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The Lie algebra of rooted planar trees
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Abstract. We study a natural Lie algebra structure on the free vector space gen-

erated by all rooted planar trees as the associated Lie algebra of the nonsymmetric

operad (non-Σ operad, preoperad) of rooted planar trees. We determine whether the

Lie algebra and some related Lie algebras are finitely generated or not, and prove that

a natural surjection called the augmentation homomorphism onto the Lie algebra of

polynomial vector fields on the line has no splitting preserving the units.
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1. Introduction

The Lie algebra of polynomial vector fields on the line, W1 =
Q[x](d/dx), and its Lie subalgebras L0 = xQ[x](d/dx) and L1 =
x2Q[x](d/dx) have been studied in the context of Gel’fand-Fuks theory. In
particular, Goncharova [2] computed the cohomology group H∗(L1) com-
pletely. Based on her monumental work, various studies including [1], [12]
and [14] have been developed. See also [3], [5] and [6]. On the other hand,
Kuno and the second author [7] discovered a Lie algebra structure on the
free Q-vector space generated by the set of all linear chord diagrams, LC,
and a surjective homomorphism κ : LC → L0. The Lie algebra LC is purely
combinatorial and comes from the derivation Lie algebra of the tensor al-
gebra of a symplectic vector space. So it seems to have no relation with
Gel’fand-Fuks theory.

The link between the linear chord diagrams and the vector fields on the
line is the notion of a nonsymmetric operad, or equivalently a non-Σ operad
or a preoperad. Kapranov and Manin [4] introduced a Lie algebra Λ(P)
associated to a nonsymmetric operad of Q-vector spaces P. To understand
the homomorphism κ, we introduce the augmentation homomorphism of
the Lie algebra induced from a nonsymmetric operad of sets. We denote
P = QC, if P((m)), m ≥ 0, is the free Q-vector space of C((m)) for a
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nonsymmetric operad of sets C. The augmentation maps QC((m)) → Q
induce a natural homomorphism of Lie algebras ε : Λ(QC) → W1, which
we call the augmentation homomorphism. The Lie algebra LC is regarded
as the Lie algebra induced from an operad of sets, and the homomorphism
κ : LC → L0 is derived from the augmentation homomorphism.

In this paper we study two fundamental problems for some nonsymmet-
ric operad of sets C;
( i ) Is the Lie algebra Λ(QC) finitely generated?
( ii ) Does the augmentation homomorphism have a splitting preserving

the units 1 ∈ C((1)) and x(d/dx) ∈ L0?

As typical examples of nonsymmetric operads of sets, we have the non-
symmetric operad of rooted planar trees Tree and its nonsymmetric subop-
erad of binary planar trees Tree2. We prove both of the questions for both
of the nonsymmetric operads have negative answers (Theorems 5.1, 6.5 and
7.1). In order to prove Theorem 7.1, we introduce the nonsymmetric operad
of partitions Par and its nonsymmetric suboperad Par2 of binary partitions.
The answers of (i) and (ii) for Par and that of (ii) for Par2 are negative
(Theorems 6.4 and 7.1), while that of (i) for Par2 is affirmative (Theorem
6.1). Here it should be remarked Loday and Ronco [9] have already studied
algebraic structures on binary rooted planar trees in a different way from
ours. The answer of the question (i) for the Lie algebra LC is negative [7],
while that of (ii) is still open.

In this paper we work over the rationals Q, but all the results hold
true over any field of characteristic zero. An operad without assuming the
symmetric group action has various names; a non-Σ operad [11], a preoperad
[8], an asymmetric operad, and a nonsymmetric operad [10]. For details, see
[8]. As will be shown in this paper, the notion of an operad without assuming
the symmetric group action is quite fundamental. In this paper we adopt a
nonsymmetric operad following [10].

2. The Lie algebra associated to a nonsymmetric operad

We begin by recalling the definition of a nonsymmetric operad or a non-
Σ operad or a preoperad of Q-vector spaces.

Definition 2.1 A sequence of Q-vector spaces P = {P((m))}m≥0 is a
nonsymmetric operad of Q-vector spaces, if it admits an element 1 ∈ P((1))
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called the unit and Q-linear maps called the composition maps

γ = γP : P((k))⊗ P((j1))⊗ · · · ⊗ P((jk)) → P
(( k∑

s=1

js

))
, k ≥ 1, js ≥ 0,

which satisfy the following two conditions.

(1) (Associativity) For any c ∈ P((k)), ds ∈ P((js)), 1 ≤ s ≤ k, and
et ∈ P((it)), 1 ≤ t ≤ j =

∑k
s=1 js, we have

γ(γ(c⊗ d1 ⊗ · · · ⊗ dk)⊗ e1 ⊗ · · · ⊗ ej) = γ(c⊗ f1 ⊗ · · · ⊗ fk),

where fs = γ(ds ⊗ ej1+···+js−1+1 ⊗ · · · ⊗ ej1+···+js−1+js
).

(2) (Unit) We have γ(1⊗ d) = d and γ(c⊗ 1⊗k) = c for any d ∈ P((j)) and
c ∈ P((k)), k ≥ 1.

As usual, we denote

c ◦s ds := γ
(
c⊗ 1⊗(s−1) ⊗ ds ⊗ 1⊗(k−s)

) ∈ P((k + js − 1)), 1 ≤ s ≤ k.

A nonsymmetric operad of sets C is defined in a similar way. For
any c ∈ C((k)), ds ∈ C((js)), 1 ≤ s ≤ k, we denote the composition by
γ(c; d1, . . . , ds) ∈ C((

∑k
s=1 js)). Then we denote by QC the nonsymmetric

operad of Q-vector spaces defined by

(QC)((m)) := Q(C((m))),

the free Q-vector space generated by the set C((m)), m ≥ 0.
For any Q-vector space V , the endomorphism operad EV is defined by

EV (m) := Hom(V ⊗m, V )

with the obvious unit and composition maps. The augmentation maps of the
free Q-vector space QC((m)), ε : QC((m)) → Q = Hom(Q⊗m,Q) = EQ(m),∑

x∈C((m)) axx 7→ ∑
x∈C((m)) ax, define a homomorphism of nonsymmetric

operads of Q-vector spaces

ε : QC → EQ,
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which we call the augmentation homomorphism.
Kapranov and Manin [4] define two Lie algebras associated to an operad

of Q-vector spaces. One requires the symmetric group action, but the other
denoted by

Λ(P) :=
∞⊕

m=0

P((m))

can be defined for any nonsymmetric operad of Q-vector spaces, P. See also
[10, 5.3.16 and 5.8.17]. The Lie bracket [c, d], c ∈ P((k)), d ∈ P((j)), is
defined by

[c, d] :=
j∑

t=1

d ◦t c−
k∑

s=1

c ◦s d ∈ P((k + j − 1)).

Here it should be remarked our sign convention is different from that in [4],
in order to make the bijection Λ(EQ)

∼=→ W1 := Q[x](d/dx) stated below an
isomorphism of Lie algebras.

To check the Jacobi identity of Λ(P), we write simply

c(d) :=
j∑

t=1

d ◦t c.

Then the map

δ : Λ(P) → End(Λ(P)), c 7→ (δc : d 7→ c(d))

is injective since δc(1) = c. One computes δ[c,d] = [δc, δd] ∈ End(Λ(P)).
Λ(P) inherits the Jacobi identity from the Lie algebra End(Λ(P)) by the
injection δ. Here we remark the Lie algebra Λ(P) has a finer structure, a
pre-Lie algebra. For details, see [4, 1.7] and [10, 5.8.17].

For a finite dimensional Q-vector space V , we have a natural isomor-
phism of Lie algebras onto the derivation Lie algebra of T (V ∗)

Λ(EV ) = Der(T (V ∗)), (2.1)

where T (V ∗) =
⊕∞

m=0(V
∗)⊗m is the tensor algebra of the dual space V ∗ =
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Hom(V,Q). In order to describe the isomorphism (2.1) explicitly for the case
V = Q, we denote the element corresponding to 1 ∈ Q = Hom(Q⊗m,Q) by
1m ∈ EQ(m), m ≥ 0. Then we have

[1m, 1n] = (n−m)1m+n−1.

This means the map given by

1m ∈ Λ(EQ) 7→ xm d

dx
∈ W1

is an isomorphism onto the Lie algebra of polynomial vector fields on the
line, W1 = Q[x](d/dx), For the rest of this paper we identify Λ(EQ) = W1

through this isomorphism.
Thus, for any nonsymmetric operad of sets C, the augmentation homo-

morphism ε : QC → EQ induces a natural homomorphism of Lie algebras

ε : Λ(QC) → Λ(EQ) = W1,

which we call also the augmentation homomorphism. If C((m)) 6= ∅ for each
m ≥ 0, it is surjective. It is natural to ask whether it does split or not.
The answer to this question should describe the complexity of the given
nonsymmetric operad C.

As usual, we denote Lk := xk+1Q[x](d/dx) for any k ≥ −1, which is a
Lie subalgebra of W1. Similarly we denote

Λk(P) :=
∞⊕

m=k+1

P((m)),

which is also a Lie subalgebra of Λ(P). The augmentation homomorphism
induces a homomorphism of Lie algebras

ε : Λk(QC) → Lk

for each k ≥ −1.
We denote by e0 = e0

P ∈ Λ(P) the unit 1 ∈ P((1)) regarded as an ele-
ment of the Lie algebra Λ(P). When P = EQ, we have e0

EQ = x(d/dx) ∈ W1.
For any m ≥ 0, the subspace P((m)) ⊂ Λ(P) is exactly the (m − 1)-
eigenspace of the adjoint action of the unit, ade0. Hence, for any non-
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symmetric operads of Q-vector spaces P and P ′, if a homomorphism of Lie
algebras ϕ : Λ(P) → Λ(P ′), which is not necessarily the induced homomor-
phism of a homomorphism of nonsymmetric operads, preserves the units
ϕ(e0

P) = e0
P′ , then we have ϕ(P((m))) ⊂ P ′((m)) for any m ≥ 0.

In view of the action of e0 we find out the center Z(Λ(P)) satisfies

Z(Λ(P)) ⊂ Z(Λ0(P)) ⊂ Z(P((1))). (2.2)

Here we regard P((1)) as a Lie subalgebra of Λ(P). The standard
chain complex C∗(Λ(P)) of the Lie algebra Λk(P), k ≥ −1, is decomposed
into the eigenspaces of the adjoint action ade0. The l-eigenspace of ade0,
C∗(Λk(P))(l) is a subcomplex of C∗(Λk(P)). We denote

H∗(Λk(P))(l) := H∗(C∗(Λk(P))(l)).

Clearly we have

H∗(Λk(P)) =
∞⊕

l=k

H∗(Λk(P))(l).

The formula ade0 = d ◦ (e0∧) + (e0∧) ◦ d on the standard chain complex
implies

H∗(Λk(P)) = H∗(Λk(P))(0)

for k = −1 or 0. In particular, if a nonsymmetric operad of sets C satisfies
the condition ]C((0)) = ]C((1)) = ]C((2)) = 1, then we have C∗(Λ(QC))(0) =
C∗(W1)(0) = C∗(sl2(Q))(0), so that

H∗(Λ(QC)) = H∗(W1) = H∗(sl2(Q)) =

{
Q, if ∗ = 0, 3,

0, otherwise.
(2.3)

Similarly, if ]C((1)) = 1, then

H∗(Λ0(QC)) = H∗(L0) =

{
Q, if ∗ = 0, 1,

0, otherwise.
(2.4)
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We conclude this section by a comment on the Lie algebra of linear
chord diagrams, LC, introduced by Kuno and the second author [7]. We
denote the free Q-vector space generated by the set of linear chord diagrams
of m chords, m ≥ 1, by lcd(2m− 1), while we define lcd(2m) = 0. The j-th
amalgamation of two linear chord diagrams C and C ′, C ∗j C ′, defined in [7],
gives a composition map on lcd = {lcd(n)}n≥0. In a similar way to [7], we
can prove lcd is an anticyclic operad. The Lie algebra LC is exactly Λ(lcd).
What we have stated in this section is a straight-forward generalization of
some of observations in [7]. As a nonsymmetric operad, we have lcd = Qlcd,
where lcd is the operad of sets consisting of all linear chord diagrams. The
homomorphism κ : LC → L0 in [7] is the composite of the augmentation
homomorphism and the homomorphism

xQ[x2]
d

dx
→ L0 = xQ[x]

d

dx
, x2n+1 d

dx
7→ 2xn+1 d

dx
.

For an anticyclic operad P, we denote by Λ+(P) the cyclic invariants in
Λ(P). One can prove Λ+(P) is a Lie subalgebra of Λ(P). If P = lcd, the
Lie algebra Λ+(P) is exactly the Lie algebra of (circular) chord diagrams C
introduced in [7].

3. The nonsymmetric operad of rooted planar trees

We recall the definition of the nonsymmetric operad of rooted planar
trees, Tree, following Markl, Shnider and Stasheff [11, I.1.5]. Let Tree((m))
be the set of planar trees with 1 root at the bottom and m leaves at the
top, regarded as labeled from left to right; 1 through m. For S ∈ Tree((m)),
T ∈ Tree((n)) and 1 ≤ i ≤ m, S ◦i T is defined to be the tree obtained
by grafting the root of T to the i-th leaf of S. This operation makes the
sequence Tree := {Tree((m))}m≥1 a nonsymmetric operad of sets, which we
call the nonsymmetric operad of rooted planar trees. It is known Tree is a
free nonsymmetric operad. See [10, 5.8.6] and [11, II.1.9].

For n ≥ 2, we denote by Treen((m)) the subset of Tree((m)) consist-
ing of trees all of whose vertices are of valency ≤ n + 1. The sequence
Treen := {Treen((m))}m≥1 is a nonsymmetric suboperad of Tree. We call
it the nonsymmetric operad of n-ary rooted planar trees. As is known, each
element of the set Tree((m)) corresponds to a meaningful way of inserting
one set of parentheses into the word 12 · · ·m, that is, a cell of the Stasheff
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associahedron Km [13]. For example, Tree((1)) = {1}, Tree((2)) = {(12)},
and Tree((3)) = {((12)3), (1(23)), (123)}. The set Tree2((m)) corresponds
exactly to the vertices of the associahedron Km. From (2.4) we have

H∗(Λ(QTree)) = H∗(Λ(QTreen)) = H∗(L0).

Now we introduce an enhancement of the nonsymmetric operad Tree.
To do this, we consider the i-th face ∂ic of c ∈ Tree((m)) for m ≥ 2 and
1 ≤ i ≤ m, defined by erasing the i-th leaf of c. For example, ∂i((12)3) =
∂i(1(23)) = (12), ∂i((1(23))4) = ((12)3) for 1 ≤ i ≤ 3, and ∂4((1(23))4) =
(1(23)). Let Tree−((0)) be a singleton, whose unique element we denote
by ∇. We define Tree−((m)) := Tree((m)) for m ≥ 1, ∂11 := ∇, and
c ◦i ∇ := ∂ic for c ∈ Tree((m)), m ≥ 1 and 1 ≤ i ≤ m. Then Tree− :=
{Tree−((m))}m≥0 forms a nonsymmetric operad of sets. For n ≥ 2, the
sequence Tree−n := {Tree−n ((m))}m≥0, given by Tree−n ((0)) = Tree−((0)) and
Tree−n ((m)) = Treen((m)) for m ≥ 1, is a nonsymmetric suboperad of Tree−.
From (2.3) we have

H∗(Λ(QTree−)) = H∗(Λ(QTree−n )) = H∗(W1).

Clearly we have ∂i∂jc = ∂j−1∂ic if i < j. Hence the linear map

∂ :=
m∑

i=1

∂i : QTree−((m)) → QTree−((m− 1))

satisfies ∂∂ = 0, so that QTree−((∗)) = {QTree−((m)), ∂}m≥0 is a chain
complex, and QTree−n ((∗)) = {QTree−n ((m)), ∂}m≥0 a subcomplex. Consider
the tree (12) ∈ Tree−2 ((2)). Then we have ∂((12)◦2 c) = c−(12)◦2 ∂c for any
c ∈ Tree−((m)), m ≥ 0. This implies the vanishing of the homology groups

H∗(QTree−((∗))) = H∗(QTree−n ((∗))) = 0.

4. The nonsymmetric operad of partitions

In this section we introduce the nonsymmetric operad of partitions, Par.
Let Q[xi; i ≥ 1] be the rational polynomial ring in infinitely many

indeterminates {xi}i≥1. A monomial
∏N

i=1 xi
ai with N ≥ 2, ai ≥ 1
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(1 ≤ ∀i ≤ N), corresponds to the nontrivial order-preserving partition of
the set {1, 2, . . . , m} with m =

∑N
i=1 ai given by

{1, 2, . . . , m} =
N∐

i=1

{ i−1∑

j=1

aj + 1,
i−1∑

j=1

aj + 2, . . . ,
i−1∑

j=1

aj + ai

}
.

We define

Par((m)) :=
{ N∏

i=1

xi
ai ;N ≥ 2, ai ≥ 1 (1 ≤ ∀i ≤ N), and

∑
ai = m

}
,

which is regarded as the set of nontrivial order-preserving partitions of the
set {1, 2, . . . , m} for m ≥ 2, and Par((1)) to be a singleton, whose unique
element we denote by 1. The composition map is defined by

γ

( N∏

i=1

xi
ai ;

N1∏

k=1

xk
a1k , . . . ,

Nm∏

k=1

xk
amk

)
:=

N∏

i=1

xi
bi ,

where

bi =
a1+···+ai−1+ai∑

j=a1+···+ai−1+1

( Nj∑

k=1

ajk

)
.

In other words, we define

( N∏

i=1

xi
ai

)
◦s

( Ns∏

k=1

xk
ask

)
:= xl

al−1+
PNs

k=1 ask

∏

i 6=l

xi
ai

if a1 + · · ·+ al−1 + 1 ≤ s ≤ a1 + · · ·+ al−1 + al. For the unit 1, we define

( N∏

i=1

xi
ai

)
◦j 1 = 1 ◦1

( N∏

i=1

xi
ai

)
:=

N∏

i=1

xi
ai .

It is easy to check this composition satisfies the axiom of associativity. The
reason why we defined Par((1)) as above is that there does not exist a unit in
the polynomial ring Q[xi; i ≥ 1]. In fact,

( ∏N
i=1 xi

ai
)◦j x1 =

∏N
i=1 xi

ai , but
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x1 ◦1
( ∏N

i=1 xi
ai

)
= x1

P
ai . Then Par := {Par((m))}m≥1 forms a nonsym-

metric operad of sets, which we call the nonsymmetric operad of partitions.
For n ≥ 2, we denote Parn((1)) := Par((1)) = {1} and

Parn((m)) := Par((m)) ∩Q[x1, x2, . . . , xn]

for m ≥ 2. Then Parn := {Parn((m))}m≥1 is a nonsymmetric suboperad of
Par. We call it the nonsymmetric operad of n-ary partitions.

The reason why we introduce the nonsymmetric operad Par is to simplify
the Lie algebra Λ(QTree) by using the following homomorphism ν : Tree →
Par.

Let c be a rooted planar tree in Par((m)), m ≥ 2. Look at the nearest
vertex to the root. Each edge except the one attached to the root has the
set of leaves sitting above itself. Hence the tree c gives a nontrivial order-
preserving partition of the set of leaves {1, 2, . . . , m}, which we denote by
ν(c) ∈ Par((m)). For example, ν((1(23))4) = x1

3x2, ν((12)(34)) = x1
2x2

2.
Further we define ν(1) := 1 ∈ Par((1)). Then the maps ν : Tree((m)) →
Par((m)), m ≥ 1, form a homomorphism of nonsymmetric operads

ν : Tree → Par

from the definition of the composition maps in Par. Clearly it induces a
homomorphism of nonsymmetric operads

ν : Treen → Parn

for each n ≥ 2.
To compute the Lie bracket on Λ1(QPar), we regard the polynomial

ring Q[xi; i ≥ 1] as an L0-module by the diagonal action. More precisely,
ξ(x)(d/dx) ∈ L0 acts on f(x1, x2, . . . ) ∈ Q[xi; i ≥ 1] by

(
ξ(x)

d

dx

)
(f(x1, x2, . . . )) =

∞∑

i=1

ξ(xi)
∂

∂xi
f(x1, x2, . . . ).

Then it is easy to prove the following.

Lemma 4.1 For c, d ∈ Λ1(QPar) ⊂ Q[xi; i ≥ 1] we have

[c, d] = ε(c)(d)− ε(d)(c) ∈ Λ1(QPar) ⊂ Q[xi; i ≥ 1].
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As a corollary, we obtain

Corollary 4.2 The kernel of the augmentation homomorphism ε :
Λ(QPar) = Λ0(QPar) → Λ0(EQ) = L0 is abelian.

The Lie bracket on Λ1(QPar) extends to the Laurent polynomial ring in
infinitely many indeterminates Q[xi

±1; i ≥ 1], and makes it a Lie algebra.

5. The Lie algebra Λ(QTree−
2 ) is not finitely generated

In this section, we prove the following theorem.

Theorem 5.1 The Lie algebra Λ(QTree−2 ) is not finitely generated.

As a preliminary of the proof of Theorem 5.1, we show Lemma 5.2 and
Lemma 5.4.

Lemma 5.2 For any m ≥ 2,

H1(Λ1(QTree2))(m) 6= 0.

Proof. The cardinality of Tree2((m + 1)) is the m-th Catalan number

c(m) =
1

m + 1

(
2m

m

)
,

and it coincides with the dimension of C1(Λ1Tree2)(m). Let c′(m) denote
the dimension of the second chain complex C2(Λ1Tree2)(m).

We prove that c′(m) < c(m) for any m ≥ 1. Since c′(m) can be com-
puted from the equation

c′(m) =





k∑

l=1

c(l)c(m− l) (if m = 2k + 1)

k−1∑

l=1

c(l)c(m− l) +
(

c(k)
2

)
(if m = 2k)

,

we have the inequality

c′(m) ≤ 1
2

m−1∑

l=1

c(l)c(m− l).
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By the well-known recurrence equation

c(m) =
m−1∑

l=0

c(l)c(m− l − 1),

we have

c′(m) + c(m) ≤ 1
2

m∑

l=0

c(l)c(m− l) =
1
2
c(m + 1).

Since the ratio of consecutive Catalan numbers is described as

c(m + 1)
c(m)

=
2(2m + 1)

m + 2
,

we obtain finally

c′(m) ≤ m− 1
m + 2

c(m) < c(m).

Therefore, H1(Λ1(QTree2))(m) does not vanish for any m ≥ 1. ¤

Corollary 5.3 The Lie subalgebra Λ1(QTree2) of Λ(QTree−2 ) is not finitely
generated.

To prove Theorem 5.1, we define hm to be the Lie subalgebra of
Λ(QTree−2 ) generated by

⋃m
j=2 Tree2((j)).

Lemma 5.4 The vector subspace QTree−2 ((0)) ⊕ QTree−2 ((1)) ⊕ hm is a
Lie subalgebra of Λ(QTree−2 ).

Proof. It is obvious that the subspace QTree−2 ((0))⊕QTree−2 ((1)) is a Lie
subalgebra of Λ(QTree1

2). Hence it is sufficient to prove that the inclusions

(ad1)(hm), (ad∇)(hm) ⊂ QTree−2 ((1))⊕ hm

hold.
Now we consider an arbitrary Lie algebra g. For any n elements

u1, u2, . . . , un of g and a binary tree c which belongs to Tree2((n)), we de-
fine fc(u1, u2, . . . , un) to be an element of g obtained from u1, u2, . . . , un by
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the Lie bracket following the parentheses corresponding to c. For example,
f(1)(u1) = u1, f((12)(34))(u1, u2, u3, u4) = [[u1, u2], [u3, u4]]. By the Jacobi’s
identity, the equation

(adv)fc(u1, u2, . . . , un) =
n∑

i=1

fc(u1, u2, . . . , ui−1, (adv)ui, ui+1, . . . , un)

(5.1)
holds for any v ∈ g.

Under these settings, the Lie algebra hm is the vector subspace spanned
by the set

{fc(u1, u2, . . . , un);n ≥ 1, c ∈ Tree2((n)), ui ∈ Tree2((ji)), 2 ≤ ji ≤ m}.

Hence the assertion holds if we prove that fc(u1, u2, . . . , ui−1, (adv)ui, ui+1,

. . . , un) is in QTree2((1))⊕ hm for any ui’s and v = 1 and ∇.
Since (ad1)(u) = ju for any u ∈ Tree2((j)), the claim holds true for

v = 1.
In the case n = 1, fc(u1) = u1 and (ad∇)(u1) is in QTree2((j1 − 1)). In

the case n ≥ 2, if ji ≥ 3, then (ad∇)(ui) is in QTree2((ji − 1)). If ji = 2,
then ui = (12) and (ad∇)((12)) = 2 · 1 and

fc(u1, u2, . . . , ui−1, (ad∇)(12), ui+1, . . . , un)

= 2fc(u1, u2, . . . , ui−1, 1, ui+1, . . . , un)

= Cf∂ic(u1, u2, . . . , ui−1, ui+1, . . . , un)

for some integer C. Here ∂ic is the i-th face of c defined in Section 3. The
claim holds true also for v = ∇. ¤

Proof of Theorem 5.1. Assume that Λ(QTree−2 ) is finitely generated. Then
there exists a sufficiently large m ≥ 2 so that Λ(QTree−2 ) is generated by⊕m

j=0QTree2((j)). In other words, Λ(QTree−2 ) has the decomposition

Λ(QTree−2 ) = QTree2((0))⊕QTree2((1))⊕ hm.

In particular, if l > m, the inclusion

hm ∩QTree2((l)) ⊂ [Λ1(QTree−2 ),Λ1(QTree−2 )]



410 T. Ishida and N. Kawazumi

holds. This implies that H1(Λ1(QTree2))(l−1) = 0 and it contradicts Lemma
5.2. This concludes the proof of Theorem 5.1. ¤

6. The Lie algebra Λ(QPar2) is finitely generated

In this section, we prove the following theorem.

Theorem 6.1 The Lie algebra Λ1(QPar2) is generated by x1x2, x
2
1x2, x1x

2
2,

and x3
1x2 + x1x

3
2.

Proof. It should be remarked dimC1(Λ(QPar2))(m−1) = dimQPar2((m))
= m − 1. It is obvious that x1x2, x

2
1x2 and x1x

2
2 are not in the derived

ideal [Λ1(QPar2),Λ1(QPar2)]. Next we compute brackets which take values
in QPar2((4)). We obtain

[x1x2, x
2
1x2] = x3

1x2 + x2
1x

2
2 − x1x

3
2,

[x1x2, x1x
2
2] = −x3

1x2 + x2
1x

2
2 + x1x

3
2.

Hence x3
1x2 + x1x

3
2 is not in the derived ideal.

On the other hand, if m ≥ 5, any elements of QPar2((m − 1)) can be
obtained by repetition of Lie brackets. In fact, if m = 5, then

[x1x2, x
3
1x2] = 2x4

1x2 + x3
1x

2
2 − x1x

4
2,

[x1x2, x
2
1x

2
2] = −x4

1x2 + 2x3
1x

2
2 + 2x2

1x
3
2 − x1x

4
2,

[x1x2, x1x
3
2] = −x4

1x2 + x2
1x

3
2 + 2x1x

4
2,

[x2
1x2, x1x

2
2] = −2x4

1x2 + x3
1x

2
2 − x2

1x
3
2 + 2x1x

4
2,

and thus the boundary map

δ1,5 : C2(Λ(QPar2))(4) → C1(Λ(QPar2))(4)

can be represented by the matrix

A5 =




2 1 0 −1
−1 2 2 −1
−1 0 1 2
−2 1 1 2


 .
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Hence det A5 6= 0. Further if m ≥ 6, then

[x1x2, x
m−k−1
1 xk

2 ] = −xm−1
1 x2 + (m− k − 1)xm−k

1 xk
2

+ kxm−k−1
1 xk+2

2 − x1x
m−1
2 (for any 2 ≤ k ≤ m− 3),

[x1x2, x1x
m−2
2 ] = −xm−1

1 x2 + x2
1x

m−2
2 + (m− 3)x1x

m−1
2 ,

[x2
1x2, x1x

m−3
2 ] = −2xm−1

1 x2 + x3
1x

m−3
2 − x2

1x
m−2
2 + (m− 3)x1x

m−1
2 ,

[x2
1x2, x

2
1x

m−4
2 ] = −2xm−1

1 x2 + 2x4
1x

m−4
2 + (m− 5)x2

1x
m−2
2

and thus a matrix representation Am of the boundary map

δ1,m : C2(Λ(QPar2))(m−1) → C1(Λ(QPar2))(m−1)

has the (m− 1)× (m− 1) submatrix

A′m =




−1 m− 3 2 −1
−1 m− 4 3 O −1
...

. . . . . .
...

−1 4 m− 5 −1
−1 3 m− 4 0 −1
−1 0 2 m− 3 −1
−1 O 0 0 1 m− 3
−2 0 1 −1 m− 3
−2 2 0 m− 5 0




.

Hence

detA′m =
1
6
(−1)m(m− 3)! · det




−1 3 m− 4 0 −1
−1 0 2 m− 3 −1
−1 0 0 1 m− 3
−2 0 1 −1 m− 3
−2 2 0 m− 5 0




=
1
6
(−1)m+1(m− 3)! ·m(m− 1)(2m− 7)

6= 0.
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Consequently, the boundary map δ1,m is surjective if m ≥ 5 and this con-
cludes the proof of Theorem 6.1. ¤

Corollary 6.2

H1(Λ1(QPar2);Q) ∼= Q4.

Corollary 6.3 The Lie algebra Λ(QPar2) is generated by 1, x1x2, x
2
1x2,

x1x
2
2, and x3

1x2 + x1x
3
2.

In contrast, the following proposition holds.

Proposition 6.4 The Lie algebra Λ(QPar) is not finitely generated.

Proof. Assume that Λ(QPar) is finitely generated. Then there exists a
sufficiently large m ≥ 2 so that Λ(QPar) is generated by

⊕m
j=0QPar((j)).

However, the Lie subalgebra Λ(QParm) of Λ(QPar) contains
⊕m

j=0QPar((j))
although it doesn’t generate Λ(QPar). Thus we have a contradiction. ¤

Since ν : Tree → Par induces a surjective homomorphism of Lie algebras,
we directly have the first half of the following corollary. The rest is proved
by an argument similar to the proof of Theorem 5.1.

Corollary 6.5 The Lie algebra Λ(QTree) is not finitely generated. Fur-
thermore, neither the Lie algebra Λ(QTree−) is.

7. The augmentation homomorphism on Λ(QTree) has no split-
ting

Let ε and ε1 denote the augmentation homomorphism from Λ(QPar)
and Λ(QTree) to L0, respectively. In this section, we prove the following
theorem.

Theorem 7.1 The augmentation homomorphism ε1 : Λ(QTree) → L0 has
no splitting preserving the units.

In the proof of Theorem 7.1, the nonsymmetric operad Par plays an
important role. We denote by ν : Λ(QTree) → Λ(QPar) the homomorphism
of Lie algebras induced by ν : Tree → Par. Then we have ε1 = ε ◦ ν :
Λ(QTree) → Λ(QPar) → L0. Hence it suffices to prove that ε : Λ(QPar) →
L0 has no splitting preserving the units. If such a splitting would exist, it
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must map Qxm(d/dx) to QPar((m)) for each m ≥ 2. In fact, both of them
are the (m− 1)-eigenspaces of ade0

EQ and ade0
QPar, respectively.

Let ι : Par → Par be the involution defined by

ι(xa1
1 xa2

2 . . . xan
n ) = xan

1 x
an−1
2 . . . xa1

n .

Then it is obvious that ι induces an automorphism of the Lie algebra
Λ1(QPar). If we denote by Λ1(QPar)± the (±1)-eigenspace of the involution

Λ1(QPar)± = {u ∈ Λ1(QPar)±; ι(u) = ±u},

then Λ1(QPar)+ is a Lie subalgebra and [Λ1(QPar)+,Λ1(QPar)−] ⊂
Λ1(QPar)−. Since the kernel of the augmentation homomorphism ε includes
Λ1(QPar)−, we have [Λ1(QPar)−,Λ1(QPar)−] = 0. Hence Λ1(QPar) is the
semi-direct product of Λ1(QPar)+ and Λ1(QPar)−

Λ1(QPar) = Λ1(QPar)− o Λ1(QPar)+. (7.1)

Since ε(Λ1(QPar)−) = 0, we have a factorization

ε |Λ1(QPar)= ε2 ◦ p : Λ1(QPar)
p−→ Λ1(QPar)+ ε2−→ L0,

where p is the second projection in (7.1) and ε2 is the restriction of the aug-
mentation homomorphism to Λ1(QPar)+. Therefore, in order to establish
Theorem 7.1, it suffices to prove the following proposition.

Proposition 7.2 The augmentation homomorphism ε2 : Λ1(QPar)+ → L1

has no splitting which maps Qxm(d/dx) to QPar((m)) for each m ≥ 2.

Proof. We assume that there exists a splitting s which maps Qxm(d/dx)
to QPar((m)) for each m ≥ 2. We denote

ei = xi+1 d

dx
∈ L1

for i ≥ 1. Recall that L1 is generated by e1 and e2. In fact, en is obtained
from e1 and e2 by

en =
1

(n− 2)!
(ade1)n−2(e2),
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for n ≥ 3. Therefore the splitting s is uniquely determined by its values of e1

and e2. Since Λ1(QPar)+∩QPar((2)) is generated by x1x2 and Λ1(QPar)+∩
QPar((3)) by x2

1x2 + x1x
2
2 and x1x2x3, the value u1 of e1 by s must be x1x2

and u2 of e2 must have the form

u2 =
t

2
(
x2

1x2 + x1x
2
2

)
+ (1− t)x1x2x3.

If we define un by

un =
1

(n− 2)!
(adu1)n−2(u2)

for n ≥ 3, then the equation un = s(en) must hold also for n ≥ 3. In
particular, u5 must coincide with [u2, u3] since e5 = [e2, e3]. To prove that
u5 6= [u2, u3], we compute u3, u4, and u5 explicitly. Then we obtain

u3 =
[
x1x2,

t

2
(x2

1x2 + x1x
2
2) + (1− t)x1x2x3

]

= tx2
1x

2
2 − (1− t)

(
x3

1x2 + x1x
3
2

)
+ (1− t)x1x

2
2x3

+ (1− t)
(
x2

1x2x3 + x1x2x
2
3

)
,

u4 =
1
2
[x1x2, u3]

=
−1 + 3t

2
(
x3

1x
2
2 + x2

1x
3
2

)
+
−4 + 3t

2
(
x4

1x2 + x1x
4
2

)

+ (1− t)
{
x1x

3
2x3 + x2

1x2x
2
3 + (x2

1x
2
2x3 + x1x

2
2x

2
3) + (x3

1x2x3 + x1x2x
3
3)

}
,

and

u5 =
1
6
[x1x2, u4]

= (2t− 3)x3
1x

3
2 +

(
2t− 7

6

)(
x4

1x
2
2 + x2

1x
4
2

)
+ (2t− 3)

(
x5

1x2 + x1x
5
2

)

+
1− t

3
{
(x1x

3
2x

2
3 + x2

1x
3
2x3) + 3x1x

4
2x3 + 3x2

1x
2
2x

2
3

+ 2(x2
1x

3
2x3 + x1x

3
2x

2
3) + 3(x3

1x2x
2
3 + x2

1x2x
3
3)

+ 3(x3
1x

2
2x3 + x1x

2
2x

3
3) + 3(x4

1x2x3 + x1x2x
4
3)

}
.
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On the other hand,

[u2, u3] =
[

t

2
(x2

1x2 + x1x
2
2) + (1− t)x1x2x3, u3

]

= −2(1− t)x3
1x

3
2 +

5
2
t(1− t)

(
x4

1x2 + x2
1x

4
2

)

+ (t2 + t− 3)
(
x5

1x2 + x1x
5
2

)

+ (1− t)
{
x1x

4
2x3 + (x2

1x2x
3
3 + x3

1x2x
2
3) + (x2

1x
3
2x3 + x1x

3
2x

2
3)

+ (x3
1x

2
2x3 + x1x

2
2x

3
3) + (x4

1x2x3 + x1x2x
4
3)

}
.

Thus we have u5 6= [u2, u3], which contradicts s is a homomorphism of Lie
algebras. This completes the proof. ¤
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