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§0. Introduction

Suppose that there are given, in a differentiable manifold, 3 tensor fields
F, G and H of type (1, 1) satisfying

Fr=-1, G=-1, H’=-1, :
F=GH=—-HG, G=HF=—-FH, H=FG=—-GF.

We then call the set (F, G, H) an almost quaternion structure and the
manifold an almost quaternion manifold.

If we can cover the manifold by a system of coordinate neighborhoods
with respect to which components of F, G and H are all constant, we say
that the almost quaternion structure (F, G, H) is integrable and call the
structure a quaernion structure.

The integrability conditions for almost quaternion structures and the
existence of an affine connection with respect to which F, G and H are
all parallel have been studied by Bonan and Obata [4], [5]

The main purpose of the present paper is to discuss these problems
making use not only of the Nijenhuis tensors [F, F), [G, G, [H, H] but
also of the Nijenhuis tensors [G, H], [H, F], [F, G]. .

§1. Preliminaries

Let P and Q be two tensor fields of type (1,1) in a differenti‘ab-le“ mani-
fold. 1t is well known (Kobayashi and Nomizu [3]) that the expression
given by
(L) [PQ] (XY)

= [PX, QY]—-P[QX, Y]-QI[X, PY]
+[QX, PY]-Q[PX, Y]—-PIX, QY]+(PQ+QP)[X, Y],
X and Y being arbitrary vector fields, defines a tensor field of type (1, 2)
and is called the Nijenhuis tensor of P and Q. If P= Q, we have

(1.2) [P, P] (X,Y)
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= 2{[PX, PY]--P[PX, Y]-P[X, PY]+P*[X, Y]} .
Now let L, M and N be tensor fields of *type (1,1). Then we have
(Frolicher and Nijenhuis [2]) :
(1. 3) [L, MN](X, Y)+[M, LN](X,Y)
=[L, M1(NX, Y)+[L, M](X, NY)
+L[M,N](X, Y)+M[L, N]1(X,Y),
for arbitrary vector fields X and Y. In fact, we have
L, M](NX, Y)+[L, M](X, NY)
+L[M, N}(X, Y)+M[L, N1(X, Y)
= [LNX, MY]—L[MNX, Y]—M[NX, LY]
 +[MNX, LY]—M[LNX, Y]—L[NX, MY]+(LM+ ML)[NX, Y]
+[LX, MNY]—L[MX, NY]—M[X, LNY]
+[MX, LNY]—M[LX, NY]—L[X, MNY]+(LM+ ML)[X, NY]
+ L{{MX, NY]-M[NX, Y]-N[X, MY]
+[NX, MY]—-N[MX, Y]—MI[X, NY]+(MN+NM)[X, Y]}
+M{[LX, NY]—L[NX, Y]-N[X, LY]
+[NX, LY]-NI[LX, Y]— L[X,NY]+(LN+NL) [X, Y]}
=[LX, MNY]—L[MNX, Y]—MN[X, LY]
+[MNX, LY]—MNI[LX, Y1—L[X, MNY]+(LMN+ MNL)[X, Y]
+[MX, LNY]—M[LNX, Y]—LN[X, MY]
+[LNX, MY]—LN[MX, Y]—MI[X, LNY]+(MLN+LNM)[X, Y]
=[L, MN1(X, Y)+[M, LN1(X, Y)

and (1. 3) is proved.
We introduce here the following notations (Frélicher and Nijenhuis [2]):

If S is a tensor field of type (1,2) and N is a tensor field of type (1, 1),
then SAN is defined to be

(1. 4) (SAN)(X,Y)=S(NX, Y)+S(X, NY)

and NAS to be

(1. 5) (NAS)(X,Y)=NS(X,Y).
Then (1. 3) can bewritten as

(1. 6) [L, MN]+[M, LN]
= [L, M]AN+LA[M, N]+ M~[L, N].
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Let S be a tensor field of type (1,2) and M, N tensor fields of type
(1,1). Then we have

(1.7) (SAM)AN—(SAN)AM = SAMN—SANM.
In fact
{(SKM)KN—(SKN)KM} (X,Y)

= (SAM)(NX, Y)+(SAM)(X, NY)—(SAN)(MX, Y)
—(SAN)(X, MY)

= S(MNX, Y)+S(NX, MY)+ S(MX, NY)+ S(X, MNY)
—S(NMX, Y)—S(MX, NY)—S(NX, MY)—S(X, NMY)

=(SAMN)(X,Y)~(SANM)(X,Y),

and (1.7) is proved.
Les S be a tensor field of type (1,2) and L, N tensor fields of type
(1,1). Then we have

- (1.8) (LAS)AN = LA(SAN).
In fact

{(LARSAN} (X,
(LKS)(NX Y)+(LAS)(X, NY)
L{S(NX, Y)}+L{S(X, NY)}
L{S(NX, Y)+S(X, NY)}
L{(

(AN X, V)

{LA( S/\N} (X, Y)

Il

l

I

Il

for arbitrary vector fields X and Y and consequently (1. 8) is proved.

Equation (1. 7) shows that (SAM)AN is not always equal to SA(NAM),
and equation (1.8) shows that (L/AS)AN is always equal to LA(SAN),
where S is a tensor field of type (1,2) and L, M, N are tensor fields of
type (1, 1).

When a tensor field S of type (1, 2) comes first as in (SAM)AN, the
associative law does not hold, but when S comes second as in (LAS)AN
the associative law does hold.

§ 2. The almost quaternion structure

We assume that there are given, in a differentiable manifold, three
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tensor fields F, G, H satisfying
Fi=—-1, G=-1, H*= -1,
(2. 1) F=GH, G = HF, H=FG,
GH+HG=0, HF+FH=0, FG+GF=0,

1 denoting the unit tensor field. In this case we say that the differentiable
manifold admits an almost quaternion structure. A manifold admitting an
almost quaternion structure is 4z-dimensional, » being a positive integer.

Now, putting L=M=F, N=G in (1, 6), we find
[F, FG]+F, FG]
= [F, FING+ FA[F, G+ FALF, G,
that is, ‘

(2.2) [H, F] = FA[F, Gl +~ [F, FIAG.

On the other hand, putting L=G, M=N=F in (1.6), we find

[G, F?] +[F, GF]
=[G, FIRF+GAlF, F1+ FA|G, F],
that is

(2. 3) [H, F]= —[F, GINF—FA[F, G]-GA[F, F].
Adding (2, 2) and (2, 3), and dividing the sum by 2, we find

(2. 4) [H, F] = —%[F, G]KF——% GAIF, F]+%[F, FIAG.

Subtracting (2. 3) from (2. 2), we find
2.5) - [F, GIAF+2FA[F, G]+GAIF, F]+-§-[F, FIRG=0.

Next, putting L=M=G, N=F lin (1. 6), we find
[G, GF1+[G, GF]l =[G, GIAF+ GK[G, F1+ GAIG, Fl,
that is
(2. 6) [G, H] = —~GAIF, G]—%;[G, GIAF.

On the other hand, putting L=F, M=N=G in (1. 6), we find
[F, G°]+[G, FG] |
= [F, GIAG+ FAI[G, G]+GAIF, G],
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that is,
2.7 (G, H] = [F, GING+GAIF, G]+FAX[G, G].
Adding (2. 6) and (2.7) and dividing the sum by 2, we find

(2. 8) [G, H] = _;. F, G]7§G’+%F7§[G, G]—% [G, G]AF.

Subtracting (2. 7) from (2. 6), we find

(2.9) [F, GING+2GNA[F, G]+ FA[G, G]+ (G, G]/\F 0.

Again, putting L=FG, M=F, N=G in (1. 6), we find
[FG, FG] +[F, FGG]
=[FG, FING+FGAI[F, G+ FA[FG, G],
that is,
(2. 10) [H, H] = [F, Fl+[H, FING+ HAIF, G]1+ FA[G, H].
On the other hand, putting L=FG, M=G, N=F in (1. 6), we find
[FG, GF]+|G, FGF]
= [FG, GIAF+FGNRIG, F1+ GAIFG, F],
that is
(2.11) [H, H] =G, G]—I[G, HIRF—-HA[F, G]-GAI[H, F].
Thus, from (2. 10) and (2. 11), we find

(2.12)  [H H] ___{[F F1+[G, Gl +[H, FING |
—GAlH, F1-[G, H]7§F+F/\[G H]}

and
(2. 13) [F, F1—[G, Gl +[H, FING+GA[H, F]
—[G, HIRF+FAI[G, H]+2HAI[F,G] =0
Finally, putting L=M=N=F in (1. 6), we find
[F, F?]+[F, F? -
= [F, F]/\F—I—F/—\[F F]+F/\[F F1,
that is,

(2. 14) [F, FIAF = —2FA[F, F].

67
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Similarly, we get
(2. 15) [G, GIRG = —2GAIG, G],
(2. 16) [H, HH/AH= —2HRKX[H, H].
§ 3. Theorems

We now prove the
TueoreMm 3. 1. If

[F,F]=0, [G,G]=0,

then
[F,G]=0.

Proor. Since [F, F]=0, we have, from (2. 2),
(3.1) [H, F]=FAIF, G],
and from (2.5),
(3.2) [F, GINF = —2FA[F, G].

Since [G, G]=0, we have from (2. 6),
(3. 3) G, H]= —GAI[F, G],
and from (2.9),
(3. 4) [F, GIRG = —2GK[F, G].

We substitute [F, F]=0, [G,G]=0, (3.1) and (3. 3) into (2. 13) and find
(FAIF, GIAG+GA(FALF, G])
—(GALF, GYAF—FAGAIF, G))+2HA[F, G]=0,
from which
(3. 5) (FALF, G)ARG—(GALF, G)AF=0,
since '
GA(FAIF, G))= —FAGAKIF, Gl)= —HAIF, G],
by virtue of GF=—-FG=—H.
Now, using (1. 8), (3. 2) and (3. 4), we find, from (3. 5),
FA(F, GING)~GA(IF, GIRF)=0,
—2FA(GAIF, G)+2GA(FALF, G])=0,
—4AFGAIF, G] =0,



Integrability conditions for almost quaternion structures 69

that is,
(3. 6) HA[F,G]=0,
Since H?*=—1, we have, from (3. 6),
[F, G]=0.
Thus the theorem is proved.
THEOREM 3.2. If

[F,F]=0, [G,G]=0,
then
[G, H]=0, [H F]=0, [F,G]=0
and
[H,H]=0.

Proor. By 1, we have [F,G]=0, and consequently, we
have, from (3.1) and (3. 3),

[H, F]=0,

- and
[G,H]=0
respectively, and consequently, from (2. 12),
[H, H]=0.

We next prove
TuEOREM 3.3. If
[F,F]1=0, [F,G]=0,
then
[G,G]=0.
pROOF. Putting L=M=G, N=H in (1. 6), we find

[G, GH]+[G, GH]
=[G, GIRH+GAI[G, H1+GAKIG, H],

from which, using [G, GH]=[G, F]=0,
3.7 [G, GIANH = —2GA[G, H].
From [F, G]=0 and (2.7), we find
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[G, H] = FA[G, G]
and consequently we find, from (3.7),
[G, GINH = —2GA(FA[G, G)) = —2GFA[G, G,
that is,
(3. 8) [G, GINH=2HNAKIG, G].
On the other hand, putting S=[G, G]l, M=F, N=G in (1.7), we find
([G, GINF)AG—([G, GIRG)AF
=[G, GIAFG—[G, GIAGF,

from which,

(3.9) 2[G, GIRH = ([G, GIARF)ARG—([G, GIRG)RF.
But, we have, from [F, G]=0 and (2. 9),
(3. 10) [G, GIAF = —2FK|[G, G].

Thus, substituting (2. 10) and (3. 10) into (3.9), we find
2[G, GlAH = —2(FR[G, G) AG+2(GAIG, G))AF,
or, using (1. 8),
[G, GINH = —FA(G, GIAG)+GA((G, GIAF)
from which, using (2. 15) and (3. 10),
[G, GIAH = 2FA(GA[G, G)) —2GA(FAIG, Gl)
=4FGAI[G, G],
that is,
(3.11) [G, GINH = 4HAXIG, G].
Comparing (3. 8) and (3. 11), we see that
HRI[G,G]=0,
from which, H? being equal to —1, '
[G,G]=0,

and consequently the theorem is proved.
Combining Theorems and B. 3, we obtain

Tueorem 3.4. If .
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then
[G,G]=0, [H,H]=0, [G H]=0, [H F]=0.
We now prove
THEOREM 3.5. If
[F,G]=0, [F,H]=0

then
[F,F]1=0.
Proor. From (2. 3) and the assumptions, we have
GA[F, F1=0
from which
[F, F]=

Thus, combining Theorems and B.5, we have
THEOREM 3.6. If

[F,G]=0, [F,H]=0
then
[F,F]=0, [G,G]=0, [H H]=0, [G H]=0
We next prove
THeOREM 3.7. If
[F,F]=0, [G,H]=0

then
[G, G] =
Proor. First of all, from (2. 2) and the assumptions, we have
(3.12) | [F, H] = FA[F, G].

On the other hand, putting L=M=G and N——H in (1 6) and using

the assumptions, we find
(3.13) 2[F, G]1=[G, G]RH.

Also, putting L=N=G and M=H in (1. 6), and using the assumptions,
we find ' :

[F, G]= —HNAKIG, G],
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from which
(3. 14) HAIF,G] =[G, G]
We have also, from (2. 13) and the assumptions,
—[G, G1+[H, FING+GAK[H, F]+2HAX[F,G] =0.
Substituting (3. 12) and (3. 14) into this equation, we find
FAIF, GING =0,

from which

(3. 15) ' [F, GIARG =0.
Thus, from (3. 14) and (3. 15), we find
(3. 16) [G, GIRG =0.
On the other hand, we have, from (2. 15), and (3. 16)
GAIG, Gl =0,

from which
[G,G]=0,

which proves the theorem.
Combining Theorems and 3.7, we obtain

THEOREM 3.8. If
[F,F]1=0, [G H]=0,
then
[G,G]l=0, [H,H]=0, [F,G]=0, [F,H]=0.
From Theorems 3.2, 8.4, and B.8, we have

PHEOREM 3.9. If two of six Nijenhuis tensors :
[F,Fl, [G,Gl [H H) I[GH] [HF] [FG]

vanish, then the others vanish too.

§4. Affine connections in an almost quaternion manifold.

In this section, we prove

TuEOREM 4.1. (Obata [4]) In order that there exists, in an almost
quaternion manifold, a symmetric affine connection V such that

FVF=0, VG=0, VFH=0,
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it 1s necessary and sufficient that
[F,F1=0, [G,G]=
Proor. We first introduce, in the almost quaternion manifold, a sym-

0
metric affine connection f and denote the components of the connection by

0
I';,, for example, we immerse the manifold in a sufficiently high dimensional
Euclidean space, consider the induced Riemannian metric and form the Levi-

0
Civita connection V with respcct to this metric.

We put
4. 1) 111 ii= 1‘1, it Ylwﬁh,
where
1 1 0 0
(4.2) T, = —Z{F:V,Ffﬂw)m”}

1 0 0
_Z(VjFit-i—V‘let)Fth

(See Walker or Yano [7]).

1
Then denoting by F, the operator of covariant differentiation with

1
respect to I';%;, we see that

0
&jF¢h=Vqu;h'*'Tj.,hF;—Tj;Fsh
-7, &
0
+ L ViF --_( 7,F)Fy F"———-(VjF +V,F)\FAF
0
+Z‘F¢t(VtFj8) Fsh—ZVszh—Z(Vth-FV‘th)
0 1 0 1 0 1 0 1 0
= VjFih_ZVjFih_szFih—ZVjFih—ZVjFih)
that is,
(4. 3) VjF¢h=O
and that )
1 1 1
rjhi—Fihjz Tjih— ijh
— L{FPFa—Fer.Fy
FVedd tVed j

—

—(7,Ft—T,F, Y Fp,
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that is,
1 1
(4. 4) ry—re;=— [FF]jia
where [F, F]," are components of the Nijenhuis tensor [F, F] formed Wlth F.
Thus if [F, F]=0, then T’ ;' define a symmetrlc connection V such

that V F=0.
We next put

(4. 5) I, = Il“j’g. +T,",
where
4.6) T,
—%{G; 7.G/+,G/)G+Hy ¥, Hp +(7, H) H)

1 1 1
+ —}(F; 7,G + F: VjG;)H,”——-}I(VjG; +7,GAHG,

which can also be written as
(4.7) T,
R 1
— 27,66

1

—% (GéP.G}+7.G) G +H!T Hy — Fe(7,G) HP,
since |

1 1 1 1

Vngt—FathG; = Vj(Fst G¢8>_FsthG,,;8 = O

1
by virtue of V,F=0.
Now denoting by 7, the operator of covariant differentiation with re-

spect to I',";, we see that -
7, F} =V, F+ T, Fo—T, e F.}
that is,
(4. 8) P Ff =T, FieT, o F.
On the other hand, we have
T, F = —é_u?j G)FiGr = (G 7,G+(7.G)G

+HV H—F7,GAHFy,



Integrability conditions for almost quaternion structures 75

or, using I; F=0,

. 1 .
(4.9) T, F = —%(VjHJ)G,’HL%HJ 7, G;"—%F;’(V,, GHG,

1 ~yp no 12 ¢ 3

' —ZGi VtHj —Z(ViGj )Hz ’

and
1
T, F = ——;—W,-G;) F Gy

1 1 1
—_ _Z { 4 Vt Gja + (Vq; Gjt) Gta

+ H Y, Hy—F2(0,GY) He) .,

1 .
or using V;F,*=0,

(4.10) T, F»— —%(VjG/)H,”——i—GJ v, H;»)——i_a% G, H,*
: 1 1 1 -1
+ 3 HIT.G =L Fe.G)GL
Thus, from (4. 8), (4. 9) ‘and (4. 10), we find
72 =L{P, HGH+ 7, GO HYY).
But
7, H) G+ ,G ) Hy?
~ P (F GV G+, G P
= FA7,G0)GA+(7, G H
1 1
= —(V;GH+V;G/)H,"
=0,
and consequently ) .
(4. 11) | 7,Er=0.

For the covariant derivative of G,* with respect to , we have

(4.12) VGl =V,Gt+ Ty Gi— Ty Gy .
On the other hand, we have |
| I
T,h Gy = —-15(117, GG G,"—%G,,‘ 7.Gr+(7.G)G.

+H P HP—F2(7,G)H Gy
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or
1 1 1
(4. 13) TjahGiu = '——%‘Vngh+—i"ViGjh__lll_(Vant)GiaGth
1 13 ) h 1 s
and

1
Tye G =2, G
1 1 1 1 1
—-4—{G,;’ 7.G/+W. GG+ HiV Hyf —F:(7,GHH G,

or using l} Fr=0,
, 1,2 1.1 1L
(4. 14) T.ﬁa Gah = ?(Vj Gih)_Z(Vt Gja) Gq;t Gah+_4"Vi ij
1 ! 1 1
"‘"—4—H;(V;Hja)Gah_ZFia(VsHjh) .
Thus, from (4. 12), (4. 13) and (4. 14), we find
7,Gi= —_jl;H;{(h G H . H})G).

But

and consequently
(4. 15) V,Gr=0.

1
We have proved that if [F F]=0, then I'/*; difine a symmetric
connection V such that V F=0. If V is a symmetric connection, then we have,

from (4. 6),

T;—T, -—‘—[G G]ﬁ"+ [H, H],"

—Z{F,’ 7,Gi—Fe0,Gf —,Ge—V.G)FS Y Hp
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[G, G];* and [H, H]," being components of [G, G] and [H, H] respectively.
But components [F, G],* of [F, G] being given by
[E G]ﬁh=thVltGih—F,;tVlthh—(’;jFit ‘;gth)Gh
+ GV Fr Gl Fp—,Gf—V.GF?,

or

1
[F, G]j,;h=thVtG¢hfF§t&thh_(&jG¢ V@Gj) ’

1 1
since V is a symmetric connection and V;F;*=0, we have

(4. 16) Tﬂh-n,h:%[c, G]m—;-[H, H],/
——%[F, Gl Hi .

Thus, if we assume that [F, F]=0 and [G, G]=0, or [F, F]=0 and
[F, G]=0, then, by [Theorem 3.2 or [Theorem 3.3,

Tu'—Ts"=0,

and consequently V is a symmetric connection such that
FF=0, FG=0

and hence
FH=V(FG)=

Thus, the converse being evident, the proof of the theorem is completed.
Combining Theorems and 4.1, we have

THEOREM 4.2. In order that there exists, in an almost quaternion
manifold, a symmetric affine connection such that

FVF=0, FG=0, VH=0,
it is necessary and suﬂiéient that two of Nijenhuis tensors :

[F,Fl, [GG], [HH], [GH], [HF], [F,G]

vanish.

§5. Affine connections in an almost quaternion manifold.
(continued)

In the proof of [Theorem 4 1, we ﬁrst introduced, in an almost quater-

nion manifold, a symmetric connection V with components F ;s and put
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1 0 1
(5. 1) Fj]bq; = th,,; + Tj/,;h ’
1
where T, is given by (4. 2) and showed that
1
5. 2) 7, Fr=0.
0
Since V' is a symmetric connection, denoting by
1 1 1
(5. 3) Sj@h = th,g_.['q;hj
1
the torsion tensor of F, we have, from (4. 2),
1
(5. 4) Sy = %[F, Fl,.
We next put
’ 1 1
(5. 5) L =T"+T",

where 71}@-” is given by (4. 6) and showed that
(5. 6) 7, Fr=0, 7,G*=0.

Denoting by |
(5. 7) Syt =I—Tp

the torsion tensor of 7, we have, from (5. 4) and (5. 5),
(5. 8) Sy = %[F, Flp'+ Ty =T,

We shall now compute 7,*—T,,*. From (4. 6), we find
'(5. 9) T_ﬂh_ Tijh

1 1 1 1 1
= —4——{GjtVtG,;h‘_‘ngtVtGjh_(VjG.gt_Vq;Gjt)Gth}
1 1 1 1 1
+—4—{H; v.H—HV,H~V,H—V H})H}
'1 1 " 1 g ‘
__—Z{F; V,Gi—F:7,Gf{—W,G—V.Gy)Fe} H .

On the other hand, we have

Gjt&tG@h'—GitVlzGjh_(&jGit_Vl‘iGjt)Gth
1
=[G, Gl —=S8: + G G2 St

(G, Sui—G 8., G
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Hy'V, Hp—HyV Hy (7, Hf = Hf) G,
1
= % [H H]j'zh_éjih +H;HPS."

1

—(H Syt —H S, HY

and consequently

(5. 10) (G7.GP—G¢P,Gr—(7,Gi GG

+{H 7, Hp—H P H 7 Hi— H) Hp)

. |
= 216, G+ [H, H' =+ [F.Flit,

since
jS G? 1cbh _ "é‘FtchthbHis [F, F].,"
~ — H/H[F, FL."
e —Hthq;sét,gh
and
1
Gy Sut G = = FyHy [F, Flu HI'F
= — S H}[F Pl H?
= _—H" évazz Hp»
because of -
FsFQ[F, Fl,,' = —[F, F1.}
and L

F,*[F, F./Fy = [F, Fl? .
We also have
(F/7,Gi—FV,Gf—,Gi—F,G,)F/) H)
— {IF, Glué + F7 G2 S+ G Fo St
(G S — G 8o Fi—(F 8.0 —Fa8,/) G2 HP

79
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—[F, Gl H + F GRS, Hi+ Gy FP S, Hy
(G Sut =G S G+ (Fy S, — F 8,7 F
= [F, Gl B+ IF, Fly +2(G* 8~ G5,/ G
and consequently

1 1 1
(5. 11) {FfV,G{—F;VsGj'—(VjG;-—[;ist)Fst}[—Ith

= {HK[F, G]+%[F, F]+%G7§[F, F]KG}”",

since
1
FrGrS, HP = ——;—F; G2[F, Fl.'G. F*
- —% G2[F, F, G,
= Gibé'bja Gah ’
1
Gy P8, H) = —G*8.0 G/,
and

1
F S, Fy = %F;‘ [E, F].2 F)
1
= 1 [F,F],".
3 [F, Flj

Thus, from (5. 8), (5.9), (5. 10) and (5. 11), we find

5.12)  S=-{IG. GI+[H, HI-2HRIF, G+~ GAIF, FIRG),

S being the torsion tensor of /. ,
On the other hand, we have, from (2. 2),

[H, F] = FA[F, G] +%[F, FIRG
and consequently
GAIH, F] = —HA[F, G]+%G7:[F, FIAG,

hence

%GK[F, FIAG = GA[H, F1+ HA[F, G].
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Substituting this into (5. 12), we find
(5. 13) S=%{[G, G)+[H, H1+GA[H, F1-HA[F, Gl}.

If we let G, H, F play the roles of F, G, H respectively in the discus-
sion above, we obtain a connection 'V such that

T"G=0, "H=0, TF=0

and the torsion tensor 'S of 'V is given by

'S = +{{H, H)+[F, F1+ HAIF, G- FAI(G, H])

and if we let H, F, G play the roles of F, G, H respectively in the discus-
~sion above, we obtain a connection "V such that

"WH=0, "FF=0, "FG=0

and the torsion tensor .S of "V is given by

"S = {[F, F1+[G, G|+ FA[G, H|-GA[H, F}.

1
8
Thus if we define a connection by

%(thi + Ith,’: + ”thi) ,

'I';*, and ""I';*; being respectively components of the connections 7 and "7,
the covariant derivatives of F, G and H with respect to this connection
are zero and the torsion tensor of this connection is given by

1
<7\ F1+IG, Gl+1H, H]j
(Obata [5]).

§ 6. Discussions in terms of complex coordinates

Assume that a 4n-dimensional differentiable manifold V' admits an
almost quaternion structure F, G, H and that

(6.1) [F, F]=0.

Then the manifold is complex analytic and is covered by a system of
complex coordinate neighborhoods U ; 2*, 2° (2°=%"), (k, 4, &, ---=1,2, -+, 2n;
£, 2 7, =2n+1,2n+2, -, 4n) with respect to which the tensor field F
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of type (1,1) has components of the form
E 0
(6. 2) F=( o,
0 —zE/
where E is the 27X 27 unit matrix.

We represent the components of the tensor field G of type (1, 1) with
respect to this complex coordinate system by

G1 Gz
= :
<G3 G4)

where G,, G,, G; and G, are 27 x 2n matrices.

Then, from FG+ GF=0, we have
(iE 0 ) (Gl Gz) N (Gl GZ) iE 0 ) _0
O _iE G3 G4 G3 G4 ( O ""iE B ’

( iGl + iG] iGz - iGz)
- iG3 "l' 1G3 - iG4 - iG4

that is,

=0,

from which

Thus G has the form
0 G

(6. 3) G=(G" 0),
that is, G is hybrid. (Yano [8])

On the other hand, we have, from G*=—1,
(6. 4) GG'=G"'G =—E,
and from H=FG, we see that H has components

| 0 iG)

—iG" 0
with respect to this complex coordinate system 2*=(z, 2%, (h,7,7--=1,2,
v, 4n). -

We now consider the condition

(6. 6) [G,G]=0.

In terms of components, (6. 6) can be written as

(6. 5) H=(
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(6- 7) Gjta, G@h_G/b'tat Gjh_(aj Gz't_ai Gjt)Gth = O >

where G,* are components of G and 9;=29/d2’.
It will be easily verified that (6.7) is equivalent to

8,Gi—3,Gi=0,
Gfa,;, G;E_" Gzﬁ a‘; G'u’E = O .

But the second equation of (6.8) is equivalent to the first. Because the
second equation is equivalent to

(G,20;Gi—Gf#a,GA)G* =0,

(6. 8)

or to
—0;GF+G#G,f0,G,» =0,
which is equivalent to
G —0;GF+ GG /f9,G,") =0,
or to
Gi0;G'—0,G,/)=0,

that is, to |

0;G;'—0;G;* =0,

which is equivalent to the first equation.
We next consider the condition

(6.9) [F, G]=0.
In terms of components, (6.9) can be written as
(6. 10) Ff9,G—F/3,G,*—(0,F;!—d,F;")G,"
+G0,F—G/0,F*—(0,Gt—0;G,)F,» =0,
or as
(6. 11) Fi0,Gr—F0,G*—(0,G}—0,G,)F,*=0,

F,* being constant.
It will be easily verified (Obata [4]) that (6. 11) is equivalent to

ay GAE_aIG,‘E = 0 .
Thus we have

THEOREM 6.1. Under the condition
[F, F]=0,
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the conditions
[G,G]=0 and [F,G]=0
are equivalent.
We now assume that

(6.12) [F,F]=0, [G,G]=0,

and choose a complex coordinate system 2*=(z2*, 2) with respect to which
the tensor field F has components of the form (6.2). In this complex coor-
dinate system, the tensor field G has components of the form

0 G5
(6. 13) G= ( ) ) )
GF 0
where
GG, = —d;, G+:Gl=—0;.

We proved in Theorem 4.1 that under the assumption (6.12) we can
find out a symmetric affine connection V such that

FVF=0, FG=0, VTH=0.

We denote the coefficients of V' by I';*.
Writing down the equations

Vqu;hzajFQ;h“'thtFit—F'tiFth:O

J

in the complex coordinate system 2*=(z*, ¥), we find that I',*; are all zero
except

S Ta=15.
Writing down next the equations
V;G=d;G+T'"G/—TI'/,G"=0
in the complex coordinate system, we find
(6. 14) o= —0,GHGr, I'Fi=—(0,G"GS .
We now compute the components
R,»=0,I;—o, [+ T T—T"T s

of the curvature tensor of the connection V and find that the components
are all zero except

Ri,u; = _Rm‘ ’ Ra,ui'E = "‘Rm’E ’

~ where
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R;plt = aﬁpﬂxl > RyﬁiE = auF;’AEI .
~ On the other hand, M Obata proved

Theorem. In order that there exists a coordinate system in which the com-
ponents of the tensors F, G, H defining an almost quaternion structure are
all constant, it is necessary and sufficient that

[F,F1=0, [G,G]=0
and

a; {(a” Glﬁ) G(i‘} = 0
in a complex coordinate system in which F has components
(iE 0 )
F= -
0 —iE
Thus we have

THEOREM 6. 2. (Obata [4]) A necessary and sufficient condition that
an almost quaternion structure (F, G, H) is integrable is that

[F,F]=0, [G,G]=0
and
Rkjih =0 )

where R,; are components of the curvature tensor of a symmetric affine
connection V such that VF=0, VG=0.
Combining Theorems and we have

THEOREM 6.3. A necessary and sufficient condition that an almost
quaternion structure (F, G, H) is integrable is that two of Nijenhuis tensors

[F,Fl, [G, Gl [H H] [GH] [HF] [FG]
vanish and
Ry;*=0,
where R,;" are those in the theorem above.
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