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Biharmonic maps into compact Lie groups

and integrable systems

Hajime Urakawa
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Abstract. In this paper, the formulation of the biharmonic map equation in terms of

the Maurer-Cartan form for all smooth maps of a compact Riemannian manifold into

a compact Lie group (G, h) with the bi-invariant Riemannian metric h is obtained.

Using this, all biharmonic curves into compact Lie groups are determined exactly, and

all the biharmonic maps of an open domain of R2 equipped with a Riemannian metric

conformal to the standard Euclidean metric into (G, h) are determined.

Key words: harmonic map, biharmonic map, compact Lie group, integrable system,

Maurer-Cartan form.

1. Introduction and statement of results

The theory of harmonic maps of a Riemann surface into Lie groups,
symmetric spaces or homogeneous spaces has been extensively studied in
connection with the integrable systems ([1], [2], [4], [5], [6], [8], [9], [16]).
Let us recall the theory of harmonic maps of a Riemann surface M into
a compact Lie group G, briefly. A harmonic map is a critical map of the
energy functional defined by

E(ψ) :=
1
2

∫

M

|dψ|2vg.

For such a map ψ, let α be the pull back of the Maurer-Cartan form θ

of G which is decomposed into the sum of the holomorphic part and the
antiholomorphic one as α = α′+α′′. Then, it satisfies dα = (1/2)[α∧α] = 0
(the integrability condition), and the harmonicity of ψ is equivalent to the
condition δα = 0. Introducing a parameter λ ∈ C∗ = C\{0} as

αλ :=
1
2
(1− λ)α′ +

1
2
(1− λ−1)α′′,
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both the harmonicity and the integrability condition are equivalent to

dαλ +
1
2
[αλ ∧ αλ] = 0,

which implies that there exists an extended solution Φλ : M → G satisfying
Φλ

−1dΦλ = αλ ([16]). Guest and Ohnita ([9]) showed that the loop group
ΛGC of G acts on the space of all harmonic maps of M into G, and Uh-
lenbeck ([16]) showed that every harmonic map from the two-sphere into
G is a harmonic map of finite uniton number, and Wood ([17]) determined
explicitly harmonic maps of finite uniton numbers. On the other hand, the
theory of biharmonic maps was initiated by Eells and Lemaire ([6]) and
Jiang ([12]). A biharmonic map is a natural extension of harmonic map,
and is a critical map of the bienergy functional defined by

E2(ψ) :=
1
2

∫

M

|δdψ|2vg =
1
2

∫

M

|τ(ψ)|2vg,

where τ(ψ) is the tension field of ψ, and, by definition, ψ is harmonic if and
only if τ(ψ) ≡ 0.

In this paper, we study biharmonic maps of a compact Riemannian
manifold (M, g) into a compact Lie group (G,h) with the bi-invariant Rie-
mannian metric h. For every C∞ map ψ : (M, g) → (G,h), let us consider
again the pullback α of the Maurer-Cartan form θ. We first will show that
the biharmonicity condition for ψ is that

δdδα + Traceg([α, dδα]) = 0

(cf. Corollary 3.5) which is a natural extension of harmonicity. Due to this
formula, we can determine all real analytic biharmonic curves into a compact
Lie group (G,h) in terms of the initial data F (0), F ′(0) and F ′′(0), where
F (t) = α(∂/∂t) (cf. Section 4). We give a characterization of biharmonic
maps of (R2, µ2g0), where g0 is the standard Euclidean metric on R2 and µ

is a positive real analytic function on R2 (cf. Sections 5, 6 and 7).

2. Preliminaries

In this section, we prepare general materials and facts on harmonic
maps, biharmonic maps into Riemannian manifolds (cf. [6], [12], [13]). Let



Biharmonic maps into Lie groups 75

(M, g) be an m-dimensional compact Riemannian manifold, and (N, h), an
n-dimensional Riemannian manifold.

The energy functional on the space C∞(M, N) of all C∞ maps of M

into N is defined by

E(ψ) =
1
2

∫

M

|dψ|2vg,

and for a compactly supported C∞ one parameter deformation ψt ∈
C∞(M, N) (−ε < t < ε) of ψ with ψ0 = ψ, the first variation formula
is given by

d

dt

∣∣∣∣
t=0

E(ψt) = −
∫

M

〈τ(ψ), V 〉vg,

where V is a variation vector field along ψ defined by V = d/dt|t=0ψt which
belongs to the space Γ(ψ−1TN) of sections of the induced bundle of the
tangent bundle TN by ψ. The tension field τ(ψ) is defined by

τ(ψ) = −δ(dψ), (2.1)

where recall the definition δα for a ψ−1TN -valued 1-form α,

δα = −
m∑

i=1

(∇eiα)(ei) = −
m∑

i=1

{∇(α(ei))− α(∇eiei)
}
.

Here, ∇, ∇h and∇ are the Levi-Civita connections of (M, g), (N, h), and the
induced connections on the induced bundle ψ−1TN from ∇h, respectively.
For a harmonic map ψ : (M, g) → (N, h), the second variation formula of
the energy functional E(ψ) is

d2

dt2

∣∣∣∣
t=0

E(ψt) =
∫

M

〈J(V ), V 〉vg

where
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J(V ) = ∆V −R(V ),

∆V = ∇∗∇V = −
m∑

i=1

{∇ei
(∇ei

V )−∇∇ei
ei

V
}
,

R(V ) =
m∑

i=1

Rh(V, dψ(ei))dψ(ei).

Here, ∇ is the induced connection on the induced bundle ψ−1TN , and Rh

is the curvature tensor of (N, h) given by Rh(U, V )W = [∇h
U ,∇hV ]W −

∇h
[U,V ]W (U, V,W ∈ X(N)). The bienergy functional is defined by

E2(ψ) =
1
2

∫

M

|δdψ|2vg =
1
2

∫

M

|τ(ψ)|2vg, (2.2)

and the first variation formula of the bienergy is given ([12]) by

d

dt

∣∣∣∣
t=0

E2(ψt) = −
∫

M

〈τ2(ψ), V 〉vg (2.3)

where the bitension field τ2(ψ) is defined by

τ2(ψ) = J(τ(ψ)) = ∆τ(ψ)−R(τ(ψ)), (2.4)

and a C∞ map ψ : (M, g) → (N, h) is called to be biharmonic if

τ2(ψ) = 0. (2.5)

The biharmonic maps are real analytic when both (M, g) and (N, h)
are real analytic. This is because the solutions of non-linear elliptic partial
differential equations are real analytic.

3. Determination of the bitension field

Now, assume that (N, h) is an n-dimensional compact Lie group with
Lie algebra g, and h, the bi-invariant Riemannian metric on G corresponding
to the Ad(G)-invariant inner product 〈 , 〉 on g. Let θ be the Maurer-Cartan
form on G, i.e., a g-valued left invariant 1-form on G which is defined by
θy(Zy) = Z, (y ∈ G,Z ∈ g). For every C∞ map ψ of (M, g) into (G,h), let
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us consider a g-valued 1-form α on M given by α = ψ∗θ. Then it is well
known (see for example, [4]) that

Lemma 3.1 For every C∞ map ψ : (M, g) → (G,h),

θ(τ(ψ)) = −δα. (3.1)

Thus, ψ : (M, g) → (G,h) is harmonic if and only if δα = 0.

Let {Xs}n
s=1 be an orthonormal basis of g with respect to the inner

product 〈 , 〉. Then, for every V ∈ Γ(ψ−1TG),

V (x) =
n∑

s=1

hψ(x)(V (x), Xs ψ(x))Xs ψ(x) ∈ Tψ(x)G,

θ(V )(x) =
n∑

s=1

hψ(x)(V (x), Xs ψ(x))Xs ∈ g, (3.2)

for all x ∈ M . Then, for every X ∈ X(M),

θ(∇XV ) =
n∑

s=1

h(∇XV, Xs) Xs

=
n∑

s=1

{X h(V, Xs)− h(V,∇XXs)}Xs

= X(θ(V ))−
n∑

s=1

h(V,∇XXs)Xs, (3.3)

where we regarded a vector field Y ∈ X(G) by Y (x) = Y (ψ(x)) (x ∈ M) to
be an element in the space Γ(ψ−1TG) of smooth sections of ψ−1TG. Here,
let us recall that the Levi-Civita connection ∇h of (G,h) is given (cf. [13,
Vol. II, p. 201, Theorem 3.3]) by

∇h
Xt

Xs =
1
2
[Xt, Xs] =

1
2

n∑

`=1

C`
tsX`, (3.4)

where the structure constant C`
ts of g is defined by [Xt, Xs] =

∑n
`=1 C`

tsX`,
and satisfies
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C`
ts = 〈[Xt, Xs], X`〉 = −〈Xs, [Xt, X`]〉 = −Cs

t`. (3.5)

Thus, we have by (3.4) and (3.5),

n∑
s=1

h(V,∇XXs)Xs =
1
2

n∑
s,t=1

h

(
V,

n∑

`=1

h(ψ∗X, Xt) C`
ts X`

)
Xs

= −1
2

n∑

s,t,`=1

h(V, X`)h(ψ∗X, Xt)Cs
t`Xs

= −1
2

n∑

t,`=1

h(V, X`)h(ψ∗X, Xt)[Xt, X`]

= −1
2

[ n∑
t=1

h(ψ∗X, Xt)Xt,

n∑

`=1

h(V, X`)X`

]

= −1
2
[α(X), θ(V )], (3.6)

which is because we have

α(X) = θ(ψ∗X) =
n∑

t=1

h(ψ∗X, Xt)Xt, (3.7)

and

θ(V ) =
n∑

`=1

h(V, X`)θ(X`) =
n∑

`=1

h(V, X`)X`. (3.8)

Therefore, inserting (3.6) into (3.3), we obtain

Lemma 3.2 For every C∞ map ψ : (M, g) → (G,h),

θ(∇XV ) = X(θ(V )) +
1
2
[α(X), θ(V )], (3.9)

where V ∈ Γ(ψ−1TG) and X ∈ X(M).

We shall show

Theorem 3.3 For every ψ ∈ C∞(M, G), we have



Biharmonic maps into Lie groups 79

θ(τ2(ψ)) = θ(J(τ(ψ)))

= −δ d δα− Traceg([α, d δα]), (3.10)

where α = ψ∗θ.

Here, let us recall the definition:

Definition 3.4 For two g-valued 1-formsff α and β on M , we define a
g-valued symmetric 2-tensor [α, β] on M by

[α, β](X, Y ) :=
1
2
{[α(X), β(Y )] + [α(Y ), β(X)]}, (X, Y ∈ X(M)) (3.11)

and its trace Traceg([α, β]) by

Traceg([α, β]) :=
m∑

i=1

[α, β](ei, ei). (3.12)

Recall that the g-valued 2-form [α ∧ β] on M is given by

[α∧β](X, Y ) :=
1
2
{[α(X), β(Y )]− [α(Y ), β(X)]} (X, Y ∈ X(M)). (3.13)

Then, we have immediately by Theorem 3.3,

Corollary 3.5 For every ψ ∈ C∞(M, G), we have (1) ψ : (M, g) → (G,h)
is harmonic if and only if

δα = 0. (3.14)

(2) ψ : (M, g) → (G,h) is biharmonic if and only if

δ d δα + Traceg([α, d δα]) = 0. (3.15)

We give a proof of Theorem 3.3.

Proof. (The first step) We first show that, for all V ∈ Γ(ψ−1TG),
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θ(∆V ) = ∆gθ(V )−
m∑

i=1

{
1
2
[ei(α(ei)), θ(V )] + [α(ei), ei(θ(V ))]

+
1
4
[α(ei), [α(ei), θ(V )]]− 1

2
[α(∇eiei), θ(V )]

}
, (3.16)

where {ei}m
i=1 is a locally defined orthonormal frame field on (M, g), and ∆g

is the (positive) Laplacian of (M, g) acting on C∞(M).
Indeed, we have by using Lemma 3.2 twice,

θ(∆V ) = −
m∑

i=1

{
θ(∇ei(∇eiV ))− θ(∇∇ei

eiV )
}

= −
m∑

i=1

{
ei(θ(∇eiV )) +

1
2
[α(ei), θ(∇eiV ]

−∇eiei(θ(V ))− 1
2
[α(∇eiei), θ(V )]

}

= −
m∑

i=1

{
ei

(
ei(θ(V ) +

1
2
[α(ei), θ(V )]

)

+
1
2

[
α(ei), ei(θ(V )) +

1
2
[α(ei), θ(V )]

]

−∇ei
ei(θ(V ))− 1

2
[α(∇ei

ei), θ(V )]
}

= −
m∑

i=1

{ei(ei(θ(V ))−∇ei
ei(θ(V ))}

−
m∑

i=1

{
1
2
ei([α(ei), θ(V )]) +

1
2
[α(ei), ei(θ(θ(V ))]

+
1
4
[α(ei), [α(ei), θ(V )]]− 1

2
[α(∇ei

ei), θ(V )]
}

. (3.17)

Here, we have

ei([α(ei), θ(V )] = [ei(α(ei)), θ(V )] + [α(ei), ei(θ(V ))],
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which we substitute into (3.17), and by definition of ∆g, we have (3.16).

(The second step) On the other hand, we have to consider

−
m∑

i=1

Rh(V, ψ∗ei)ψ∗ei = −
m∑

i=1

Rh
(
L−1

ψ(x) ∗V, L−1
ψ(x) ∗ψ∗ei

)
L−1

ψ(x) ∗ψ∗ei.

(3.18)

Under the identification TeG 3 Ze ↔ Z ∈ g, we have

TeG 3 L−1
ψ(x) ∗ψ∗ei ↔ α(ei) ∈ g, (3.19)

TeG 3 L−1
ψ(x) ∗V ↔ θ(V ) ∈ g, (3.20)

respectively. Because, we have

L−1
ψ(x) ∗ψ∗ei =

n∑
s=1

h(ψ∗ei, Xs ψ(x))Xs e

and

α(ei) = ψ∗θ(ei) = θ(ψ∗ei) =
n∑

s=1

h(ψ∗ei, Xs ψ(x))θ(Xs ψ(x))

=
n∑

s=1

h(ψ∗ei, Xs ψ(x))Xs, (3.21)

which implies that (3.19). Analogously, we obtain (3.20).
Under this identification, the curvature tensor of (G,h) is given as (see

Kobayashi-Nomizu ([13, pp. 203–204])),

Rh(X, Y )e = −1
4

ad([X, Y ]) (X, Y ∈ g),

and then, we have

θ

(
−

m∑

i=1

Rh(V, ψ∗ei)ψ∗ei

)
=

1
4

m∑

i=1

[[θ(V ), α(ei)], α(ei)]

=
1
4

m∑

i=1

[α(ei), [α(ei), θ(V )]]. (3.22)
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(The third step) By (3.16) and (3.21), for V ∈ Γ(ψ−1TG), we have

θ

(
∆V −

m∑

i=1

Rh(V, ψ∗ei)ψ∗ei

)

= ∆gθ(V )−
m∑

i=1

{
1
2
[ei(α(ei)), θ(V )] + [α(ei), ei(θ(V ))]

+
1
4
[α(ei), [α(ei), θ(V )]]− 1

2
[α(∇eiei), θ((V )]

}

+
1
4

m∑

i=1

[α(ei), [α(ei), θ(V )]]

= ∆gθ(V )− 1
2

m∑

i=1

ei(α(ei)), θ(V )] +
m∑

i=1

[α(ei), ei(θ(V ))]

+
1
2

m∑

i=1

[α(∇eiei), θ(V )]

= ∆gθ(V )− 1
2

[ m∑

i=1

(ei(α(ei))− α(∇ei
ei)), θ(V )

]
+

m∑

i=1

[α(ei), ei(θ(V ))]

= ∆gθ(V ) +
1
2
[δα, θ(V )] +

m∑

i=1

[α(ei), ei(θ(V ))]. (3.23)

(The fourth step) For V = τ(ψ) in (3.22), since θ(τ(ψ)) = −δα, we have

θ(J(τ(ψ))) = ∆gθ(τ(ψ)) +
1
2
[δα, θ(τ(ψ))] +

m∑

i=1

[α(ei), ei(θ(τ(ψ))]

= −∆gδα− 1
2
[δα, δα]−

m∑

i=1

[α(ei), ei(δα)]

= −∆gδα−
m∑

i=1

[α(ei), ei(δα)]

= −∆gδα−
m∑

i=1

[α(ei), (dδα)(ei)]. (3.24)
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Then, (3.23) implies the desired (3.10). ¤

4. Biharmonic curves from R into compact Lie groups

In this section, we consider the simplest case: (M, g) = (R, g0) is the
standard 1-dimensional Euclidean space, and (G,h) is an n-dimensional
compact Lie group with the bi-invariant Riemannian metric h.

4.1.
First, let ψ : R 3 t 7→ ψ(t) ∈ (G,h), a C∞ curve in G. Then, α := ψ∗θ

is a g-valued 1-form on R. So, α can be written at t ∈ R as

αt = F (t)dt, (4.1)

where F : R 3 t 7→ F (t) ∈ g is given by

F (t) = α

(
∂

∂t

)
= ψ∗θ

(
∂

∂t

)
= θ

(
ψ∗

(
∂

∂t

))
. (4.2)

Here, since

ψ′(t) := ψ∗

(
∂

∂t

)
=

n∑
s=1

hψ(t)

(
ψ∗

(
∂

∂t

)
, Xs ψ(t)

)
Xs ψ(t), (4.3)

we have

F (t) =
n∑

s=1

hψ(t)

(
ψ∗

(
∂

∂t

)
, Xs ψ(t)

)
Xs, (4.4)

so that we have the following correspondence:

TeG 3 L−1
ψ(t) ∗ψ

′(t) =
n∑

s=1

hψ(t)(ψ′(t), Xs ψ(t))Xs e

↔ F (t) = θ

(
ψ∗

(
∂

∂t

))
∈ g. (4.5)

4.2.
We have that
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δα = −F ′(t), (4.6)

since we have δα = −e1(α(e1)) = −e1(F (t)) = −F ′(t).
Therefore, we have ψ : (R, g0) → (G,h) is harmonic if and only if

δα = 0 ⇐⇒ F ′ = 0

⇐⇒ α = X ⊗ dt (for some X ∈ g)

⇐⇒ ψ : R→ (G,h), is a geodesic, (4.7)

since

F (t) = θ(ψ′(t)) = L−1
ψ(t) ∗ψ

′(t), (4.8)

we have

ψ′(t) = Lψ(t)∗X = Xψ(t), (4.9)

for some X ∈ g which yields that

ψ(t) = x exp(tX).

Therefore, any geodesic through ψ(0) = x is given by

ψ(t) = x exp(tX), (t ∈ R) (4.10)

for some X ∈ g.
On the other hand, we want to determine a biharmonic curve ψ :

(R, g0) → (G,h). By (4.6), we have

δdδα = − ∂2

∂t2
(−F ′(t)) = F (3)(t), (4.11)

and

Traceg[α, dδα] =
[
α

(
∂

∂t

)
, dδα

(
∂

∂t

)]
= [F (t), F ′′(t)], (4.12)

so by (4.9), (4.10), and (3.16) in Corollary 3.5, ψ : (R, g0) → (G,h) is
biharmonic if and only if
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F (3) − [F (t), F ′′(t)] = 0. (4.13)

4.3.
For a C∞ curve ψ : R→ G, let ψ(t) := expX(t), where X(t) ∈ g. Then,

F (t) = θ

(
ψ∗

(
∂

∂t

))
, ψ∗

(
∂

∂t

)
∈ Tψ(t)G, (4.14)

and by the following formula (cf. [10, p. 95])

exp∗X = Lexp X ∗ e ◦ 1− e− ad X

adX
(X ∈ g),

we have

ψ∗

(
∂

∂t

)
= exp∗X(t) X ′(t)

= Lexp X(t) ∗ e

( ∞∑
n=0

(− adX(t))n

(n + 1)!
(X ′(t))

)
. (4.15)

Since θ is a left invariant 1-form, we have

F (t) =
∞∑

n=0

(− adX(t))n

(n + 1)!
(X ′(t)). (4.16)

4.4.
The initial value problem

{
F (3)(t) = [F (t), F ′′(t)],

F (0) = B0, F ′(0) = B1, F ′′(0) = B2,
(4.17)

for every Bi ∈ g (i = 0, 1, 2), has a unique solution F (t). Assume that X(t)
is a real analytic curve in t, and X(0) = 0. Then, F (t) is also real analytic
in t, and we can write as

X(t) =
∞∑

n=1

An tn, F (t) =
∞∑

n=0

Bn tn. (4.18)



86 H. Urakawa

By (4.16), we have

F (t) = X ′(t) +
1
2
[−X(t), X ′(t)] +

1
6
[−X(t), [−X(t), X ′(t)]]

+
∞∑

n=3

(− adX(t))n

(n + 1)!
(X ′(t)). (4.19)

Since X ′(t) =
∑∞

m=0 Am+1(m + 1) tm, we have

1
2
[−X(t), X ′(t)] = −1

2
[A1, A2]t2 + O(t3),

and

1
6
[−X(t), [−X(t), X ′(t)]] = O(t3),

so that we have

F (t) = A1 + 2A2t +
(

3A3 − 1
2
[A1, A2]

)
t2 + O(t3).

Continuing this process, we have





B0 = A1,

B1 = 2A2,

B2 = 3A3 − 1
2
[A1, A2],

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Bn = (n + 1)An+1 + Gn(A1, . . . , An),

(4.20)

where Gn(x1, . . . , xn) is a polynomial in (x1, . . . , xn). Notice that for arbi-
trary given data (B0, B1, B2), all Bn (n = 0, 1, . . . ) are determined, and by
using (4.20), one can determine all An (n = 1, 2, . . . ), uniquely. Therefore,
by summarizing the above, we obtain

Theorem 4.1 For every C∞ curve ψ : R→ G, ψ(t) = exp X(t) (X(t) ∈
g), and
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α

(
∂

∂t

)
= F (t) =

∞∑
n=0

(− adX(t))n

(n + 1)!
(X ′(t)). (4.21)

(1) ψ : (R, g0) → (G,h) is biharmonic if and only if

F (3)(t) = [F (t), F ′′(t)]. (4.22)

(2) The initial value problem

{
F (3)(t) = [F (t), F ′′(t)],

F (0) = B0, F ′(0) = B1, F ′′(0) = B2,
(4.23)

has a unique solution F (t) for arbitrary given data (B0, B1, B2) in g.
(3) Assume that ψ : (R, g0) → (G,h) is a real analytic biharmonic curve

with ψ(0) = e. Then, ψ(t) is uniquely determined by F (0) = B0,
F ′(0) = B1, and F ′′(0) = B2.

Example If G is abelian, let us consider a C∞ curve ψ : R→ G given by
ψ(t) = exp X(t). Then, F (t) = X ′(t), and ψ : (R, g0) → (G,h) is biharmonic
if and only if F (3)(t) = X(4)(t) = 0. Then, X(t) = A0 + A1t + A2t

2 + A3t
3.

Thus, every biharmonic curve ψ : (R, g0) → (G,h) with ψ(0) = e is given
by

ψ(t) = exp(A1t + A2t
2 + A3t

3).

4.5.
Now we will solve the ODE (4:22) for a biharmonic isometric immersion

ψ : (R, g0) → G and a g-valued curve F (t) in the case of g = su(2). Let
G = SU(2) with the bi-invariant Riemannian metric h which corresponds
to the following Ad(SU(2))-invariant inner product 〈 , 〉 on

g = su(2) = {X ∈M(2,C);X + tX = 0,Tr(X) = 0},
〈X, Y 〉 = −2Tr(XY ) (X;Y ∈ su(2)).

If we choose

X1 =

(√−1
2 0
0 −

√−1
2

)
, X2 =

(
0 1

2

− 1
2 0

)
, X3 =

(
0

√−1
2√−1

2 0

)
,
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then {X1, X2, X3} is an orthonormal basis of (su(2), 〈 , 〉), and satisfies the
Lie bracket relations:

[X1, X2] = X3, [X2, X3] = X1, [X3, X1] = X2.

Thus, the ODE (4.22) becomes





y1
(3) = y2 y3

′′ − y3 y2
′′,

y2
(3) = y3 y1

′′ − y1 y3
′′,

y3
(3) = y1 y2

′′ − y2 y1
′′,

(4.24)

which is equivalent to

y(3) = y × y′′, (4.25)

where y := t(y1, y2, y3) ∈ R3, and a× b stands for the vector cross product
in R3. Notice here that g is non-abelian, but our equation (4.22) turns to
the vector equation (4.26) depending on the time t of the Euclidean space
R3 by identifying g 3 ∑3

i=1 yi Xi 7→ (y1, y2, y3) ∈ R3.
Then, the ODE (4.25) can be solved as follows:
Let x(s) = t(x1(s), x2(s), x3(s)) be a C∞ curve in R3 with arc length

parameter s, and then

y(s) = x′(s) = e1(s).

Let {e1(s), e2(s), e3(s))} be the Frenet frame field along x(s). Recall the
Frenet-Serret formula:





e1
′ = κ e2

e2
′ = −κ e1 + τ e3

e3
′ = −τ e2

where κ and τ are the curvature and torsion of x(s), respectively. Then, we
have
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



y′ = κ e2

y′′ = −κ2 e1 + κ′ e2 + κ τ e3

y′′′ = −3κκ′ e1 + (κ′′ − κ3 − κτ2) e2 + (2κ′τ + κτ ′) e3.

(4.26)

Thus, (4.24) is equivalent to

− 3κκ′ e1 + (κ′′ − κ3 − κτ2) e2 + (2κ′τ + κτ ′) e3

= e1 × (−κ2 e1 + κ′ e2 + κτ e3)

= −κτ e2 + κ′ e3 (4.27)

which is equivalent to





−3κκ′ = 0

κ′′ − κ3 − κτ2 = −κτ

2κ′τ + κτ ′ = κ′.

(4.28)

Then, the first equation of (4.28) turns out that (κ2)′ = 0, that is, κ2 is
constant, i.e., κ ≡ 0, or κ ≡ κ0 6= 0. In the case that κ ≡ 0, the solution of
(4.28), x(s), is a line in R3.

For the case that κ ≡ κ0 6= 0, the only solution of (4.24) is





κ ≡ κ0 6= 0,

τ ≡ τ0, and

κ0
2 = τ0(1− τ0),

(4.29)

and the unique solution of (4.25) is given by

x(s) =




x1(s)
x2(s)
x3(s)


 =




a cos s√
a2+1

+ b

a sin s
a2+1 + b

s√
a2+1

+ b


 (4.30)

for some positive constant a > 0 and some constant b. Thus, F (s) is given
as follows:
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F (s) = x′(s) =
3∑

i=1

xi
′(s)Xi

=
(
− a√

a2 + 1
sin

s√
a2 + 1

)
X1 +

(
a√

a2 + 1
cos

s√
a2 + 1

)
X2

+
(

1√
a2 + 1

)
X3, (4.31)

for any constant a > 0. Conversely, it is easy to see that every such F (s) in
(4.31) is a solution of (4.22): F (3) = [F (s), F ′′(s)].

Remark It is still difficult to determine X(t) to satisfy (4.21):

F (t) =
∞∑

n=0

(− adX(t))n

(n + 1)!
(X ′(t)),

in the case of su(2).

5. Biharmonic maps from an open domain in R2

In this section, we consider a biharmonic map ψ : (R2, g) ⊃ Ω → (G,h).
Here, we assume that G is a linear compact Lie group, i.e., G is a subgroup
of the unitary group U(N)(⊂ GL(N,C)) of degree N with a bi-invariant
Riemannian metric h on G. Let g be the Lie algebra of G which is a Lie
subalgebra of the Lie algebra u(N) of U(N). The Riemannian metric g on
R2 is a conformal metric which is given by g = µ2 g0 with a C∞ positive
function µ on Ω and g0 = dx · dx + dy · dy, where (x, y) is the standard
coordinate on R2.

Let ψ : Ω 3 (x, y) 7→ ψ(x, y) = (ψij(x, y)) ∈ U(N) a C∞ map. Let us
consider

∂ψ

∂x
:=

(
∂ψij

∂x

)
,

∂ψ

∂y
:=

(
∂ψij

∂y

)
.

Then,

Ax := ψ−1 ∂ψ

∂x
, Ay := ψ−1 ∂ψ

∂y
(5.1)
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are g-valued C∞ functions on Ω. It is known that, for two given g-valued
1-forms Ax and Ay on Ω, there exists a C∞ mapping ψ : Ω → G satisfying
the equations (5.1) if the integrability condition holds:

∂Ay

∂x
− ∂Ax

∂y
+ [Ax, Ay] = 0. (5.2)

The pull back of the Maurer-Cartan form θ by ψ is given by

α := ψ∗θ = ψ−1dψ = ψ−1 ∂ψ

∂x
dx + ψ−1 ∂ψ

∂y
dy

= Ax dx + Ay dy, (5.3)

which is a g-valued 1-form on Ω.
Recall that the codifferential δα of a g-valued 1-form α = Ax dx+Ay dy,

where Ax = ψ−1(∂ψ/∂x) and Ay = ψ−1(∂ψ/∂y), is given by

δα = −µ−2

{
∂

∂x
Ax +

∂

∂y
Ay

}
. (5.4)

Then, we have the following well known facts:

Lemma 5.1 We have

δα = −µ−2

{
∂

∂x

(
ψ−1 ∂ψ

∂x

)
+

∂

∂y

(
ψ−1 ∂ψ

∂y

)}
(5.5)

= −µ−2

{
∂Ax

∂x
+

∂Ay

∂y

}
. (5.6)

Therefore, the following three statements are equivalent :

(i) ψ : (Ω, g) → (G,h) is harmonic,

(ii) δα = 0, (5.7)

(iii)
∂Ax

∂x
+

∂Ay

∂y
= 0. (5.8)

Next, calculate the Laplacian ∆g of (R2, g) for g = µ2 g0. We obtain
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∆g = −
2∑

i,j=1

gij

(
∂2

∂xi ∂xj
−

2∑

k=1

Γk
ij

∂

∂xk

)

= −µ−2

(
∂2

∂x2
+

∂2

∂y2

)
. (5.9)

Thus we have

δdδα = ∆g(δα)

= µ−2

(
∂2

∂x2
+

∂2

∂y2

)[
µ−2

{
∂

∂x

(
ψ−1 ∂ψ

∂x

)
+

∂

∂y

(
ψ−1 ∂ψ

∂y

)}]

= µ−2

(
∂2

∂x2
+

∂2

∂y2

)[
µ−2

{
∂Ax

∂x
+

∂Ay

∂y

}]

= −µ−2

(
∂2

∂x2
+

∂2

∂y2

)
(δα). (5.10)

On the other hand, by taking an orthonormal local frame field {e1, e2}
of (R2, g), as e1 = µ−1(∂/∂x), e2 = µ−1(∂/∂y), we have

Traceg([α, dδα]) = [α(e1), dδα(e1)] + [α(e2), dδα(e2)]

= −µ−2

[
Ax,

∂

∂x

(
µ−2

{
∂Ax

∂x
+

∂Ay

∂y

})]

− µ−2

[
Ay,

∂

∂y

(
µ−2

{
∂Ax

∂x
+

∂Ay

∂y

})]

= µ−2

[
Ax,

∂

∂x
(δα)

]
+ µ−2

[
Ay,

∂

∂y
(δα)

]
. (5.11)

By (5.10) and (5.11), we obtain

δdδα + Traceg([α, dδα])

= −µ−2

(
∂2

∂x2
+

∂2

∂y2

)
(δα) + µ−2

[
Ax,

∂

∂x
(δα)

]
+ µ−2

[
Ay,

∂

∂y
(δα)

]

= −µ−2

{(
∂2

∂x2
+

∂2

∂y2

)
(δα)− ∂

∂x
[Ax, δα]− ∂

∂y
[Ay, δα]

}
, (5.12)
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where in the last equation in (5.11), we only notice that

∂

∂x
[Ax, δα] +

∂

∂y
[Ay, δα]

=
[

∂

∂x
Ax, δα

]
+

[
Ax,

∂

∂x
(δα)

]
+

[
∂

∂y
Ay, δα

]
+

[
Ay,

∂

∂y
(δα)

]

=
[

∂

∂x
Ax +

∂

∂y
Ay, δα

]
+

[
Ax,

∂

∂x
(δα)

]
+

[
Ay,

∂

∂y
(δα)

]

= [−µ−2δα, δα] +
[
Ax,

∂

∂x
(δα)

]
+

[
Ay,

∂

∂y
(δα)

]

=
[
Ax,

∂

∂x
(δα)

]
+

[
Ay,

∂

∂y
(δα)

]
.

Thus, we have

Theorem 5.2 Let Ω be an open subset of R2, g = µ2g0, a Riemannian
metric conformal to the standard metric g0 on Ω with a C∞ positive function
µ on Ω, and ψ : Ω → G, a C∞ map of Ω into a compact linear Lie group
(G,h) with bi-invariant Riemannian metric h. Then,

(1) The 1-form α satisfies dα + (1/2)[α ∧ α] = 0 which is equivalent to

∂Ay

∂x
− ∂Ax

∂y
+ [Ax, Ay] = 0. (5.13)

(2) The following three are equivalent :

(i) ψ : (Ω, g) → (G,h) is harmonic,

(ii) δα = 0, (5.14)

(iii)
∂

∂x
Ax +

∂

∂y
Ay = 0. (5.15)

(3) The following three are equivalent :

(i) ψ : (Ω, g) → (G,h) is biharmonic,

(ii) δdδα + Traceg([α, dδα]) = 0, (5.16)
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(iii)
(

∂2

∂x2
+

∂2

∂y2

)
(δα)− ∂

∂x
[Ax, δα]− ∂

∂y
[Ay, δα] = 0. (5.17)

(4) Let us consider two g-valued 1-forms β and Θ on Ω, defined by

β := [Ax, δα]dx + [Ay, δα]dy, (5.18)

Θ := dδα− β, (5.19)

respectively. Then, ψ : (Ω, g) → (G,h) is biharmonic if and only if

δΘ = 0. (5.20)

Proof. (1) is clear. We see already (2) and (3). For (4), we only have to
see that (5.17) is equivalent to

0 = −∆g(δα) + δβ = −δ(dδα− β) = −δΘ (5.21)

where

Θ := dδα− β

=
∂

∂x
(δα)dx +

∂

∂y
(δα)dy − [Ax, δα]dx− [Ay, δα]dy

=
{

∂

∂x
(δα)− [Ax, δα]

}
dx +

{
∂

∂y
(δα)− [Ay, δα]

}
dy. (5.22)

¤

6. Complexification of the biharmonic map equation

We use the complex coordinate z = x + iy (i =
√−1) in Ω, and we

put Az = (1/2)(Ax − i Ay) and Az = (1/2)(Ax + i Ay) which are gC-valued
functions with Az = Az. Then, it is well known that

∂

∂z
Az +

∂

∂z
Az =

1
2

{
∂

∂x
Ax +

∂

∂y
Ay

}
,

∂

∂z
Az − ∂

∂z
Az + [Az, Az] =

i

2

{
∂

∂x
Ay − ∂

∂y
Ax + [Ax, Ay]

}
, (6.1)
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and also

α = Axdx + Aydy = Azdz + Azdz,

∂2

∂x2
+

∂2

∂y2
= 4

∂2

∂z∂z
,

δα = −µ−2

(
∂

∂x
Ax +

∂

∂y
Ay

)
= −2µ−2

(
∂

∂z
Az +

∂

∂z
Az

)
. (6.2)

Then, the condition (5.20) is equivalent to

δΘ̃ = 0, (6.3)

where

Θ̃ :=
{

∂

∂z
(δα)− [Az, δα]

}
dz +

{
∂

∂z
(δα)− [Az, δα]

}
dz. (6.4)

The integrability condition (5.13) is equivalent to

∂

∂z
Az − ∂

∂z
Az + [Az, Az] = 0 (6.5)

7. Determination of biharmonic maps

In this section, we want to show how to determine all the biharmonic
maps of (Ω, g) into a compact Lie group (G,h) where g = µ2g0 with a
positive C∞ function on Ω and h is a bi-invariant Riemannian metric on G.
Our method to obtain all the biharmonic maps can be divided into three
steps:

(The first step) We first solve the equation:

∂

∂z
Bz +

∂

∂z
Bz = 0 (7.1)

Notice that, if these Bz and Bz satisfy furthermore, the integrability condi-
tion

∂

∂z
Bz − ∂

∂z
Bz + [Bz, Bz] = 0, (7.2)
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then, there exists a harmonic map Ψ : (Ω, g) → (G,h) such that





Φ−1 ∂Ψ
∂z

= Bz,

Φ−1 ∂Φ
∂z

= Bz,

(7.3)

and the converse is true.

(The second step) For such two gC-valued functions Bz and Bz on Ω
satisfying (7.1) not necessarily satisfying (7.2), we should detect two gC-
valued functions Az and Az on Ω satisfying that





∂

∂z

(
− 2µ−2

(
∂Az

∂z
+

∂Az

∂z

))
−

[
Az,−2µ−2

(
∂Az

∂z
+

∂Az

∂z

)]
= Bz,

∂

∂z

(
− 2µ−2

(
∂Az

∂z
+

∂Az

∂z

))
−

[
Az,−2µ−2

(
∂Az

∂z
+

∂Az

∂z

)]
= Bz,

∂

∂z
Az − ∂

∂z
Az + [Az, Az] = 0. (7.4)

(The third step) Finally, for the above gC-valued functions Az and Az

on Ω satisfying (7.4) and a ∈ G, there exists a C∞ mapping ψ : Ω → G

satisfying that




ψ(x0, y0) = a,

ψ−1 ∂ψ

∂z
= Az,

ψ−1 ∂ψ

∂z
= Az.

(7.5)

Then, ψ : (Ω, g) → (G,h) is a biharmonic map due to (5.20), (6.1) and (7.4),
and conversely, every biharmonic map ψ : (Ω, g) → (G,h) could be obtained
in this way. To do the these procedures rigorously, let us define

Definition 7.1
(1) Let us define the four sets Λ, Λ1, Λ2, and Λ0 :

• Let Λ be the set of all g-valued two functions (Ax, Ay) on Ω, (or all
gC-valued two functions (Az, Az) on Ω with Az = Az,
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• let Λ1, the set of (Ax, Ay) ∈ Λ which satisfy the harmonic map
equation (5.12) (or (7.1)),

• let Λ2, the set of (Ax, Ay) ∈ Λ which satisfy the biharmonic map
equation (5.17) (or (6.1)), and

• let Λ0, the set of (Ax, Ay) ∈ Λ which satisfy the integrability con-
dition (5.13), (or (6.3)), respectively.

(2) Let us define two sets Ξ and Ξ1 :
• Let Ξ be the set of all g-valued two real analytic functions (Bx, By)

on Ω (or gC-valued two real analytic functions (Bz, Bz) on Ω with
Bz = Bz), and

• let Ξ1, the set of all (Bx, By) = (Bz, Bz) ∈ Ξ satisfying the harmonic
map equation (7.1), respectively.

Definition 7.2 Let us define two C∞ mappings Φi (i = 1, 2) of Λ into Ξ
by

Φ1(Ax, Ay)

:=
(

∂

∂x

(
− µ−2

(
∂Ax

∂x
+

∂Ay

∂y

))
−

[
Ax,−µ−2

(
∂Ax

∂x
+

∂Ay

∂y

)]
,

∂

∂y

(
− µ−2

(
∂Ax

∂x
+

∂Ay

∂y

))
−

[
Ay,−µ−2

(
∂Ax

∂x
+

∂Ay

∂y

)])
, (7.6)

and also

Φ2(Ax,Ay)

:=
(
− µ−2

(
∂2Ax

∂x2
+

∂2Ax

∂y2
− ∂

∂y
[Ax, Ay]

)

− ∂µ−2

∂x

(
∂Ax

∂x
+

∂Ay

∂y

)
−

[
Ax,−µ−2

(
∂Ax

∂x
+

∂Ay

∂y

)]
,

− µ−2

(
∂2Ay

∂x2
+

∂2Ay

∂y2
− ∂

∂x
[Ax, Ay]

)

− ∂µ−2

∂y

(
∂Ax

∂x
+

∂Ay

∂y

)
−

[
Ay,−µ−2

(
∂Ax

∂x
+

∂Ay

∂y

)])
, (7.7)

respectively.
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Then, we obtain

Theorem 7.3 Assume that Ω be a simply connected open domain in R2,
and µ is a positive real analytic function on Ω. Then, we have:

(1) For every (Bx, By) = (Bz, Bz) ∈ Ξ there exists (Ax, Ay) = (Az, Az) ∈ Λ
such that Φ2(Ax, Ay) = (Bx, By) (or Φ2(Az, Az) = (Bz, Bz)). The
solution (Ax, Ay) = (Az, Az) is uniquely determined by the initial data
Ax(x0, y), Ay(x0, y), (∂Ax/∂x)(x0, y) and (∂Ay/∂x)(x0, y), (x0, y) ∈ Ω.

(2) Φ1 = Φ2 on Λ0,
(3) Φ1

−1(Ξ1) = Λ2, and Φ1(Λ2 ∩ Λ0) = Φ2(Λ2 ∩ Λ0) = Ξ1.

Proof. For (1), by definition of Φ2, that Φ2(Ax, Ay) = (Bx, By) is equiva-
lent to the following two equations:

∂2Ax

∂x2
= −∂2Ax

∂y2
+

∂

∂y
[Ax, Ay]

− µ2 ∂µ−2

∂x

(
∂Ax

∂x
+

∂Ay

∂y

)
− µ2

[
Ax,−µ−2

(
∂Ax

∂x
+

∂Ay

∂y

)]

− µ2Bx, (7.8)

and also

∂2Ay

∂x2
= −∂2Ay

∂y2
+

∂

∂x
[Ax, Ay]

− µ2 ∂µ−2

∂y

(
∂Ax

∂x
+

∂Ay

∂y

)
− µ2

[
Ay,−µ−2

(
∂Ax

∂x
+

∂Ay

∂y

)]

− µ2By. (7.9)

Notice that the system of (7.8) and (7.9) satisfies all the conditions of the
theorem of Cauchy-Kovalevskaya when ni = 2 (i = 1, 2) (cf. [7, p. 1305, 429
B], [14, p. 224], [11, p. 181])

Theorem 7.4 (Cauchy-Kovalevskaya) Let us consider the following
Cauchy problem of unknown N functions ui(t, x) (i = 1, . . . , N) in t and
x = (x1, . . . , xm),
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



∂niui

∂tni
= Fi(t, x, Dk

t Dp
xuj) (i = 1, . . . , N),

∂kui

∂tk
(t0, x) = ϕk

i (x) (0 ≤ k ≤ ni − 1; i = 1, . . . , N),

(7.10)

where, for p = (p1, . . . , pm), |p| = p1 + · · · + pm, Dk
t Dp

x := (∂k/∂tk)
·(∂|p|/∂x1

p1 · · · ∂xm
pm) and in the right hand side of the first equation of

(7.10), k and p satisfy

k < nj and k + |p| ≤ nj (j = 1, . . . , N).

Assume that each Fi and ϕk
i are real analytic functions. Then, there exists

a real analytic solution ui (i = 1, . . . , N) of (7.10) and it is unique in the
class of real analytic functions.

Then, for each (Bx, By) ∈ Ξ, there exists a real analytic solution
(Ax, Ay) of the Cauchy problem (7.8) and (7.9) with the initial condition:





(
∂Ax

∂x

)
(x0, y) = f1(y), Ax(x0, y) = f0(y),

(
∂Ay

∂x

)
(x0, y) = g1(y), Ay(x0, y) = g0(y),

(7.11)

and the real analytic solution (Ax, Ay) is unique for real analytic functions
fi and gi (i = 0, 1). By taking this process at each point (x0, y0) in Ω, we
have a real analytic solution (Ax, Ay) of (7.8) and (7.9) in an open neighbor-
hood of (x0, y0). Then, by the uniqueness theorem of the continuation of a
real analytic function on a simply connected domain Ω, we have a solution
(Ax, Ay) of (7.8) and (7.9) on Ω. We have (1).

For (2), we have to see Φ1(Ax, Ay) = Φ2(Ax, Ay) for every (Ax, Ay) ∈
Λ0, which follows from that

∂

∂x

(
µ−2

(
∂Ax

∂x
+

∂Ay

∂y

))

= µ−2

(
∂2Ax

∂x2
+

∂2Ay

∂x∂y

)
+

∂µ−2

∂x

(
∂Ax

∂x
+

∂Ay

∂y

)

= µ−2

(
∂2Ax

∂x2
+

∂2Ax

∂y2
− ∂

∂y
[Ax, Ay]

)
+

∂µ−2

∂x

(
∂Ax

∂x
+

∂Ay

∂y

)
, (7.12)
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because of (5.13) and it is a similar for (∂/∂y)(µ−2(∂Ax/∂x + ∂Ay/∂y)), so
that we have (2).

For (3), due to (2), we only have to see Φ1
−1(Ξ1) = Λ2 which is equiv-

alent to that:

for all (Bx, By) ∈ Ξ, exists a unique (Ax, Ay) ∈ Λ2 such that
Φ1(Ax, Ay) = (Bx, By), and vice versa.

But, that (Bx, By) = (Bz, Bz) ∈ Ξ1 means that it satisfies the harmonic
map equation (7.1). On the other hand, Φ1(Ax, Ay) = (Bx, By) means that
Φ1(Az, Az) = (Bz, Bz) which is equivalent to that the first two equations of
(7.4) hold by definition of Φ1, and notice here that Φ1(Ax, Ay) = (Bx, By)
is equivalent to the two following equations

∂

∂x

(
− µ−2

(
∂Ax

∂x
+

∂Ay

∂y

))
−

[
Ax,−µ−2

(
∂Ax

∂x
+

∂Ay

∂y

)]
= Bx, (7.13)

∂

∂y

(
− µ−2

(
∂Ax

∂x
+

∂Ay

∂y

))
−

[
Ay,−µ−2

(
∂Ax

∂x
+

∂Ay

∂y

)]
= By, (7.14)

which are also equivalent to

∂

∂z

(
− 2µ−2

(
∂Az

∂z
+

∂Az

∂z

))
−

[
Az,−2µ−2

(
∂Az

∂z
+

∂Az

∂z

)]
= Bz, (7.15)

∂

∂z

(
− 2µ−2

(
∂Az

∂z
+

∂Az

∂z

))
−

[
Az,−2µ−2

(
∂Az

∂z
+

∂Az

∂z

)]
= Bz. (7.16)

But, by inserting both (7.14) and (7.15) into

∂

∂z
Bz +

∂

∂z
Bz = 0, (7.17)

we obtain

∂2

∂z∂z

(
− 2µ−2

(
∂Az

∂z
+

∂Az

∂z

))
− ∂

∂z

[
Az,−2µ−2

(
∂Az

∂z
+

∂Az

∂z

)]

+
∂2

∂z∂z

(
− 2µ−2

(
∂Az

∂z
+

∂Az

∂z

))
− ∂

∂z

[
Az,−2µ−2

(
∂Az

∂z
+

∂Az

∂z

)]

= 0, (7.18)
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which is just the biharmonic map equation for (Az, Az): (6.1) δΘ̃−0. By the
same way, one can see also immediately (Ax, Ay) satisfies the biharmonic
map equation (5.20) if (Bx, By) satisfies the harmonic map equation (5.15)
by using Theorem 5.2, (5.6) and (5.22). Thus, we obtain Φ1

−1(Ξ1) = Λ2

and (3). ¤

Remark The solution (Ax, Ay) in (1) of Theorem 7.3 can be chosen in
such a way that they satisfy the integrability condition (5.13) at the initial
value (x0, y),

∂Ay

∂x
(x0, y)− ∂Ax

∂y
(x0, y) + [Ax(x0, y), Ay(x0, y)] = 0, (7.19)

for each y, i.e., the initial functions f0, f1 and g1 may be chosen to satisfy
that

∂Ax

∂y
(x0, y) = g1(y) + [f0(y), f1(y)]. (7.20)

Finally, we introduce a loop group formulation for biharmonic maps.
We first, consider a gC-valued 1-forms

βν =
1
2
(1− ν)Bz dz +

1
2
(1− ν−1)Bz dz (7.21)

for a parameter ν ∈ S1, which satisfy that

dβν + [βν ∧ βν ] = 0 (∀ ν ∈ S1), (7.22)

where for the definition of [βν ∧ βν ], see (3.13).
Next, we consider gC-valued 1-forms

αν =
1
2
(1− ν)Az dz +

1
2
(1− ν−1)Az dz (7.23)

which satisfy that
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



∂

∂z
(δ αν)−

[
1
2
(1− ν)Az, δ αν

]
= Bz,

∂

∂z
(δ αν)−

[
1
2
(1− ν)Az, δ αν

]
= Bz,

d αν + [αν ∧ αν ] = 0,

(7.24)

for each ν ∈ S1. Here, the co-differentiation δ αν of αν is given by

δ αν = −2µ−2

(
1
2
(1− ν)

∂

∂z
Az +

1
2
(1− ν−1)

∂

∂z
Az

)
. (7.25)

Then, the mapping ψν : Ω → G satisfying ψν
∗θ = αν is a biharmonic map

of (Ω, g) into (G,h) where g = µ2g0 for a positive C∞ function µ on Ω.
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