||)~*da

a—n
/

ap—o—r s—L|, |a—n
2" (1 + [log ] [) 7"y

)

X
/ =,
2/ lyl1>2(z/ly))—y'| /3 |y

x
X <1+ log<|y|"y‘— !

By putting w = z/|y|, we get

/
) yI" (1 + | log [yl)~*da.
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J(y) = / [y[ P~ | P (L A+ [log(fw] [y ) )Py T
jwl22lw—y|/3
x Jw —y/|*7 (1 + [log(lyllw — y' DN (L + [log yl)) ~*[y|"dw.

Noting that bp + s — £ > 0, we have

7)< o1+ og )" [ == (1 + [Tog ] )+~
|w|>2|w—y’|/3

X Jw =y |*7"(1 + | log |lw — y/||)*du.
Since « > 0 and a < r/p, the integral
/ 0]=7= (14 [1og ]}~ — ' |*~" (1 -+ | log | — ' ||)dw
|lw|>2|w—y’|/3
exists and is a constant. Hence

J(y) < Cly|* (1 +|log|y||)*” = Co(y)”.

Thus we obtain (3.2) and (3.3). This proves the lemma by Lemma 3.4. [
Lemma 3.6 Lett— (n/p) >0 and u € R. Then

D 1/p
( / \ [l o el 0+ Hoglyl)* )y da:)
ly|<2|z|

< C[flp-

Proof. Let

K |21 (1 + [log 2| *|y[*=" (1 + [log [y[])*, |y| < 2|z]
T, y) =
0, lyl > 2|z|.

For the above K(z,y) and o(z) = |z|~"/@)(1 + |log|z||)> with b >
max(—u/p’,u/p) we prove (3.2) and (3.3). First, by bp’ +u > 0 we have
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I(2) = / o) K (z,y)dy

= / [y ~/P (1 + [Log y[))™ ||~ (1 + | log |[)~“|y|*~"
lyl<2la]

x (14 [log ly|])"dy

y t—(n/p)—n

=l 0+ g lal) ™ [ el

ly/|z]|<2
X <1+ log <|x| |xy|D

bp’ +u
)
< J2|~ /P (1 4 | log ) /

ly/lz|[<2
bp’ 4+u
X <1 + |yx|‘ > dy.

By putting z = y/|x| we get

y t—(n/p)—n

]

log

I(z) < |z|7?(1 + |log ||| /I . |2t~ (/D= (1 4 | log |2]|)P T d2

= Cla|™"/P(1 4 (| log| )" = Cep()*’

because of t — (n/p) > 0. Next, by bp — u > 0 we have
1) = [ elayK (. y)is

- / 2] ~"%' (1 + [1og |z|)?P |z~ (1 + | log )|y~
lz|>]y|/2

x (1+ [logyl[)"“dx

o |t/

— 5" (1 + | Tog y])" / |

|@/]yl|>1/2
X <1 +

o)
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) z |t (/P
<yl (L g ) | z
o/ 1yl1>1/2 | Y]
bp—u
X <1—|— log xH) dx.
lyl
By putting w = z/|y| we obtain
—n/p’ bp —t—(n/p") bp—u
J(y) <yl (1 + [logyl]) / lw] (1 + [log |w|[)™"dw
lw|>1/2

= Cly| ™" (1 + |log |y||)* = Ce(y)?

because ¢t — (n/p) > 0 implies —t — (n/p’) < —n. Thus we obtain (3.2) and
(3.3). Therefore the lemma is proved by Lemma 3.4. O

Lemma 3.7 Lett— (n/p) <0 and u € R. Then

P 1/p
(f| [l floglalh =1y~ + oglull* )] o)
ly|=|z]/2

< Ol £l

Proof. We denote the left-hand side by I. Since the Jacobian of the change
of variables y = z/|z|? is 1/|z|?", by the change of variables and putting

9(2) = 2|72/ f(2/|2|*) we have
1 >“

- </ ‘/ ™1+ llog|x|\>-"|z|n—t(1 +|log =
|z|<2/ |z

E
D 1/p
2n —2n z 1
X |z| /p\z| /pf<‘z‘2> ‘z‘%dz dx)
_ ( / \ [ el Doglaly el
|z|<2/|z|

P 1/p
dx) .

Again by using the change of variables x = w/|w|? we get

x (14 [log|z[|)*g(2)dz=
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1 —Uu
r= ([ ) (v pon ) e
|2]<2|w| [w]
p dw 1/p
\w|2">
B (/‘/ [w[* =GP/ (1 4 |log |w]]) 4 [z| /P
[2]<2]w|

P 1/p
dw) .

x (14 [log|z||)“g(2)dz

x (14 [log|z|])"g(2)dz

By putting v = —t + (2n/p), we see that

D 1/p
I- ( / \ /| o g ) 1o ") dw) .
z| <2|w

Since t — (n/p) < 0 implies v — (n/p) > 0, Lemma 3.6 gives I < C||g||p.
Noting that ||g||, = || f]l,, we obtain the lemma. O

Now we are in a position to prove Proposition 3.3.

Proof of Proposition 3.3.  We put I = [K}%.,flp- In case of a +r —
(n/p) > 0 we have

~(/

/ 2]~ (1 + | log |al)* ™ Ko (@, 9)ly"
d(ylz)<|z|/2
X (14 |log|yl)~° f(y)dy

4 / 2]~ (1 + | og al)*~ Ko (2 9)lyl
d(y,l.)>|x|/2

D 1/p
« (14 |1og )~ F (y)dy dx)

< ( / ( / 2]~ (1 + | log|a] )*~*
d(y, L) <|z|/2

X
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2 1/p
< [yl (1 + | log \yH)sf(y)!dy> dx)

T ( / ( / 2=~ (1 4 log [l )*~| K.t (&, ) 11"
d(yLe)>x|/2

P 1/p
< (1+|log Iyl)‘slf(y)ldy> dx)
=1 + I.

Since d(y, {,) < |z|/2 implies that |z —y| < 3|z|/2 and |y| < 3|x|/2, by (3.1)
we see that

I < ( / ( / 2]~ (14 log [])*~| Kooz — ) Iy
|z—y|<3|z|/2

P 1/p
< (1 Hloglyl)‘slf(y)ldz/) dx)

+ — x| 7L + | log |x| )| DT Ko e (—y
S (S () e ol D ()

[v|<k

1/p

<y (1 + Iloglyll)slf(y)\dy> dx)

< c( / ( / 2]~ (1 + [log ] )* ] — y|*
|z—y|<3|z|/2

D 1/p
x (1+ |log & — yll)lyl" (1 + | Tog Iyll)‘slf(y)ldy> dx)

20X ([ el foglal ey
lyl<3|z|/2

[vI<k

1/p

p
X (1+log Iy\l)“lf(y)\dy> dx)
= I11 + I12.

Since a« > 0, r > —n/p’, £ € N and s € R, Lemma 3.5 gives that I1; <
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C|/fllp- The conditions o+ — (n/p) > 0 and a+r — (n/p) ¢ N imply that
a+r—|y|—(n/p) >0for |y| <k=[a+r—(n/p)]. Hence, by Lemma 3.6
we get

Lz <C Y Nl =Clifllp-

[vI<k

By Lemma 3.1 and the fact that d(y,¢,) > |z|/2 implies |y| > |x|/2, we see
that

EE </ (/ |~ CHTED (1 4 [ log || [)* |
lyl>lal/2

P 1/p
x (1+|loglyll)""3|f(y)ldy> dx) |

Since k = [a + 7 — (n/p)], we have o +r — k — 1 — (n/p) < 0, and hence
Lemma 3.7 gives Is < C|f]|,. Consequently I < C||f||,. Next we consider
the case a +r — (n/p) < 0. In this case, since Ko rk(2,y) = Kooz —y),
by (3.1) we have

- ( / ] [l Nog el st — ol
P 1/p
« (11 |1og [yll) = ()dy dx)

<o([(/ =1+ loglel )"~ 31"
d(y,€z)<|z|/2

P 1/p
« (14 log & — yl)lyl" (1 + | Log Iyll)‘slf(y)ldy> dx)

ve([(] (1 -+ Hoglal =l — y1° "
d(y,la)>|z|/2

D 1/p
x (14 |log & — yll)lyl" (1 + | Log Iyl\)‘sf(y)!dy> das>

=J1+ Jo.
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Since d(y, ¢;) < |z|/2 implies |z — y| < 3|z|/2, the conditions a > 0, £ € N,
r > —n/p’ and s € R allows us to apply Lemma 3.5 to J;. Then we get
J1 < C| fllp- Since d(y, ;) > |z|/2 implies |y| > |z[/2 and |y|/3 < |z —y| <
3|y|, the condition a +r — (n/p) < 0 and Lemma 3.7 gives

I < ( / ( [l Noglal e
ly|>|z|/2

P 1/p
% (1+ |log ryw—ﬂf(y)\dy) dx)
< O|fll

Therefore I < C||f||,. Thus we complete the proof of Proposition 3.3. O

By applying Theorem 3.2 to the Riesz potentials we obtain the following
corollary.

Corollary 3.8 Letr > —n/p’, s € R and a+1r — (n/p) ¢ N. Then for
k= la+r—(n/p)]

HUa,kap,—a—hs < CHpr,—r‘,w a—n¢2N
Uk fllp,—a=rs—1 < Cll fllp,—r,s, @—mn€2N.

4. A semi-group formula for Riesz potentials of LP-functions

In Section 2 we stated that for ¢ € ®(R"), Ugp € ®(R"™) and hence
Ua(Ugp) € ®(R™). Moreover, we refered to the fact that the equality
Uatpp = Us(Upp) holds for ¢ € ®(R™). Let f € LP(R™). We consider
the case § — (n/p) ¢ N and ao + 3 — (n/p) ¢ N. According to Theorem
3.2 Up,[3—(n/p))f belongs to LP~#~1(R™). Therefore again by Theorem
3.2 Ua,[a+6—(n/p)](UB,[ﬁ—(n/p)]f) belongs to Lp,—a—ﬁ,—Q(Rn)‘ On the other
hand, it follows also from Theorem 3.2 that U4 g [(a+8—(n/p)f belongs to
LP—2=B:=1(R"). The purpose of this section is to prove that the both are
equal (a semi-group formula).

We begin with some remarks.

Remark 4.1 We denote by L} (R™) the space of all locally integrable
functions in R™. If r > —n/p/, then LP~"%(R") C L} (R").

loc
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Remark 4.2 Let f € L»""*(R") NS(R™). Then the Riesz polynomial
P, 1.f of type (o, k) of f exists for k < a+r — (n/p).

Remark 4.3 Let r — (n/p) > 0, 7 — (n/p) ¢ N, s € R and P(z) is a
polynomial of degree [r — (n/p]. If P(xz) € LP-~"%(|z| < 1), then P = 0
where

1P (] < 1) = {f | _ F@Plel 7+ log o) da < oo}-

Now we prove our main theorem.

Theorem 4.4 Let §— (n/p) ¢ N, a+ 3 — (n/p) ¢ N and f € LP(R"™).
Then

Ua+,jat 8-/ f = Ua jats-(n/p))(Us 15— (n/p)) f)-

Proof. Let f € LP(R"). Since ®g 5_(n/p)(R") is dense in LP(R") by
Proposition 2.9, there exists a sequence {¢n,} C ®g,(3—(n/p)](R") such that
©m converges to f in LP(R™) as m — oco. Since ¢, € ®(R"), Propoition
2.1 gives

Uori-,@(()om) = Ua(Uﬁgpm)' (4'1)

Moreover, since ¢,, € ®(R") C S(R") and [a+ 5 — (n/p)] < a+ 3, by (2.1)
we have

Ua+8,la+6—(n/p)Pm = Uat8Pm + Paig jatp—(n/p)]Pm- (4.2)

On the other hand, the fact ¢, € ®g 13— (n/p)(R™) gives Pg (3—(n/p)}Pm = 0,
and hence Ug (53— (n/p)|¥m = Ugpm. By using Proposition 2.1 and Theorem
3.2 we see that Ugp,, € ®(R™)NLP~A~LR"). The fact Ugp,, € ®(R") im-
plies the existence of U, (Uspm ), and the fact Ugp,, € ®(R™)NLP—#~L(R")
gives the existence of Py, [o48—(n/p)](Us¥m) by [a+3—(n/p)] < a+F—(n/p)
and Remark 4.2. Hence

Ua,jat6-(n/p)) (U, 18- (n/p))¢m) = Un,fa+8—(n/p)) (Uspm)
= Ua(UﬁSDm) + Pa,[a+ﬁf(n/p)}(Uﬁ‘Pm)' (4.3)
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By (4.1), (4.2) and (4.3) we obtain

Ua+8,[a+6—(n/p)]Pm — Ua,la+6—(n/p)] (Up,[8—(n/p)]Pm)
= Po [a+6—(n/p)]) (Us®0m) = Pat g latp—(n/p)]Pm- (4.4)

Since 8 — (n/p) ¢ N and a4+ 3 — (n/p) ¢ N, Theorem 3.2 implies that
the left-hand side of (4.4) belongs to LP>~*~%~2(R™). Theorefore the right-
hand side of (4.4) also belongs to LP~*~#~2(R"), and is a polynomial of
degree [ + 3 — (n/p)]. This shows that the right-hand side of (4.4) is zero
by Remark 4.3. Thus we obtain

Ua+8,la+8—-(n/p)]Pm = Ua,a+8—(n/p)](Up, 13— (n/p))Pm)- (4.5)

Next we consider the limit process as m — oo in (4.5). Since ¢, converges
to f in LP(R"™) as m — oo and a + # — (n/p) ¢ N, by Theorem 3.2
Uit [a+6—(n/p))Pm CONVETges t0 Uy g (atg—(n/p)) f 10 LP~7F7H(R"), and
hence in L} (R™) as m — oo by a+ 3 > 0 > —n/p’ and Remark 4.1. On
the other hand, Ug, (3 (n/p))Pm converges to Ug 3 (n/p)f in L=~ L(R")
as m — oo on account of 5 — (n/p) ¢ N and Theorem 3.2. Hence by using
Theorem 3.2 again, we see that Uy, (a45—(n/p)] (Ug,[8=(n/p))$m) converges to
Ua ot 8—(n/p))(Up.[5—(n/p)) f) in LP~"772(R"), and hence in Lj,,(R") as
m — oo because of « + 3 — (n/p) ¢ N. This fact and (4.5) implies that

Ua+8,[a+6—(n/p)] ] = Ua,la+8-(n/p))(Up, 18- (n/p)1 f)-

We complete the proof in Theorem 4.4. O

Finaly, we give an improvement of the integral estimates in corollary 3.8
by using the semi-group formula in Theorem 4.4.

Corollary 4.5 Let o — (n/p) ¢ N and f € LP(R™). Then for k =
[a = (n/p)]
Ve fllp,~a0 < Cli fllp-

Proof. 1In case of a—n ¢ 2N, this is nothing but Corollary 3.8. Let a —n €
2N. We can take positive numbers 3 and ¢ such that « = 8+, f—n ¢ 2N,

¢(—n¢ 2N and ¢ — (n/p) ¢ N. Since o — (n/p) =+ — (n/p) ¢ N and
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¢ —(n/p) ¢ N, by using the semi-group formula in Theorem 4.4 we see that

Uakf = Uprc,(+¢—mn/m)f = Ups+¢— /o) (Uc [~ (nyp)) )

Moreover, by 8+ ¢ — (n/p) ¢ N and 8 —n ¢ 2N Theorem 3.2 implies that

1Ua e fllp,—a0 = [Us5+¢—n/m1 U, ic—mmn )l —s-c.0
< CONU¢ ic= o) fllp.—c.0- (4.6)

Further, since ( — (n/p) ¢ N, ( —n ¢ 2N, by Theorem 3.2 again we have

1U¢.ic~n/on fllp,—co < Cllfllp0.0 = [ fllp- (4.7)

By combining (4.6) and (4.7) we obtain the required estimate. O

[OK]
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