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\S 1. Introduction.
The present paper is a cOntinuatiOn Of the paper under the same title

[1]^{1)} and makes clear sOme geOmetric prOperties Of the space-time V which
will be Of use when we deal with the prOblem Of the freedOm Of the char-
acteristic system. The same nOtatiOns and terminOlOgies as thOse in [1]
will be used.

We shall first give sOme results in [1] which will play impOrtant rOles
in the present paper. V is a 4-dimensiOnal Riemannian space whOse metric
can be brOught intO the fOrm
(1. 1) ds^{2}=-dx^{2}-Bdy^{2}-Cdz^{2}+Ddt^{2} ((x^{i})\equiv(x, y, z, t)) .
where B, C and D are pOsitive-valued functiOns Of One variable x. A set

\alpha

Of vectOrs u_{i} , (\alpha, \beta, \cdots=1, \cdots, 4;i, j, \cdots=1, \cdots, 4) , and scalars \lambda_{a} , \mu_{a} , \lambda_{1a}(=\lambda_{a1}),
\lambda_{ab}(=\lambda_{ba}), (a, b=2,3, 4), is defined in this cOOrdinate system by

1 2 3 4
(1. 2) u_{i}=\delta_{i}^{1} , u_{i}=\sqrt{B}\delta_{i}^{2} , u_{i}=\sqrt{C}\delta_{i}^{3} , u_{i}=\sqrt{D}\delta_{i}^{4} ;

\lambda_{2}=-\beta/2’. \lambda_{3}=-\gamma/2 , \lambda_{4}=-\delta/2 ,
(1. 3)

(\beta\equiv B’/B, \gamma\equiv C’/C_{\backslash } \delta\equiv D’/D;’\equiv d/dx) ;

(1. 4) \mu_{2}=-\beta’/2 , \mu_{3}=-\gamma’/2’. \mu_{4}=-\delta’/2 ;

(1. 5) \lambda_{1a}=(\lambda_{a})^{2}-\mu_{a} , \lambda_{ab}=\lambda_{a}\lambda_{b} , (a\neq b) ,

The set is called a characteristic system (abbreviated tO c.s. ) Of the V under
cOnsideratiOn.

These quantities satisfy the fOllOwing tensOr relatiOns:

(1. 6) -u^{i}u_{i}=-u^{i}u_{i}=-u^{i}u_{i}=u^{i}u_{i}=111223344 . u^{i}u_{i}=0\alpha\beta , (\alpha\neq\beta) ;
1 2 2 3 3 4 4

\nabla_{i}u_{j}=--\lambda_{2}u_{i}u_{f}-\lambda_{3}u_{i}u_{f}+\lambda_{4}u_{i}u_{f} ,
(1. 7) a a1

\nabla_{i}u_{f}=\lambda_{a}u_{i}u_{j} , (nOt summed fOr a);

1) Numbers in brackets refer to the references at the end of the paper.
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1

(1. 8) \nabla_{i}\lambda_{a}=\mu_{a}u_{i}t

Further, we have

(’1.9) K^{f}iu^{i}=\nu_{\alpha}u^{j}\alpha\alpha , (not summed for \alpha),

where Ki^{f} is the Ricci tensor and \nu’s are the principal values (i.e. eigenvalues
of the Ricci tensor), and

\nu_{1}=-(\lambda_{12}+\lambda_{13}+\lambda_{14})(=K_{i}^{1}) , \nu_{2}=-(\lambda_{12}+\lambda_{23}+\lambda_{24})(=K_{2}^{2}.) ,
(1. 10)

\nu_{3}=-(\lambda_{13}+\lambda_{23}+\lambda_{34})(=K_{\dot{3}}^{3}) , \nu_{4}=-(\lambda_{14}+\lambda_{24}+\lambda_{34})(=K_{4}^{4}.) .

It was shown in [1] that a necessary and sufficient condition that

a space-time be a V is given by the existence of a set \{u_{i}, \lambda_{a}, \mu_{a}\}a satisfying
(1. 6), (1. 7) and (1. 8). Further some relations satisfied by the members of
c.s. are obtained and some fundamental theorems concerning the freedom
of c.s. are proved. These results will be used without detailed explanations
in the following.

As is stated at the beginning of this section, the purpose of the present

paper is to make clear some invariant properties of V, to classify V’s
using these investigations, and to make preparation for solving the problem
of the freedom of c.s .

\S 2. Classification of \bm{V}’s in terms of \bm{\nu}’s.
a

As is seen from (1. 9), u_{i}’s are eigenvectors of the Ricci tensor (i.e.
they are unit vectors in the principal directions). We can easily find that
the problem of the freedom has an intimate connection with the proper-
ties of \nu_{\alpha}’s. Moreover \nu_{\alpha}’s are invariant under coordinate transformations.
Therefore, we classify all V’s in terms of \nu_{\alpha}’s as follows:

V_{I} : The case of 4 simple eigenvalues or, in terms of \nu_{\alpha}’s in (1. 10),

the case of \{\nu_{1}, \nu_{2} , \nu_{3}, \nu_{4}\neq\}

V_{II} : The case of 2 simple eigenvalues and 1 double eigenvalue. V_{II}’s
are further classifified into the following four types:

V_{II1}\{

V_{IIa} : The case of \{\nu_{2}=\nu_{3} ; (\nu_{1}, \nu_{2}, \nu_{4}\neq)\}

V_{IIb} : ,, ,, \{\nu_{1}=\nu_{2} ; (\nu_{1}, \nu_{3}, \nu_{4}\neq)\} or \{\nu_{1}=\nu_{3} ;

(\nu_{1}, \nu_{2}, \nu_{4}\neq)\}
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V_{II2}\{

V_{IIc} : The case of \{\nu_{3}=\nu_{4} ; (\nu_{1}, \nu_{2}, \nu_{4}\neq)\} or \{\nu_{2}=\nu_{4} ;

(\nu_{1}, \nu_{3}, \nu_{4}\neq)\}

V_{II\prime l} : ,, ,, \{\nu_{1}=\nu_{4} ; (\nu_{1}, \nu_{2}, \nu_{3}\neq)\} .
V_{III} : The case of 1 simple eigenvalue and 1 triple eigmvalue. V_{III}’s

are further classifified into the following three types:

V_{III1}=V_{IIIa} ; The case of \{\nu_{1}=\nu_{2}=\nu_{3}\neq\nu_{4}\}

V_{III2}\{

V_{IIIb} : \{\nu_{1}=\nu_{2}=\nu_{4}\neq\nu_{3}\} or \{\nu_{1}=\nu_{3}=\nu_{4}\neq\nu_{2}\}

V_{IIIc} : ,, ,, \{\nu_{1}\neq\nu_{2}=\nu_{3}=\nu_{4}\}\uparrow

V_{Iv} : The case of 2 double eigenvalues. V_{Iv} ’s are further classifified
into the following two types :

\{

V_{Iva} : The case of \{’\prime_{1}=\nu_{2}\neq\nu_{3}=\nu_{4}\} or \{\nu_{1}=\nu_{3}\neq\nu_{2}=\nu_{4}\}

V_{Ivb} : ,, ,, \{\nu_{1}=\nu_{4}\neq\nu_{2}=\nu_{3}\}
\langle

V_{v} : The case of 1 quadruple eigenvalue, i.e. the case of \{\nu_{1}=\nu_{2}=\nu_{3}

=\nu\} .

Here we shall add a proposition which is closely connected with the
classifications in the above :

PROPOSITION 2. 1. Let V be non-Minkowskian, i.e. non-flat. Then we
1 2 3

can discriminate invariantly u_{i} from u_{i} (or u_{i}).
1 2

PROOF.I Both u_{i} and
u_{i}2

are s_{2}pace-like unit eigenvectors of Ki^{f}. We
have u^{i}\nabla 12iuf=0 and 13u^{i}\nabla_{i}u_{f}=2-\lambda_{2}u_{f}\neq 0344 , when \lambda_{2}\neq 0 . Next, if \lambda_{2}=0, we

have \nabla_{i}u_{f}=0 and \nabla_{i}u_{j}=-\lambda_{3}u_{i}u_{f}+\lambda_{4}u_{i}u_{f}\neq 0 . (Note that V is flat when
1 3

\lambda_{2}=\lambda_{3}=\lambda_{4}=0 holds.) Similarly, we can distinguish invariantly u_{i} from u_{i} .
Q. E. D.

In the following sections, we shall make clear the actual methods of
classifying the eleven types of V’s listed above when the fundamental tensors
are given.

\S 3. Some preparatory propositions, 1.

It is evident that V’s of type V_{I} or V_{v} are completely characterized by
the condition \{\nu_{1}, \nu_{2}, \nu_{3}, \nu_{4}\neq\} or \{\nu_{1}=\nu_{2}=\nu_{3}=\nu_{4}\} respectively, and that the
problem of the invariant classification is out of the question for V’s of these
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two types. The problem is important when we consider the classifications
of V_{II} ’s, V_{III} ’s and V_{IV} ’s. In this section we first prove the following prop-
osition which will play an important role in the theory of classification:

PROPOSITION 3. 1. Let (1. 1) be the line element of a V. If we assume
that all six eigenvalues of lT_{\dot{A}}^{B}(\equiv K_{i\dot{j}}^{mn}

. ; A\equiv(ij), B\equiv(mn);1\equiv(12), 2\equiv(13) ,
\ldots , 6\equiv(34) ; A, B=1,2, \cdots , 6) are constants, then the possible (\beta, \gamma, \delta) and
the corresponding (B, C, D) are given by the following four types:

(I) When \beta\gamma\delta\neq 0 , we have

(3. 1) \beta=2p_{2} . \gamma =2p_{3} , \delta=2p_{4}’.
(3. 2) B=c_{2} exp (2p_{2}x) , C=c_{3} exp (2p_{3}x) , D=c_{4} exp (2p_{4}x) ,

where (and throughout the remainder of the paper) c_{2} , C_{3} and c_{4} are arbi-
theory positive constants, and p’s arbitrary non-vanishing constants. In this
case, we have

(3. 3) \lambda_{1a}=(p_{a})^{2} , \lambda_{ab}=p_{a}p_{b} .
When and only when p_{2}=p_{3}=p_{4} holds, the V is S(A).

(II) When one of (\beta, \gamma, \delta) is 0 and the remaining two are non-zero, i.e.
when one of (II_{2})(\beta=0, \gamma\delta\neq 0) , (II_{3})(\mathcal{T}=0, \delta\beta\neq 0) and (II_{4})(\delta=0, \beta\gamma\neq 0) holds,
we have, for example, for (II_{4})

(II_{4a}) : (3. 1), (3. 2), (3. 3) with (p_{4}=0, p_{2}p_{3}\neq 0) .

(II_{4b}) :

\beta=2p (a e^{px}-be^{-px}) (a e^{px}+be^{-px})^{-1} ,
(3. 4)

\gamma =2p (a e^{px}+be^{-px}) (a e^{px}-be^{-px})^{-1} , \delta=0 ;

(3. 5) B=c_{2}(ae^{px}+be^{-px})^{2} , C=c_{3}(ae^{px}-be^{-px})^{2} . D=c_{4} ,

or (II_{4b’}) :

\beta=2p (a cospx-b sinpx) (a sin px+b cos px)^{-1} ,
(3. 4’)

\gamma =-2p (a sin px+b cospx) (a cospx-b sin px)^{-1} , \delta=0 ;

(3. 5’) B=c_{2} (a sin px+b cos px)^{2} , C=c_{3} (a cospx-b sin px)^{2} , D=c_{4} ,

where p(\neq 0), a and b are arbitrary constants, which do not satisfy a=b
=0. We have for (II_{4b}) and (II_{4b’})

(3. 6) \lambda_{14}=\lambda_{24}=\lambda_{34}=0’. \lambda_{12}=\lambda_{13}=\lambda_{23}=\pm p^{2} (\equiv P) ,

where + and – correspond to (II_{4b}) and (II_{4b’}) respectively. Similar results
hold for (II_{2}) and (II_{3}) . The V in (II_{4b}) or (II_{4b’}) is nothing but S(C), and the
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corresponding ones in (II_{2b}) , (II_{2b},) , (II_{3b}) and (II_{3b},) are of the same character
except the signature, i.e. each V is a direct product of a straight line and
a 3-dimensional space of constant curvature.

(Ill) When two of (\beta, \gamma, \delta) are 0 and the remaining one is non-zero,
i.e. when one of (III_{2})(\beta\neq 0, \gamma=\delta=0) , (III_{3})(\gamma\neq 0, \delta=\beta=0) and (III_{4})(\delta\neq 0 ,
\beta=T=0) holds, we have, for example, for (III_{4})

(III_{4a}) :

(3. 7) \beta=\gamma=0’. \delta=2(x+c)^{-1} ,

(3. 8) B=c_{2} , C=c_{3} , D=c_{4}(x+c)^{2} ,

where c is an arbitrary constant. In this case, we have

(3. 9) \lambda_{1a}=\lambda_{ab}=0 , and accordingly J\Gamma_{\dot{A}}^{B}=0 , i.e. Kij^{mn}=0 ,

which means that the V is S(B).
(III_{4b}) :

(3. 10) \beta=\gamma=0 , \delta=2p (a e^{px}– be^{-px}) (a e^{px}+be^{-px})^{-1} ,

(3. 11) B=c_{2} . C=c_{3} . D=c_{4} (a e^{px}+be^{-px})^{2} ;

(III_{4b’}) :

(3. 10’) \beta=\gamma=0 , \delta=2p (a cos px-b sinpx) (a sin px+b cos px)^{-1} ,

(3. 11’) B=c_{2} . C=c_{3} , D=c_{4} (a sin px+b cos px)^{2} ,

where p, a and b are of the same meanings as in (II_{4b}) and (II_{4b’}) . In this
case, we have

(3. 12) \lambda_{12}=\lambda_{13}=\lambda_{23}=\lambda_{24}=\lambda_{34}=0 , \lambda_{14}=\pm p^{2}\equiv P .

Similar results hold for (III_{2}) and (III_{3}) .
(IV) When all of (\beta, \gamma, \delta) vanish, we have

(3. 13) \beta=\gamma=\delta=0 ; B=c_{2} . C=c_{3} , D=c_{4} .

PROOF. The proof is easy if we use the relations:
4\lambda_{12}=2\beta’+\beta^{2} , 4\lambda_{13}=2\gamma’+\gamma^{2} , 4\lambda_{14}=2\delta’+\delta^{2} ,

(3. 14)
4\lambda_{34}=\gamma\delta , 4\lambda_{24}=\beta\delta , 4\lambda_{23}=\beta\gamma_{\sim}

which are obtained from (1. 3), (1. 4) and (1. 5). Hence we omit it. (See \S 7
below).

Here the notations S(A), S(B) and S(C) denote respectively de Sitter s

space-time (or geometrically, the space-time of constant curvature), {\rm Min}-
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kowski’s space-time (or geometrically, the flat space-time) and Einstein
space-time. These notations were introduced in [2], and we use them only
for brevity’s sake. As is well-known, both S(A) and S(C) played important
roles in the early stage of relativistic cosmology as models of the universe.

We shall denote in the following by V_{0} a V whose six eigenvalues of
K_{A}^{B}. are all constants, and further by S(\overline{C}) the V which belongs to (II_{2b}),
(II_{2b’}), (II_{3b}) or (II_{3b’}) and corresponds to S(C). In more detail, {B,C,D) of
an S(\overline{C}) are obtained from (3. 5) or (3. 5’) by interchanging, for example,
C with D.

It should be noted here that the cases obtained from (I) by putting,
for example, (p_{2}\neq 0,p_{3}=p_{4}=0) are included in (III_{\rho b}) or (III_{\rho b’}), (\rho=2,3, 4),
and that we have no need of dealing with such cases separately.

Next, we proceed to the consideration of the relation between the Vs
obtained in the above proposition, and to the classification of V’s in terms
of the four eigenvalues of the Ricci tensor given in \S 2. By examining in
detail the V’s in the classification table of \S 2 from the standpoint of the
proposition, we have

PROPOSITION 3. 2. V_{0}’s belonging to V_{I} , V_{II} , \cdots , V_{v} respectively are
given by the following table :

(I), (II_{\rho a}) ............................................. V_{I}

(I) ..................... V_{IIa} , V_{IIb} , V_{IIc} , V_{IIJ}, : V_{II}

(II_{\rho b}),\cdot(.I^{\cdot}I_{\rho b’}\ldots.)(I)(II_{\rho a})\cdots\cdots\cdot..\cdot..\cdot..\cdot..\cdot..\cdot..\cdot..\cdot..\cdot..\cdot..\cdot..\cdot..\cdot..\cdot. V_{IIIa}V_{IIIc}V_{IIIa}’,’ V_{IIIb}V_{IIIb},’ V_{IIIc’}V_{I1Ic}\} : V_{III}

(III_{\rho b}), (III_{\rho b’})\cdots\cdots\cdots\cdots V_{Iva} , V_{IVb} : V_{Iv}

(III_{\rho a})\cdots\cdots\cdots\cdots\cdots\cdots S(B)(I)\cdots\cdots\cdots\cdots\cdots\cdots\cdots S(A)|

: V_{V}

(IV) \ldots\ldots\ldots\ldots\ldots\ldots\ldots S(B))

(\rho=2,3, 4) .
The meanings of the table will easily be understood. More detailed

results have been obtained. For example, V_{IIIa} belonging to (II_{\rho a}) is possible
only for \rho=4 . But we omit them for brevity’s sake.

\S 4. Invariant classification of V_{II}’s.

A V_{II} is characterized by {2 simple eigenvalues and 1 double eigenvalue)
of the Ricci tensor. As is seen in \S 2, V_{II} ’s are classified into two classes
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V_{II1} and V_{II2} , and each class into two subclasses. When all eigenvectors
corresponding to the double eigenvalue are space-like, the V_{II} is V_{II1} . In
this case, eigenvectors corresponding to the two simple eigenvalues are space-
like and time-like respectively. On the other hand, when all eigenvectors
corresponding to the simple eigenvalues are space-like, the V_{II} is V_{II2} , and
in this case, the eigenvectors corresponding to the double eigenvalue can be
space-like or null or time-like.

Now we shall study how to classify invariantly V_{II\iota}, and V_{IIb} , and then
V_{IIc} and V_{IId} .

First we consider V_{II1} denoting by \nu the simple eigenvalue to which the
unit space-like eigenvector u_{i}, corresponds. Take any t^{r_{1Ia}} , and it is evident

1

that we have \nu=\nu_{1} and u_{i}=\epsilon u_{i} , (\epsilon^{2}=1) , which is evidently a gradient. On
3 2

the other hand, if the V_{II1} is V_{J}3Jb,, we have \nu=\nu_{3} (or \nu_{2}) and u_{i}=\epsilon u_{i} (or \epsilon u_{i}).

Further, the condition that the u_{i} (or u_{i} )
2

be a gradient is given by \lambda_{3}=\gamma=0

(or \lambda_{2}=\beta=0), from which we have \nu_{3}=0 (or \nu_{2}=0). Thus we can conclude
that, when u_{i} of a V_{II1} is not a gradient, the V_{II1} is V_{IIb} , and further,
when u_{i} is a gradient and \nu\neq 0 , the V_{II1} is V_{IIa} .

Next we consider the case in which u_{i} is a gradient and \nu=0 . Then
it is easy to see that such a V_{II1} cannot be a V_{0} . In other words, at least
one of six eigenvalues of K_{\dot{A}}^{B} is non-constant. If we denote by \lambda any of
such non-constant eigenvalues, then it is evident that when \nabla_{i}\lambda is pr0-

portional to the u_{i} , the V_{II1} is V_{IIa} , and otherwise it is V_{IIb} . These results
can be written in a table as follows:

u_{i} is not a gradient \ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots V_{IIb}

u_{i} is a gradient \{

\nu\neq 0 ........................ V_{IIa}

\nu=0
.(u_{i}\propto\nabla_{i}\lambda

......... V_{IIa}

|u_{i}\not\in\nabla_{i}\lambda ......... V_{IIb} .
Now we proceed to the classification of V_{II2}’s. Lek (\nu, u_{i}) and (\nu’, u_{i}’)

be two sets of a simple eigenvalue and the corresponding unit space-like
eigenvector. It is evident that when both u_{i} and u_{i}’ are not gradients, the
V_{II2} is V_{II,l} . Next we consider the case in which u_{i} is a gradient but u_{i}’

is not. If the V_{II2} is V_{II,l} , we have \nu=0 from (1. 7). Thus, when \nu\neq 0 ,
the V_{II2} is V_{IIc} . When u_{i} is a gradient, \nu=0 and u_{i}’ is not a gradient,
we can find, just as in the case of V_{II1} , that any V_{II2} satisfying these con-
ditions cannot be V_{0} , and that the V_{II2} is V_{IIc} or V_{IId} according as u_{i}\propto\nabla_{i}\lambda

or u_{i}’\acute{\varphi}\nabla_{i}\lambda respectively. Lastly we deal with the case in which both u_{i} and
u_{i}’ are not gradients. We can easily see that any V_{IId} cannot satisfy this
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condition, and hence the V_{II2} is V_{IIc} . Corresponding to the table of V_{II1} ,

we have:
both u_{i} and u_{i}’ are gradients \ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots V_{IIc}

both u_{i} and u_{i}’ are not gradients \ldots\ldots\ldots\ldots\ldots\ldots\ldots V_{IId}

one is a gradient but
\{

the other is not

\nu\neq 0 ........................ V_{IIc}

\nu=0 \{\begin{array}{l}u_{i}\propto\nabla_{i}\lambda \ldots\cdots\cdots V_{IIc_{\prime}}u_{i}\#\nabla_{i}\lambda \cdots\cdots\cdots V_{IIel}.\end{array}

Lastly it should be noted that the V_{II} ’s of the four types dealt with
in this section really exist and that it is not difficult to give some examples
of the actual forms of their line elements.

\S 5. Some preparatory propositions, 2.

We proceed to the classification of V_{III} ’s. V_{III} is characterized by {1
simple eigenvalue and 1 triple eigenvalue). Further V_{III1}(=V_{IIIa}) is charac-
terized by that the eigenvectors corresponding to the simple eigenvalue is
time-like, while V_{III2} (i.e. V_{IIIb} or V_{IIIc}) is by that they are space-like. The
reason why we distinguish V_{IIIb} from V_{IIIc} lies in Proposition 2. 1.

First we prove some propositions which are necessary when we deal
with the freedom of c.s. of V_{IIIa} .

PROPOSITION 5. 1. Let D in the coordinate system of (1. 1) satisfies
D’=0 {and accordingly, \delta=0 ) and vs be of the form \nu_{1}=\nu_{2}=\nu_{3}\neq\nu_{4}=0 .
Then \nu_{1} must be a constant (\neq 0) .

PROOF. From the actual expression of \nu ’s given in \S 1 and the as-
sumption, we have
(5. 1) -2\nu_{1}=\beta^{\gamma} , 2\beta’+\beta^{2}=\beta^{\gamma}=2\gamma’+\gamma^{2} ,

from which we can easily obtain \nu_{1}’=0 . Q. E. D.
PROPOSITION 5. 2. The line element of the V_{IIIa} stated in Proposition

5. 1 is reducible to the form
(5. 2) ds^{2}=-dx^{2}–Bdy2– Cdz^{2}+dt^{2} ,

where B and C are functions of x given by

(5. 3) (3. 5) when \nu_{1}<0 .
(5. 3’) (3. 5’) when \nu_{1}>0 .
Corresponding to (5. 3) or (5. 3’), we have respectively

(5. 4) \nu_{1}=-2p^{2} , (5. 4’) \nu_{1}=2p^{2} .
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Note that we have K=3\nu_{1}=\overline{\perp}6p^{2} respectively.
PROOF. It is evident that \beta\neq 0 . Hence we have from (5. 1)

(5. 5) 2\beta’/\beta+\beta-\mathcal{T}=0 , i.s. 2\beta’/\beta+B’/B-C’/C=0 ,

the integration of which gives B’/2\sqrt{B}=e_{1}\sqrt{C}. Similarly we have C’/2\sqrt{C}

=e_{2}\sqrt{B}. Here e_{1} and e_{2} are arbitrary non-vanishing constants. When
e_{1}e_{2}>0 , putting \sqrt{e_{1}e_{2}}=p and integrating these equations, we obtain

(5. 6) \sqrt{B}=m_{1}e^{px}+m_{2}e^{-px} , \sqrt{C}=\sqrt{e_{2}/e_{1}}(m_{1}e^{px}-m_{2}e^{-px}) , (\beta\gamma=4p^{2}) ,

where m_{1} and m_{2} are arbitrary constants which do not satisfy m_{1}=m_{2}=0 .
Then it is evident that we have (5. 3) by a simple transformation. On the
other hand, when e_{1}e_{2}<0 , we can similarly obtain (5. 3’) by putting \sqrt{-e_{1}e_{2}}

=p. The remaining part is evident. Q. E. D.
Let [K] be the c.s. for which the coordinate system of (5. 2) with (5. 3)

(or (5. 3’)) is standard. Then we have from (1. 3)

(5. 7) \lambda_{4}=0 , \lambda_{2}\lambda_{3}=\beta\gamma/4=\urcorner^{-}-p^{2}|\equiv P .
from which we have

PROPOSITION 5. 3. If we use [K] , the classifification of (5. 3) and (5. 3’),
or equivalently, that of (5. 4) and (5. 4’), is equivalent to

(5. 8) \lambda_{2}\lambda_{3}>0 , (5. 8’) \lambda_{2}\lambda_{3}<0 .
Further we have
PROPOSITION 5. 4. In the primed case, we cannot have \lambda_{2}=\lambda_{3} so far

as we are dealing zvith real quantities. In the unprimed case, on the other
hand, a necessary and sufficient condition for \lambda_{2}=\lambda_{3} is given by (a\neq 0, b=0)

or (a=0, b\neq 0), and it holds that \lambda_{2}=\lambda_{3}=p in the former case and \lambda_{2}=\lambda_{3}

=-p in the latter.
Note that in the primed case, if we admit complex quantities, the con-

dition for \lambda_{2}=\lambda_{3} is given by a=-|--|ib, and again we have \lambda_{2}=\lambda_{3}=const . \neq 0 .
For V_{IIIa} of Proposition 5. 1, we have from (1. 5)

(5. 9) \lambda_{12}=\lambda_{13}=\lambda_{23}=P , \lambda_{14}=\lambda_{24}=\lambda_{34}=0l

The V_{IIIa} under consideration is nothing but the S(C) as is elucidated in
\S 3. It is easy to see from (5. 1), etc. that it satisfies

(5. 10) K_{j_{\sigma}^{\mu\nu}}\cdot=(\nu_{1}/2)(\delta_{\rho}^{\prime l}\delta_{\sigma}^{\nu}-\delta_{\sigma}^{\mu}\delta_{\rho}^{\nu}) , (\rho_{ \sigma},, \cdots=1,2, 3) ,

where \nu_{1}=-2P. (5. 10) together with (5. 2) shows that the 3-dimensi0nal
space of {x,y,z) is of constant curvature. Here it should be noted that we
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use the notation S(C) irrespectively of whether \nu_{1}=-2p^{2} or \nu_{1}=2p^{2} holds.
The most familiar form of its line element in relativistic theories is

(5. 11) ds^{2}=-(1+r^{2}/4R^{2})^{-2}(d^{2}x+d^{2}y+dz^{2})+dt^{2} ,

where r=\sqrt{x^{2}+y^{2}+z^{2}} and 1/R^{2} is a constant. It is easy to see that the
relation between R^{2} and P(=\pm p^{2}) is given by

(5. 12) 1/R^{2}=P=-\nu_{1}/2 .
From the results obtained above, we have
PROPOSITION 5. 5. In S(C) of the unprimed type, (i) we have c.s.

satisfying \lambda_{2}=\lambda_{3} and those satisfying \lambda_{2}\neq\lambda_{3} , (ii) the former satisfy either
\lambda_{2}=\lambda_{3}=p or \lambda_{2}=\lambda_{3}=-p, and (i) when \lambda_{2} (or \lambda_{3} ) is a constant {accordingly
\lambda_{3} (or \lambda_{2}) is also a constant), we have \lambda_{2}=\lambda_{3} .

PROOF. We have only to prove {Hi). Take the standard coordinate
system for the c. s. If we put \lambda_{2}=p_{2} and \lambda_{3}=p_{3} , where p’s are constants
satisfying p_{2}p_{3}=p^{2} , then from \lambda_{2}=-\beta/2 and \lambda_{3}=-\gamma/2 , we have B=c_{2} exp
(-2p_{2}x) and C=c_{3} exp (-2p_{3}x) , where c’s are arbitrary positive constants.
From the relations -4\nu_{1}=\beta^{2}+\gamma^{2}=\beta^{2}+\beta\gamma=\gamma^{2}+\beta\gamma, we have \beta=\gamma, p_{2}=p_{3} and
\lambda_{2}=\lambda_{3} in turn. This result is seen also from the fact that when \lambda_{2}\neq\lambda_{3} ,
both \lambda_{2} and \lambda_{3} cannot be constants. Q. E. D.

Now we shall add some propositions concerning S(C). The meaning
of the results so far obtained will be understood more deeply by these prop-
ositions. A parallel vector field (‘field’ will be omitted hereafter) v_{i} is
defined by

(5. 13) \nabla_{i}v_{j}=0i

from which follows v_{i}=\partial_{i}v . Now we consider the general V. In the c0-

ordinate system of (1. 1), (5. 13) becomes by virtue of (2. 2) of [1]

\partial_{11}v=\partial_{23}v=\partial_{24}v=\partial_{34}v=\{\partial_{12}-(\beta/2)\partial_{2}\}v

(5. 14) =\{\partial_{13}-(\gamma/2)\partial_{3}\}v=\{\partial_{14}-(\delta/2)\partial_{4}\}v=\{\partial_{22}+(B’/2)\partial_{1}\}v,\cdot

=\{\partial_{33}+(C’/2)\partial_{1}\}v=\{\partial_{44}-(D’/2)\partial_{1}\}v=01

By solving (5. 14), we can easily obtain (cf. Proposition 3. 1)

PROPOSITION 5. 6. When \beta\gamma\delta\neq 0 , the V admits no parallel vector. (II)
when one of (II_{2})(\beta=0, \gamma\delta\neq 0) , (II_{3})(./\cdot=0, \delta\beta\neq 0) and (II_{4})(\delta=0, \beta\gamma\neq 0) holds,
we have one and only one parallel vector v_{i} . It is c\delta_{i}^{2} , c\delta_{i}^{3} {space-like), and
c\delta_{i}^{4} {time-like) respectively. Here c is a non-vanishing arbitrary constant.
(Ill) When one of (III_{2})(\gamma_{=}\delta=0, \beta\neq 0) , (III_{3})(\delta=\beta=0, \gamma\neq 0) and (III_{4})(\beta=\gamma
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=0, \delta\neq 0) holds and the V is non-flat, we have two linearly independent
(with constant coefficients) parallel vectors. They are c\delta_{i}^{3}+c’\delta_{i}^{4} , c\delta_{i}^{4}+c’\delta_{i}^{2}

(space-like, null, time-like) and c\delta_{i}^{2}+c’\delta_{i}^{3} (space-like) respectively. Here c and
c’ are arbitrary constants which do not satisfy c=c’=0. When the V is
flat, i.e. when (3. 7) or a similar relation holds, we have evidently four
linearly independent parallel vectors. In other words, we have parallel
vectors in any direction at any point. (IV) When \beta=\gamma_{=}\delta=0 holds, the V
is flat, and we have four linearly independent parallel vectors.

Consequently, we find that, for example, there exists no V admitting
three parallel vectors, which is also seen from the well-known theorem of
Walker [3].

Evidently S(C) belongs to the type (II_{4}) and admits only one parallel
vector which is time-like. (See also [2].) We have further

PROPOSITION 5. 7. V_{IIIa} (more generally, V) which satisfifies \delta\neq 0 in
the coordinate system of (1. 1) is not S(C).

PROPOSITION 5. 8. S(C) cannot admit a c.s. satisfying \lambda_{2}\lambda_{3}\lambda_{4}\neq 0 .

\S 6. Invariant classification of \bm{V}_{\bm{III}\bm{2}}’s.

Let V be a V_{III2} , i.e. V_{II1b} or V_{IIIc},\cdot We consider the problem of clas-
sifying invariantly V_{IIIb} and V_{IIIc} . Let \nu and \nu’ be the simple and triple
eigenvalues respectively. In any V_{III2} , the unit eigenvector u_{i} corresponding
to \nu is space-like, and further we have

PROPOSITION 6. 1. In V_{IIIc} , the unit eigenvector v_{i} is a gradient. Ac-
cordingly, V_{III2} is V_{IIIb} if u_{i} is not a gradient.

1
The proof is evident, since u_{i} is nothing but \epsilon u_{i}(\epsilon^{2}=1) .
PROPOSITION 6. 2. Assume that u_{i} in a V_{III2} be a gradient. Then the

V_{II12} is V_{IIIb} or V_{IIIc} according as u_{i} is a parallel fifield or not.
PROOF. The proof is easy if we use Proposition 5. 6 and the fact that

3
the condition u_{i}=\sqrt\overline{C}\delta_{i}^{3} be a gradient (i.e. \nabla_{Ii}u_{JJ}=0) is given by \lambda_{3}=0(i.e .
\mathcal{T}=0) and that we have \nabla_{i}u_{j}=0 in this case.

In connection with this proposition, we add the following:
PROPOSITION 6. 3. V_{III2} cannot admit a c.s. satisfying \lambda_{2}=\lambda_{3}=0 .
PROPOSITION 6. 4. Any c.s. of the V_{IIIb} stated in Proposition 6. 2

satisfies either (\lambda_{2}\neq 0, \lambda_{3}=0) or (\lambda_{2}=0, \lambda_{3}\neq 0) . For this V_{IIIb} , we have \nu=0 .
PROPOSITION 6. 5. When a c.s. of V_{IIIc} satisfifies either (\lambda_{2}\neq 0, \lambda_{3}=0) or

(\lambda_{2}=0, \lambda_{3}\neq 0) , we have \nu’=0 .
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The proofs of these propositions are easy, so we omit them.
From the discussions of the last and the present sections, we can

conclude that when a V_{III} is given in any coordinate system, we can deter-
mine whether it is V_{IIIa} or V_{IIIb} or V_{IIIc} . The classifications are independmt
of the coordinate system.

REMARK. As is seen in \S 4, the classification of V_{1I} ’s is easy if we
use Proposition 3. 1. However, it is not so easy to classify V_{III} ’s by using
the same proposition. The reason is that we have many V_{III2}’s belonging
to V_{0} .

Now we shall write down some propositions corresponding to those in
\S 5. These propositions will be of use when we consider the freedom of
c.s. in V_{IIIb} . The proofs are similar to those in \S 5.

PROPOSITION 6.6. Let C in the coordinate system of (1. 1) satisfy
C’=0(i.e. \gamma=0) and \nu ’s be of the form \nu_{1}=\nu_{2}=\nu_{4}\neq\nu_{3}=0 . Thm\nu_{1}(i.e. \nu’)

must be a non-vanishing constant.

PROPOSITION 6. 7. The line element of the V_{1IIb} stated above is re-
ducible to the form
(6. 1) ds^{2}=-dx^{2}-Bdy^{2}-dz^{2}+Ddt^{2} ,

these B and D are functions of x given by

(6. 2) B=c_{2}(ae^{px}+be^{-px})^{2},\cdot C=c_{3} . D=c_{4}(ae^{px}-be^{-px})^{2} ,

when \nu’=-2p^{2}<0,\cdot

(6. 2’) B=c_{2} (a sin px+b cos px)^{2} , C=c_{3},\cdot D=c_{4} (a cos px-b sin px)^{2} ,

when \nu’=2p^{2}>0

Here p, c’s, a and b are of the same meanings as in Proposition 3. 1, and
again we have K=3\nu’=\mp 6p^{2} respectively.

Thus the V_{IIIb} is nothing but S(\overline{C}) . We can obtain various results
concerning S(\overline{C}) similar to those obtained in \S 5 concerning S(C). We
have, for example,

(6. 3) \lambda_{2}\lambda_{4}=-\nu’/2=\pm p^{2} (\equiv P) ,

and we can easily find, just as in the case of S(C), that many kinds of c.s.
are possible in S(\overline{C}) . It goes without saying that we can obtain similar
results for the V_{IIIb} of the type \nu_{1}=\nu_{3}=\nu_{4}\neq\nu_{2}=0 .

\S 7. Invariant classification of V_{IV}’s.

In this section we deal with the case of two double eigenvalues. V_{Iva}
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and V_{IVb} belong to this case. In both V_{IV} ’s, eigenvectors corresponding to
the one double eigenvalue \nu are space-like and those corresponding to the
other eigenvalue \nu’ are space-like or null or time-like. In V_{IVa} in which
\nu_{1}=\nu_{2}\neq\nu_{3}=\nu_{4} (or \nu_{1}=\nu_{3}\neq\nu_{2}=\nu_{4}) holds, we have \nu=\nu_{1} and \nu’=\nu_{4} , while in
V_{IVb} in which \nu_{1}=\nu_{4}\neq\nu_{2}=\nu_{3} holds, we have \nu=\nu_{2} and \nu’=\nu_{4} .

We can solve the problem of invariant classification of V_{IV} ’s by con-
sidering the eigenvalues of K_{A}^{B}., i.e. \lambda_{1a} and \lambda_{ab} . First we can prove the
following proposition by examining the results of Proposition 3. 1 in detail:

PROPOSITION 7. 1. Let a V_{IV} be V_{0} . Then only the following 3 cases
are possible: (i) V_{IV} of type (III_{2b}) or (III_{2b},) : (B, C, D) are given by

(7. 1) B=c_{2} (a e^{px}+be^{-px})^{2}or=c_{2} (a sin px+b cos px)^{2} , C=c_{3} , D=c_{4} .
(ii) V_{Iv} of type (III_{3b}) or (III_{3b},) : (B, C, D) are given by the expressions
which are obtained from (7. 1) by interchanging B with C, and c_{2} with c_{3} .

The V_{IV} in (i) or (ii) is V_{IVa} and we have (\nu=-P_{ \nu}’,=0) .
(ii) V_{IV} of type (III_{4b}) or (III_{4b’}) : (B, C, D) are given by

(7. 2) B=c_{2} , C=c_{3} , D=c_{4} (a e^{px}+be^{-px})^{2}or=c_{4} (a sin px+b cos px)^{2}

The V_{1V} is V_{IVb} and we have (\nu=0, \nu’=-P) .

Here P,p, c’s, a and b are of the same meanings as in Proposition 3. 1.
We have from this proposition
PROPOSITION 7. 2. Let V_{IV} be V_{0} . Then one of \nu and \nu’ is 0 and the

remaining one is a non-vanishing constant -P. The .V_{Iv} is V_{Iva} or V_{Ivb}

according as \nu=-P or \nu=0 respectively.
Next we consider V_{IV} which is not V_{0} . Then at least one of six

eigenvalues is not constant. We denote one of such eigenvalues by \lambda using
the same notation as in \S 4. Then we have from Proposition 7. 1

PROPOSITION 7. 3. Consider a V_{IV} which is not V_{0} . Denote by u_{\dot{l}} the
unit vector proportional to the gradient \nabla_{i}\lambda . Then u_{i} is a unit eigenvector
of Ki^{j}. The V_{IV} is V_{IVa} or V_{IVb} according as u_{i} corresponds to \nu or \nu’

respectively.
Here it should be noted that even when two or more eigenvalues of

1\Gamma_{\dot{A}}^{B} are not constants, the u_{i} is determined uniquely to within its sign.
Thus the problem of discriminating whether the given V_{Iv} is V_{IYa} or

V_{Ivb} has been completely solved.

\S 8. Some preparatory propositions, 3.

V_{v} is characterized by the condition \nu_{1}=\nu_{2}=\nu_{3}=\nu_{4}\equiv\nu , that is, in V_{v} ,
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the Ricci tensor has a quadruple eigenvalue \nu . In terms of the usual
terminology in Riemannian geometry, V_{v} belongs to the Einstein space.
As is easily seen, any V of constant curvature (\alpha 1.e. S(A)), including a flat
V(i.e. S(B)), is V_{v} .

PROPOSITION 8. 1. In an Einstein V, \nu is a constant, and accordingly
K(=4\nu) is also a constant.

PROOF. From the actual expressions of \nu ’s in the coordinate system of
(1. 1) given in \S 1, we find that the condition for the Einstein V is given,
in terms of \lambda ’s, by

(8. 1) \lambda_{12}=\lambda_{34}t , \lambda_{13}=\lambda_{24}
,\cdot

\lambda_{14}=\lambda_{23J}.

or, in terms of \beta , \gamma and \delta , by

(8. 2) 2\beta’+\beta^{2}=T\delta , 2\gamma’+\gamma^{2}=\delta\beta’. 2\delta’+\delta^{2}=\beta\gamma

Further we have

(8. 3) \nu=-(\lambda_{12}+\lambda_{13}+\lambda_{14})=-(1/4)(\beta\gamma+\gamma\delta+\delta\beta) , K=4\nu .

From (8. 3) and (8. 2), we can obtain \nu’=0 . Q. E. D.
Although we proved directly in the above, it is well-known that the

scalar curvature K of an Einstein space is a constant. ([4], p. 93.)

Next we can easily obtain from Proposition 3. 1
PROPOSITION 8. 2. The line element of S(B) in the form of (1. 1) is

given by the following four types:

(III_{2a})B=c_{2}(x+c)^{2} , C=c_{3} , D=c_{4} ,

(III_{3a})B=c_{2} , C=c_{3}(x+c)^{2} , D=c_{4} ,
(8. 4)

(III_{4a})B=c_{2} , C=c_{3} , D=c_{4}(x+c)^{2} ,

(IV) B=c_{2}., C=c_{3} . D=c_{4} ,

zvhere c’s are of the same meanings as those in Proposition 3. 1.
It should be noted here flat \beta, \gamma and \delta in (III_{\rho a}) respectively are not

constants. The above proposition can be rewritten in the form:
PROPOSITION 8. 3. C. s. of S(B) must satisfy one of the following con-

ditions:
(III_{2a})\lambda_{2}\neq const. . \lambda_{3}=\lambda_{4}=0 ,
(III_{3a})\lambda_{3}\neq const. . \lambda_{2}=\lambda_{4}=0 ,

(8. 5)
(III_{4a})\lambda_{4}\neq const. ,, \lambda_{2}=\lambda_{3}=0

,\cdot

(IV) \lambda_{2}=\lambda_{3}=\lambda_{4}=0 .
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Now we consider a non-flat space-time of constant curvature, i . e. S(A).
We can easily obtain from Proposition 3. 1

PROPOSITION 8. 4. The line element of S(A) in the form of (1. 1) is
given by

(8. 6) B=c_{2}e^{px} , C=c_{3}e^{px} , D=c_{4}e^{px} ,

where p=-^{\mathfrak{l}}-|-\sqrt{-K/3} . Thus we have a real metric of the form (1. 1) whm
and only when K is negative.

PROPOSITION 8. 5. C. s. of S(A) must satisfy
(8. 7) \lambda_{2}=\lambda_{3}=\lambda_{4}=-p/2j (p^{2}=-K/3) .

Thus c.s. is real when and only when K is negative.
Evidently, S(B) and S(A) are characterized by that K_{\dot{A}}^{B} has one sex-

tuple constant eigenvalue. Of course, this eigenvalue is 0 or a non-vanishing
constant according as the V_{v} is S(B) or S(A) respectively. It should
especially be noted that there exist some sets of (\lambda_{2}, \lambda_{3}, \lambda_{4}) whose \lambda’s are not
necessarily 0, for the Minkowski space-time S(B).

\S 9. Some preparatory propositions, 4.
In the present and the next sections, we shall integrate (8. 2) and

determine the actual forms of the line element of V_{v} . As a matter of
course, S(B) and S(A) dealt with in the last section are included in the
following discussions. From (8. 2) and (8. 3), we can easily obtain
(9. 1) \backslash f’+f^{2}/2+3K/2=0 ,

where we put f=\beta+\gamma+\delta . Then if we put f=2v’/v, (9. 1) becomes
(9. 2) v’=-(3K/4)v .

(A) In this section, we consider the case of K=0. In this case g_{if} of
the space-time under consideration satisfies the Einstein equation for purely
gravitational field :

(9. 3) K_{ij}=0 ,

and the results are especially significant from the physical point of view.
Therefore we shall state the results somewhat in detail.

We have from (9. 2), or directly from (9. 1),

(9. 4) (a) f=0 or ( b) f=2M^{-1} , (M\equiv x+c) ,

where c is an arbitrary constant.
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(A_{a}) In the first place we consider the case of f=0. This condition
gives BCD=const. When ( i)(\beta, \gamma, \delta\neq) holds, we have \beta\gamma\delta\neq 0 from (8. 2)
Further we can easily find that we cannot have such a case so far as we
are dealing with real quantities. We can also prove that we cannot have
the cases of (ii_{2})(\beta\neq\gamma=\delta) , (ii_{3})(\gamma\neq\beta=\delta) and (ii_{4})(\beta=T\neq\delta) . If we consider
finally the case of (Hi) (\beta=\mathcal{T}=\delta) , we arrive at \beta=T=\delta=0 . Therefore we
have

PROPOSITION 9. 1. When K=0 holds, the only possible solution of (8. 2)
is given by \beta=\gamma=\delta=0 , if we assume f=0. That is, the V_{V} is S(B), the
line element is given by (IV) of Proposition 8. 2, and the c.s. satisfifies (IV)
of Proposition 8. 3.

(A_{b}) Now we consider the case in which f=2M^{-1}\neq 0 holds.
(i) We assume (\beta, \gamma, \delta\neq) . From (8. 2), we have

(9. 5) \beta-\gamma=a_{2}M^{-1} , \gamma-\delta=a_{3}M^{-1} , \delta-\beta=a_{4}M^{-1} ,

where a s are arbitrary constants satisfying

(9. 6) a_{2}+a_{3}+a_{4}=0

Then from (8. 2) and (9. 5), we obtain

(9. 7) \beta=(2+a_{2}-a_{4})M^{-1}/3 , \gamma_{=}(2+a_{3}-a_{2})M^{-1}/3 , \delta=(2+a_{4}-a_{3})M^{-1}/3 .

The condition (\beta, \gamma, \delta\neq) is equivalent to a_{2}a_{3}a_{4}\neq 0 . Using (8. 2) again, we
have
(9. 8) a_{2}^{2}+a_{3}^{2}+a_{4}^{2}=8

Conversely, when a_{2}a_{3}a_{4}\neq 0 , and (9. 6) and (9. 8) hold, (9. 7) satisfies (8. 2)
and K=0. Therefore we have

PROPOSITION 9. 2. Let K=0 hold. If we assume f=2M^{-1} and (\beta, \gamma,
\delta\neq) , the solution of (8. 2) is given by (9. 7), where a s are arbitrary non-
vanishing constants satisfying (9. 6) and (9. 8). In this case, we have

(9. 9) B=c_{2}M^{(2+a_{l}-a_{4})^{J}3} , C=c_{3}M^{(2+a_{3}-a_{2})/3} , D=c_{4}M^{(2+a_{4}-a_{3})/3} .
The actual method of obtaining a’s is as follows: If we eliminate a_{2}

from (9. 6) and (9. 8), we have
(9. 10) a_{3}^{2}+a_{4}^{2}+a_{3}a_{4}=4 .

Take a_{3} and a_{4} satisfying a_{3}a_{4}\neq 0 and (9. 10), and determine a_{2} from (9. 8).
Then this set (a_{2}, a_{3}, a_{4}) gives the solution, if a_{2}\neq 0 . An example is given
by



On some special kind of space-times, II 59

a_{2}=1 . a_{3}=(-1+\sqrt{13})/2_{j} a_{4}=-(1+\sqrt{13})/2 ;

(9. 11) \beta=(7+\sqrt{13})/6M , \gamma=(1+\sqrt{13})/6M , \delta=(2-\sqrt{13})/3M ;
B=c_{2}M^{(7+\overline{13}),6}\sqrt’ , C=c_{3}M^{(1+\overline{13})/6}\sqrt , D=c_{4}M^{(2\overline{13})/3}-\sqrt .

Further we have
PROPOSITION 9. 3. K_{\dot{A}}^{B} of V_{v} stated in Proposition 9. 2 has 3 double

eigenvalues, and these values are not constants. (As a result, they are
non-vanishing.)

The proof is easy if we use the fact that, for example, \beta\delta=\gamma\delta is
equivalent to \delta=0 , i. e. a_{3}-a_{4}=2 , which together with (9. 10) gives a_{3}a_{4}=0.

(ii_{4}) Next, we assume f=2M^{-1} and (\beta=\gamma\neq\delta) . Just as in (i), we obtain
from (8. 2)

(9. 12) \delta-\beta=a_{4}M^{-1} .
Making use of (8. 2) again, we find that (\beta=\gamma, \delta) and (B, C, D) must be one
of the following two types :

(ii_{4a}) a_{4}=2 , \beta=\gamma=0,\cdot \delta=2M^{-1} ; B=c_{2},\cdot C=c_{3} , D=c_{4}M^{2}

a_{4}=-2 , \beta=\gamma=(4/3)M^{-1} , \delta=-(2/3)M^{-1} ;
(ii_{4b})

B=c_{2}M^{4/3} , C=c_{3}M^{4/3} , D=c_{4}M^{-2/3} .
(ii_{4a}) is nothing but the one given in (III_{4a}) of Propositions 8. 2 and 8. 3, and
1T_{\dot{A}}^{B} has a sextuple eigenvalue 0. K_{\dot{A}}^{B} of (ii_{4b}) has a quadruple eigenvalue
-(2/9)M^{-2} and a double eigenvalue (4/9)M^{-2}. Both eigenvalues are func-
tions of x, and are not constants.

(ii_{2}) We now assume f=2M^{-1} and (\beta\neq\gamma=\delta) . (The case of (ii_{3})(\gamma\neq\beta

=\delta) can be obtained from the present one by a simple change.) Just as in
(ii_{4}), we can obtain, by making use of \beta-\gamma=a_{2}/M, the following two kinds
of solutions :

(ii_{2a}) a_{2}=2 , \gamma=\delta=0 , \beta=2M^{-1} ; B=c_{2}M^{2} , C=c_{3} , D=c_{4} ,

a_{2}=-2 , \beta=-(2/3)M^{-1} , \gamma=0^{\vee}=(4/3)M^{-1} ;
(ii_{2b})

B=c_{2}M^{-2/3} , C=c_{3}M^{4/3} , D=c_{4}M^{4/3} .
(ii_{2a}) is the one in (III_{2a}) of Propositions 8. 2 and 8. 3. Concerning the eigen-
values of K_{A}^{B}. of (ii_{2b}), we have the same results as in (ii_{4b}) .

(Hi) The case in which f=2M^{-1} and \beta=\gamma=\delta hold. We have \beta=\gamma

=\delta=(2/3)M^{-1} . Since this \beta does not satisfy 2\beta’+\beta^{2}=\beta^{2} , i.e. \beta’=0, we
cannot have such a solution.
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Summarizing the results obtained above, we have
PROPOSITION 9. 4. When K=0, the solutions of (8. 2) are given by

those stated in (ii_{\rho a}) and (ii_{\rho b}), (\rho=2,3, 4) , if we assume f=2M^{-1} and exclude
the case of (\beta, \gamma, \delta\neq) . The V_{v} ’s in (ii_{\rho a}) are S(B), while those in (ii_{\rho b}) are
not S(B). K_{\dot{A}}^{B} of (ii_{\rho b}) has one quadruple eigenvalue \nu and one double
eigenvalue \nu’(=-2\nu) , where \nu is a non-constant function.

We do not restate, with use of the members of c.s. , the results ob-
tained above. But it should be noted that the gradients of eigenvalues of
K_{\dot{A}}^{B} in Proposition 9. 3 and those in (ii_{ab}) of Proposition 9. 4 are propor-

1

tional to u_{i} . As is stated at the beginning of this section, these space-times
are non-flat exact solutions of the Einstein equation (9. 3).

Thus we have completed the study of the Einstein V_{v} satisfying K=0.

\S 10. Some preparatory propositions, 5.

In this last section, we consider the case of the Einstein V_{v} satisfying
K\neq 0, the last case remained. Then we have, corresponding to (9. 3),

(10. 1) K_{if}=(K/4)q_{if} ,

where K/4=\nu=const . (cf. Proposition 8. 1). (10. 1) is nothing but the
Einstein field equation with a cosmological term. So, again the results of
this section will be of some meanings from the physical point of view.
The results obtained in \S 8 concerning S(A) will be included in those of
this section.

{B) We first assume K<0 , and put p=\sqrt{-3K}/2 . Thus p is a non-
vanishing constant. Then from (9. 2), we have
(10. 2) v=ae^{px}+be^{-px},\cdot

where a and b are arbitrary constants which do not satisfy a=b=0. Then
we can obtain from (8. 2)

\beta=v^{-1}\{a_{2}+(2p/3)w\} , \gamma=v^{-1}\{a_{3}+(2p/3)w\} ,
(10. 3)

\delta=v^{-1}\{a_{4}+(2p/3)w\} , w\equiv ae^{px}-be^{-px} , (v’=pw, w’=pv) ,

where a s are arbitrary constants satisfying

(10. 4) a_{2}+a_{3}+a_{4}=0 .
Again substituting (10. 3) into (8. 2), we find that a necessary and suf-

ficient condition that \beta , \gamma, \delta given by (10. 3) satisfy (8. 2), is given by (10. 4)
and
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(10. 5) a_{2}a_{3}+a_{3}a_{4}+a_{4}a_{2}=16abp^{2}/3=-4abK .
From (10. 3), we have
(10. 6) B=c_{2}v^{2/3} exp (a_{2}F) , C=c_{3}v^{2/3} exp (a_{3}F) , D=c_{4}v^{2’3} exp (a_{4}F) ,

where F= \int v^{-1}dx=\int(ae^{px}+be^{-px})^{-1}dx. Therefore we have

PROPOSITION 10. 1. When K<0 , the general forms of (\beta, \gamma, \delta) and (B, C, D\rangle

satisfying (8. 2) are given by (10. 3) and (10. 6) respectively, where a s are
arbitrary constants satisfying (10. 4) and (10. 5).

Especially when b=0 (or a=0) and \beta=\mathcal{T}=\delta, we have a_{2}=a_{3}=a_{4}=0 and
(10. 7) \beta=\mathcal{T}=\delta=2p/3 ; B=c_{2}G , C=c_{3}G , D=c_{4}G , (G=e^{2px\acute,3}) ,

where c’s are new arbitrary positive constants. (10. 7) is nothing but those
given by (8. 6) in which p is replaced by 2p/3. In connection with this,
we have

PROPOSITION 10. 2. When K<0 , V_{v} must be S(A), if \beta=\mathcal{T}=\delta holds.
PROOF. From (10. 3) and (10. 4), we have a_{2}=a_{3}=a_{4}=0 , and from

(10. 5), ab=0. Then it is evident that the V_{v} is S(A) (cf. Proposition 8. 4).
Q. E. D.

It is easy to show that we have solutions (a_{2}, a_{3}, a_{4}) of (10. 4) and (10. 5)
giving various types : (i)(\beta, \gamma, \delta\neq), (ii_{2})(\beta\neq \mathcal{T}=\delta) , \cdots . Examples are

(i) \{a_{2}=a_{3}/2=-a_{4}/3=(4/\sqrt{21})p\sqrt{-ab}\} , (ii_{2})\{-a_{2}/2=a_{3}=a_{4}=(4/3)p\sqrt\overline{-ab}\} , \cdots

PROPOSITION 10. 3. A necessary and sufficient condition that we have
a real solution of (10. 4) and (10. 5) is ab\leqq 0 .

PROOF. By virtue of (10. 4), we have a_{2}a_{3}+a_{3}a_{4}+a_{4}a_{2}=-(a_{2}^{2}+a_{3}^{2}+a_{4}^{2})/2

and hence from (10. 5), the proposition follows. Q. E. D.
Thus we can say that the space-time under consideration cannot be V_{V}

in our sense when ab>0 . Evidently K_{\dot{A}}^{B} has a sextuple eigenvalue for
S(A), a quadruple and a double eigenvalues when two of \beta , \gamma, \delta coincide,
and three double eigenvalues when (\beta, \gamma, \delta\neq) . Except the case of S(A), the
eigenvalues are non-constant functions of x.

(C) Lastly, we consider the case K>0 , and put \sqrt{3K}/2=p . Then,
corresponding to (10. 2), we have from (9. 2)

(10. 8) v=a sinpx+b cos px ,

where a and b are arbitrary constants, at least one of which is non-vanish-
ing. The equations corresponding to (10. 3), (10. 4) and (10. 5) are respec-
tively
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\beta=v^{-1}\{a_{2}+(2p/3)w\} , \gamma=v^{-1}\{a_{3}+(2p/3)w\} ,
(10. 9)

\delta=v^{-1}\{a_{4}+(2p/3)w\} ; w=a cospx-b sinpx , (v’=pw, w’=-pv) ,

\langle 10. 10) a_{2}+a_{3}+a_{4}=0 .

{10. 11) a_{2}a_{3}+a_{3}a_{4}+a_{4}a_{2}=-(4/3)p^{2}(a^{2}+b^{2})=-(a^{2}+b^{2})K

The actual forms of B, C and D are given by (10. 6) with F= \int v^{-1}dx=

\int(a sinpx+b cos px)^{-1}dx .
If we put \beta=\gamma=\delta , we have from (10. 10) and (10. 11), a_{2}=a_{3}=a_{4}=a

=b=0, which cannot be the case. Therefore the V_{v} cannot be S(A), in
conformity with the result in Proposition 8. 4. Similarly to the preceding
case, we can show the actual examples of the solutions of (10. 10) and
(10. 11) of type (i) and (ii_{\rho}) . (As is stated in the above, we cannot have the
type (Hi).) The eigenvalues of lI_{\dot{A}}^{B} are of type { 1 double and 1 quadruple}-
or {3 double}-values and these values are not constants.

Thus in \S 8, \S 9 and the present section, we have completed the pre-
paratory investigations concerning the Einstein Vs. When K_{\dot{A}}^{B} has a sex-
tuple eigenvalue, the V is S(B) or S(A). The value is 0 for S(B) and
a non-vanishing constant for S(A). If we exclude such cases, the remaining
V_{V} ’s are of type {1 double and 1 quadruple}- or {3 double}-eigenvalues, and
further the values are non-constant functions of x in all cases. This result
will be used in considering the freedom of c.s. in these V_{v} ’s.
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