
On the commutator of differential operators1)

Dedicated to Prof. Yoshie Katsurada celebrating her sixtieth birthday

By Takeshi SUMITOMO

\S 0. Introduction. In [3]2) A. Lichnorowicz has studied the basic
properties of differential operators in several kinds of spaces such as the
differentiable manifold with a torsionless connection, the reductive homo-
geneous space with an invariant volume element, and the symmetric space.
Basing upon these fundamental researches he has reproved the known
theorem due to I. M. Gelfand that the algebra of invariant differential
operators on a globally symmetric Riemannian manifold be a commutative
one. Such an algebra in fact has a structure of a polynomial ring and there
are many applications of this theorem due to A. Selberg, H. Chandra and
others in several branches of mathematics such as the theory of numbers,
theory of spherical functions and modern physics.

In the present paper we try to study a rather converse problem of
Gelfand’s theorem basing upon the same foundations and formulas in [3].

To explain our situation more explicitely we propose the following problem:
Have a Riemannian homogeneous space with the commutative algebra of
invariant differential operators, a parallel Ricci tensor ? As an incomplete
answer to this problem one of the identities obtained in the present paper
contains as a special case the following two identities which are valid under
a suitable commutative condition,

(0. 1) \nabla_{n}(R_{ijkl}R_{m}^{jkl})+\nabla_{i}(R_{mjkl}R_{n}^{jkl})+\nabla_{m}(R_{njkl}R_{i}^{jkl})=0

(0. 2) \nabla_{k}R_{ij}+\nabla_{j}R_{ki}+\nabla_{i}R_{jk}=0

It is notable that the above identities consist, as a special case, in a weakly
symmetric space introduced by A. Selberg [12]. Another remarkable result
is that any harmonic vector field be a parallel one in a compact weakly
symmetric space.

In \S 1 terminologies, fundamental concepts and basic theorems about
differential operators are given. In \S 2 the commutators of differential opera-
tors on Riemannian manifolds are calculated explicitely. In \S 3 we obtain

1) A resume of a part of this work is contained in [8].
2) Numbers in brackets refer to the references at the end of the paper.
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a main theorem on a certain class of Riemannian homogeneous spaces and
its application to the harmonic vectors. Throughout the present paper we
use the notations and several conventions which belong to so called “Ricci
calculus”, for instance Einstenin’s convention of dummy indices is frequently
used.

\S 1. On differential operators. Let M be a differentiable manifold,
the set of all real valued smooth functions (with compact carrier) will be
denoted by C^{\infty}(M)(C_{c}^{\infty}(M)) respectively. We introduce into C_{c}^{\infty}(M) so
called “pseudo topology” in the sense of Laurent Schwartz [7] based on the
local uniform convergence of sequences of functions and their successive
derivatives. A linear endomorphism D of C_{c}^{\infty}(M) into itself is called a
differential operator if the following two conditions are satisfied

1) D has a local charactor e. d., the carrier of the function Df is
a subset of the carrier af f, where f\in C_{c}^{\infty}(M) .

2) D is a continuous mapping from C_{c}^{\infty}(M) into itself with respect
to the above cited pseudo topology.

As an application of the fundamental theorem of the theory of distri-
bution due to L. Schwartz in [7] that any distribution which has only one
point as its carrier must be a finite linear combination of real coefficients
of Dirac’s measure and its successive derivatives in the sense of distribution,
we can easily verify that the differential operator in the above sense is
nothing but a classically defined one at least locally. More explicitely we
have the following local expression of D.
(1. 1) (Df) ( p)=\sum_{|p|\leqq N}a_{p}\partial_{p}f_{*}(x^{a}) , p\in U

where f_{*} is a composite function f\circ\varphi of f restricted to a coordinate neigh-
bourhood U and a coordinate function \varphi:R^{n}arrow U, the coefficient functions
in (1. 1) are smooth functions of coordinates.

Any differential operator can be extended uniquely from C_{c}^{\infty}(M) onto
C^{\infty}(M) as a linear endomorphism of the latter one. Let \Phi be a diffeomor-
phism of M onto itself, f^{\Phi} denotes the composite function f\circ\Phi where
f\in C^{\infty}(M) . f is said to be an invariant function by a diffeomorphism \Phi

when f^{\Phi}=f. Let D be any linear endomorphism of C^{\infty}(M) into itself, D^{\Phi}

denotes the endomorphism defined by D^{\Phi}f=(Df^{\Phi})^{\Phi^{-1}} . When D is a dif-
ferential operator D^{\Phi} is also easily seen to be a differential operator. A
differential operator D is said to be invariant by a diffeomorphism \Phi when
the identity D^{\Phi}=D consists. For the sake of simplicity we write f instead
of f_{*} in (1. 1) hereafter.

We define a commutator of two differential operators D_{1} and D_{2} by
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(1. 2) [D_{1}, D_{2}]f=D_{1}D_{2}f-D_{2}D_{1}f .

In the special case of D_{i} to be a differential operators of first order, the
commutator introduced above is nothing but a usual Lie’s bracket product
of these vector fields. The set of all differential operators on M as well
as the set of all invariant differential operators by a diffeomorphism, is
easily seen to be a Lie algebra with respect to this commutator, though
these two Lie algebras are of infinite dimensional in general.

In a differentiable manifold with an affine connection any differential
operator can be expressed in terms of the covariant derivatives as follows.
Here we note that a covariant derivative is defined not only locally but
may be considered as a globally one, so we obtain a second definition of
the differential operator in such a space.

Lemma (Lichnerowicz) In a differentiable manifold with a torsionless
affine connection any differential operator D can be expressed as a linear
combination of covariant derivatives of successive orders p with smooth
coefficients as follows
(1. 3) Df= \sum_{p}a^{i_{1}\cdots i_{p}}\nabla_{i_{1}}\nabla_{i_{2}}\cdots\nabla_{i_{p}}f

where each coefficient function is a component of a contravariant symmet-
ric tensor field and moreover this expression is unique.

The modification of the expression (1. 1) into (1. 3) is a result of an
execution of term by term calculations of substituting covariant deriva-
tives in place of ordinary derivatives from the term of the highest order
inductively.

\S 2. From Riemannian geometry. Let M be a Riemannian manifold
with a positive definite metric tensor g_{ij}, \nabla_{i} denote the covariant derivatives
with respect to Christoffel symbol. We recall so called Ricci’s formula:

\nabla_{i}\nabla_{j}f=\nabla_{j}\nabla_{i}f , \nabla_{i}f=\partial_{i}f=\frac{\partial f}{\partial x^{i}} ,
(2. 1)

\nabla_{i}\nabla_{j}a_{i_{1}\cdots i_{p}}-\nabla_{j}\nabla_{i}a_{i_{1}\cdots i_{p}}=-\sum_{k=1}^{p}R_{iji_{k}}^{a}a_{i_{1}\cdots a\cdots i_{p}} .

A diffeomorphism of M onto itself is called an isometrie if it preserves
the Riemannian metric tensor g_{ij} . A vector field \xi^{i} on M generating a local
one parameter group of isometries is called a killing one. Any killing vector
field is characterized by satisfying the following equations where L_{\xi} denotes
Lie derivative with respect to \xi^{i} .
(2. 2) L_{\xi}g_{ij}\equiv\nabla_{j}\xi_{i}+\nabla_{i}\xi_{j}=0 .
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According to the formulas in the theory of Lie derivatives we have a series
of equations satisfied by a killing vector field.

L_{\xi} \Gamma_{jk}^{i}\equiv\frac{1}{2}g^{ia}\{\nabla_{k}L_{\xi} g_{ja}+\nabla_{j}L_{\xi}g_{ka}-\nabla_{a}L_{\xi}g_{jk}\}

(2. 3) \equiv\nabla_{j}\nabla_{k}\xi^{i}+R_{ajk}^{i}\xi^{a}=0 ,
L_{\xi}R_{jkl}^{i}\equiv\nabla_{j}(L_{\xi}\Gamma_{kl}^{i})-\nabla_{k}(L_{\xi}\Gamma_{jl}^{i})=0 ,
L_{\xi}(\nabla_{m}R_{jkl}^{i})=0 , L_{\xi}R_{jk}\equiv L_{\xi}R_{ijk}^{i}=0 .

Now we are going to investigate the commutators of several pairs of
differential operators, but in order to avoid fruitless long calculations in
the general case, we are mainly concerned with the differential operators of
at most second order.

When D_{1}f=\xi^{ij}\nabla_{i}\nabla_{j}f, D_{2}f=\eta^{i}\nabla_{i}f where \xi^{ij} are components of a cer-
tain symmetric tensor field we have

[D_{1}, D_{2}]f=\xi^{ij}\nabla_{i}\nabla_{j}(\eta^{k}\nabla_{k}f)-\eta^{k}\nabla_{k}(\xi^{ij}\nabla_{i}\nabla_{j}f)

=\xi^{ij}\eta^{k}(\nabla_{i}\nabla_{j}\nabla_{k}-\nabla_{k}\nabla_{i}\nabla_{j})f+(\xi^{ij}\nabla_{i}\nabla_{j}\eta^{k})\nabla_{k}f

+(2\xi^{ij}\nabla_{i}\eta^{k})\nabla_{j}\nabla_{k}f-(\eta^{k}\nabla_{k}\xi^{ij})\nabla_{i}\nabla_{j}f

(2. 4)
=\xi^{ij}\eta^{k}(-R_{ikj}^{a}\nabla_{a}f)+(\xi^{ij}\nabla_{i}\nabla_{j}\eta^{k})\nabla_{k}f

+(2\xi^{ki}\nabla_{k}\eta^{j}-\eta^{k}\nabla_{k}\xi^{ij})\nabla_{i}\nabla_{j}f

=\xi^{ij}(L_{\xi}\Gamma_{ij}^{k})\nabla_{k}f+(2\xi^{ki}\nabla_{k}\eta^{j}-\eta^{k}\nabla_{k}\xi^{ij})\nabla_{i}\nabla_{j}f

In a Riemannian manifold a Laplacian operator is defined by \Delta :

(2. 5) \Delta f=g^{ij}\nabla_{i}\nabla_{j}f=div. {\rm grad} f.
From the identity (2. 4) we obtain a new characterization of a killing

vector field in terms of its corresponding differential operator.

THEOREM 2. 1. In order that a differential operator offirst order D=
\eta^{i}\nabla_{i}f commute with the Laplacian operator on a Riemannian manifold M

0=[\Delta, D]f , f\in C^{\infty}(M)

it is necessary and sufficient that the coefficient vector field \eta^{i} be a killing
one.

PROOF. On substituting the metric tensor g^{ij} in place of \xi^{ij} in the
identity (2. 4), we obtain the following equation satisfied by \eta^{i} as a conse-
quence of the commutativity assumption in this theorem,

(2. 6) 0=[\Delta, D]=g^{ij}(L_{\eta}\Gamma_{ij}^{k})\nabla_{k}f+(\nabla^{k}\eta^{i}+\nabla^{i}\eta^{k})\nabla_{i}\nabla_{k}f, \nabla^{k}=g^{ki}\nabla_{i} .

As the variable function f in (2. 6) as well as \partial_{i}f and \partial_{i}\partial_{j}f be arbitrary
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we obtain from (2. 6) as the vanishing coefficients of \partial_{i}\partial_{k}f

(2. 7) 0=(L_{\eta}g_{lm})g^{li}g^{mk}=\nabla^{k}\eta^{i}+\nabla^{i}\eta^{k} .

Now the equation (2. 6) turns into
0=g^{ij}(L_{\eta}\Gamma_{ij}^{k})\nabla_{k}f .

As in the case of (2. 7) arbitrariness of \partial_{k}f means

(2. 8) 0=g^{ij}(L_{\eta}\Gamma_{ij}^{k}) .
The equation (2. 7) is equivalent to the equation (2. 2) which characterizes
the vector field \eta^{i} to be a killing one, we have proved the necessity. Con-
versely a killing vector satisfies (2. 7) and (2. 8), so we have (2. 6). This
proves the sufficiency.

Before going into the next case we need a lemma for brevity’ sake.
LEMMA. We have

\nabla_{i}\nabla_{j}\nabla_{l}\nabla_{m}f-\nabla_{l}\nabla_{m}\nabla_{i}\nabla_{j}f=-(\nabla_{i}R_{jlm}^{k}+\nabla_{l}R_{imj}^{k})\nabla_{k}f

(2. 9)
-(R_{jlm}^{k}\delta_{i}^{h}+R_{imj}^{k}\delta_{l}^{h}+R_{ilm}^{k}\delta_{j}^{h}+R_{ilj}^{k}\delta_{m}^{h})\nabla_{k}\nabla_{h}f .

PROOF. As we have
\nabla_{i}\nabla_{j}\nabla_{l}\nabla_{m}f-\nabla_{l}\nabla_{m}\nabla_{i}\nabla_{j}f=\nabla_{i}(\nabla_{j}\nabla_{l}\nabla_{m}f-\nabla_{l}\nabla_{j}\nabla_{m}f)

+\nabla_{l}(\nabla_{i}\nabla_{m}\nabla_{j}f-\nabla_{m}\nabla_{i}\nabla_{j}f)+(\nabla_{i}\nabla_{l}-\nabla_{l}\nabla_{i})\nabla_{m}\nabla_{j}f ,

substituting from Ricci formula (2. 1) into each term of the right hand mem-
ber of the above equations

=-\nabla_{i}(R_{jlm}^{k}\nabla_{k}f)-\nabla_{l}(R_{imj}^{k}\nabla_{k}f)-R_{ilm}^{k}\nabla_{k}\nabla_{j}f-R_{ilj}^{k}\nabla_{m}\nabla_{k}f

=-(\nabla_{i}R_{jlm}^{k})\nabla_{k}f-(\nabla_{l}R_{imj}^{k})\nabla_{k}f-R_{jlm}^{k}\nabla_{i}\nabla_{k}f-R_{imj}^{k}\nabla_{l}\nabla_{k}f

-R_{ilm}^{k}\nabla_{k}\nabla_{j}f-R_{ilj}^{k}\nabla_{m}\nabla_{k}f .

From the above, by virtue of \nabla_{i}V_{j}f=\nabla_{j}\nabla_{i}f in (2. 1), we obtain (2. 9)

after gathering of like terms by introducing a Kronecker tensor. q. e. d.

When D_{1}f=\xi^{ij}\nabla_{i}\nabla_{j}f and D_{2}f=\eta^{ij}\nabla_{i}\nabla_{j}f, the commutator of these
operators is scrutinized as follows

[D_{1}, D_{2}]f=\xi^{ij}\nabla_{i}\nabla_{j}(\eta^{lm}\nabla_{l}\nabla_{m}f)-\eta^{lm}\nabla_{l}\nabla_{m}(\xi^{ij}\nabla_{i}\nabla_{j}f)

=\xi^{ij}\eta^{lm}(\nabla_{i}\nabla_{j}\nabla_{l}\nabla_{m}-\nabla_{l}\nabla_{m}\nabla_{i}\nabla_{j})f+2\xi^{ij}(\nabla_{i}\eta^{lm})\nabla_{j}\nabla_{l}\nabla_{m}f

-2\eta^{lm}(\nabla_{l}\xi^{ij})\nabla_{m}\nabla_{i}\nabla_{j}f+(\xi^{ij}\nabla_{i}\nabla_{j}\eta^{lm}\nabla_{l}\nabla_{m}f-\eta^{lm}\nabla_{l}\nabla_{m}\xi^{ij}\nabla_{i}\nabla_{j}f)

(2. 10)
=-\xi^{ij}\eta^{lm}(\nabla_{i}R_{jlm}^{k}+\nabla_{l}R_{imj}^{k})\nabla_{k}f-\xi^{ij}\eta^{lm}(R_{jlm}^{k}\delta_{i}^{h}+R_{imj}^{k}\delta_{l}^{h}

+R_{ilm}^{k}\delta_{j}^{h}+R_{ilj}^{k}\delta_{m}^{h})\nabla_{h}\nabla_{k}f+(\xi^{lm}\nabla_{l}\nabla_{m}\eta^{ij}-\eta^{lm}\nabla_{l}\nabla_{m}\xi^{ij})\nabla_{i}\nabla_{j}f

+2\xi^{ij}(\nabla_{i}\eta^{lm})\nabla_{j}\nabla_{l}\nabla_{m}f-2\eta^{lm}(\nabla_{l}\xi^{ij})\nabla_{m}\nabla_{i}\nabla_{j}f .
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A formally analogus theorem with the Theorem 2. 1 in the case of the
differential operators of the second order can be read from (2. 10) as follows.

THEOREM 2. 2. In order that a differential operator \eta^{if}\nabla_{i}\nabla_{j}f of the
second order commute with the Laplacian operator in a Riemannian mani-
fold, it is necessary and sufficient that the coefficient tensor satisfies the
following three equations

i) \nabla_{k}\eta_{ij}+\nabla_{j}\eta_{ki}+\nabla_{i}\eta_{kj}=0 ,
(2. 11) ii) \nabla^{k}\nabla_{k}\eta_{ij}-2\eta^{lm}R_{ilmj}+R_{i}^{l}\eta_{lj}+R_{j}^{l}\eta_{li}=0 ,

iii) \eta^{lm}\nabla_{a}R_{ml}-2\eta\nabla_{l}R_{ma}=0 ,

where R_{ij}=R_{ijk}^{k} .
PROOF. On substituting the metric tensor g^{ij} in place of \xi^{ij} in (2. 10)

and after taking a symmetric part of each coefficient tensor so that the
expression coincides with that of (1. 3), we obtain the following equation
satisfied by \eta^{ij}

0=[\Delta, D_{2}]=-\eta^{lm}(\nabla^{i}R_{ilm}^{k}-\nabla_{l}R_{m}^{k})\nabla_{k}f+(\nabla^{l}\nabla_{l}\eta^{hk}

(2. 12)
-2R_{jl}^{hk}\eta^{jl}+2R_{m}^{h}\eta^{mk}+R_{m}^{h}\eta^{mk})\nabla_{h}\nabla_{k}f

+ \frac{2}{3}(\nabla^{i}\eta^{lm}+\nabla^{m}\eta^{il}+\nabla^{l}\eta^{mi})\nabla_{i}\nabla_{l}\nabla_{m}f .

By contracting the metric tensor g^{ik} to the Bianchi’s identity:
\nabla_{m}R_{ijk}^{l}+\nabla_{j}R_{mik}^{l}+\nabla_{i}R_{jmk}^{l}=0 ,

we have a known formula
(2. 13) \nabla^{i}R_{jmi}^{l}=\nabla_{m}R_{j}^{l}-\nabla_{f}R_{m}^{l} , R_{f}^{l}=g^{lk}R_{jk} .

Substituting (2. 13) into (2. 12) we can observe that the coefficient tensor
of \nabla_{k}f in (2. 12) is. the same with the left hand member of (2. 11) iii). Now
making available use of uniqueness assertion of the lemma in \S 1 or by the
same discussion just as in the proof of the Theorem 2. 1, we can deduce
(2. 11) from (2. 12). q.e.d.

LEMMA. In a Riemannian manifold any symmetric tensor field \eta_{ij}

satisfying the equations \nabla_{k}\eta_{ij}+\nabla_{i}\eta_{kj}+\nabla_{j}\eta_{ki}=0 also satisfies the following
equations

i) \nabla^{k}\nabla_{k}\eta_{ij}-2\eta^{lm}R_{ilmj}+R_{i}^{l}\eta_{lj}+R_{j}^{l}\eta_{li}-\nabla_{i}\nabla_{j}\eta_{k}^{k}=0 ,
(2. 14)

ii) \nabla^{l}\nabla_{j}\eta_{ml}-\nabla^{l}\nabla_{m}\eta_{jl}=R_{m}^{k}\eta_{kj}-R_{j}^{k}\eta_{km} .
PROOF. Taking a skew symmetric part of twicefold covariant deriva-

tive : (\nabla_{l}\nabla_{m}-\nabla_{m}\nabla_{l})\eta_{ij} , we have
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(2. 15) -\nabla_{l}(\nabla_{i}\eta_{jm}+\nabla_{j}\eta_{mi})-\nabla_{m}\nabla_{l}\eta_{ij}=-(R_{lmi}^{k}\eta_{kj}+R_{lmf}^{k}\eta_{ki}) .
By contracting g^{li} to (2. 15) we obtain

(2. 16) -\nabla^{k}\nabla_{k}\eta_{ij}-\nabla^{k}\nabla_{j}\eta_{ki}-\nabla_{i}\nabla^{k}\eta_{jk}=-\eta^{lm}R_{lifm}+\eta_{jk}R_{i}^{k} .

On the other hand contracting g^{kj} and \nabla^{k} to (2. ll)i) we obtain
2\nabla^{k}\eta_{ik}+\nabla_{i}\eta_{k}^{k}=0 ,
\nabla^{k}\nabla_{k}\eta_{ij}+\nabla^{k}\nabla_{j}\eta_{ki}+\nabla^{k}\nabla_{i}\eta_{jk}=0 .

Taking a symmetric part of (2. 16) and making use of the above two equa-
tions we obtain

-2\nabla^{k}\nabla_{k}\eta_{ij}-2\nabla^{k}\nabla_{(j}\eta_{\mathfrak{l}k|i)}-2\nabla_{(i}\nabla^{k}\eta_{j)k}=-2\eta^{lm}R_{lijm}+\eta_{jk}R_{i}^{k}+\eta_{ik}R_{j}^{k} .
This equation is nothing but (2. 14 i). (2. 14) ii) is directly obtained by taking
a skew symmetric part of (2. 16) with respect to the indices k and i.

THEOREM 2. 2’. In order that a differential operator \eta^{ij}\nabla_{i}\nabla_{j}f of the
second order commute with the Laplacian operator in a Riemannian mani-
fold, it is necessary and sufficient that \eta^{ij} safisfies the following equations

i) \nabla_{k}\eta_{ij}+\nabla_{i}\eta_{jk}+\nabla_{j}\eta_{ki}=0 , ii) \nabla_{k}\nabla_{l}\eta_{i}^{i}=0 ,

iii) \eta^{lm}\nabla_{k}R_{lm}-2\eta^{lm}\nabla_{l}R_{mk}=0 .

From (2. 11) ii) and (2. 13) i) which is a consequence of (2. 11) i), we have the
above condition ii). Conversely i) and ii) mean together (2. 11)ii). q.e.d.

THEOREM 2. 3. If a differential operator \eta^{ij}\nabla_{i}\nabla_{j}f of the second order
commute with the Laplacian operator \Delta, \eta_{i}^{i} must be constant under the one
of following three additional conditions on the Riemannian manifold M
1) M is compact. 2) M is irreducible. 3) The matrix of Ricci tensor is
non-singular.

PROOF. From Theorem 2. 2’ we have the following equation in either
case

(2. 17) \nabla_{k}\nabla_{l}\eta_{i}^{i}=0 .

In the case of 1) the well known theorem due to E. Hopf can be applied
to (2. 17) and \eta_{i}^{i} must be constant. In the case of irreducible space there
is no nonvanishing parallel vector field, so from (2. 17) we conclude that
\nabla_{l}\eta_{i}^{i}=0 . In the case os 3) we have no nonvanishing parallel vector field
because any parallel vector v_{i} satisfies

R_{ij}v^{j}=0 q.e.d.

By the way we obtain a condition of symmetric tensor \eta_{ij} to be parallel.
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THEOREM 2. 4. In order that a symmetric tensor \eta_{ij} be parallel one
in a compact Riemannian manifold, it is necessary and snfficient that \eta_{ij}

satisfies the following two conditions.

i) \nabla_{k}\eta_{ij}+\nabla_{i}\eta_{jk}+\nabla_{j}\eta_{ki}=0 ,
(2. 18)

ii) (\nabla_{l}\nabla_{m}-\nabla_{m}\nabla_{l})\eta_{ij}=0 .

From (2. 18) ii) we obtain as an application of Ricci’s formula: (2. 1)

(2. 19) 0=g^{il}(\eta_{ik}R_{jlm}^{k}+\eta_{kj}R_{ilm}^{k})=-\eta_{kl}R_{jm}^{kl}+\eta_{kj}R_{m}^{k} .
On the other hand (2. 14)i) follows to (2. 18)i), so from (2. 19) and (2. 14)i)
\eta_{ij} must satisfy the following equations

(2. 20) \nabla^{k}\nabla_{k}\eta_{ij}-\nabla_{i}\nabla_{j}\eta_{k}^{k}=0 .
As we have the identity

\nabla^{k}\nabla_{k}(\eta_{ij}\eta^{ij})=2(\nabla^{k}\eta_{ij})(\nabla_{k}\eta_{iJ})+2(\nabla^{k}\nabla_{k}\eta_{ij})\eta^{ij} ,

substituting (2. 20) into this identity we have
\nabla^{k}\nabla_{k}(\eta_{ij}\eta^{ij})=2(\nabla^{k}\eta_{ij})(\nabla_{k}\eta_{ij})+2\eta^{ij}(\nabla_{i}\nabla_{j}\eta_{k}^{k})

=2(\nabla^{k}\eta_{ij})(\nabla_{k}\eta^{ij})+2\{\nabla_{i}(\eta^{ij}\nabla_{j}\eta_{k}^{k})-(\nabla_{i}\eta^{ij})(\nabla_{j}\eta_{k}^{k})\}

=2\nabla_{i}(\eta^{ij}\nabla_{j}\eta_{k}^{k})+2(\nabla^{k}\eta^{ij})(\nabla_{k}\eta_{ij})+(\nabla^{j}\eta_{l}^{l})(\nabla_{j}\eta_{k}^{k}) .
On applying Green’s integral formula:

0=div. U d\sigma ,

where U is a vector field, we have the following equation

0= \int\{\nabla^{k}\nabla_{k}(\eta_{ij}\eta^{ij})-2\nabla_{i}(\eta^{ij}\nabla_{j}\eta_{k}^{k})\}d\sigma

= \int 2(\nabla^{k}\eta^{ij})(\nabla_{k}\eta_{ij})+(\nabla^{j}\eta_{l}^{l})(\nabla_{j}\eta_{k}^{k})d\sigma\geqq 0 .

Then we have
0=(\nabla^{k}\eta^{ij})(\nabla_{k}\eta_{ij}), 0=(\nabla^{j}\eta_{l}^{l})(\nabla_{j}\eta_{k}^{k}) .

Then we obtain
0=\nabla_{k}\eta_{ij} .

As a final step in this paragraph we will establish a general form
which includes the Theorem 2. 1 and the Theorem 2. 2 as a special case.

THEOREM 2. 5. In order that a differential operator \eta^{i_{1}\cdots i_{p}}\nabla_{i_{1}\cdots i_{p}}f of
p-th order commute with the Laplacian operator, it is necessary that the
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coefficient symmetric tensor field \eta_{i_{1}\cdots i_{p}} satisfies
(2. 21) \nabla_{i_{p+1}}\eta_{i_{1}\cdots i_{p}}+\nabla_{i_{1}}\eta_{i_{2}\cdots i_{p}i_{p+1}}+\cdots\cdots+\nabla_{i_{p}}\eta_{i_{p+1}i_{1}\cdots i_{p-1}}=0 .

PROOF. By a straightforward calculation in the same manner as in
the proof of Theorem 2. 1 and 2. 2 we can easily see that the condition is
necessary.

\S 3. Applications to Riemannian homogeneous spaces. Let G be
a connected Lie group and H a closed subgroup of G and we assume
moreover that the adjoint representation of subgroup H in G is compact
and H contains no normal subgroup of G. Such a homogeneous space
G/H is called an (effective) Riemannian homogeneous space because of the
existnence of a certain Riemannian metric tensor being invariant by the
action of each element of G on G/H. Henceforth in the present paper
“a Riemannian homogeneous space” is understood as a stronger form of
choicing and fixing an invariant metric. A Riemannian homogeneous space
can be regarded as a reductive homogeneous space in the sense of [6], but
as we are mainly concerned with the Levi Civita’s connection associated to
the choicing Riemannian metric, so we have not any interest to the ca-
nonical connections in [5].

Let I(G/H) denote the set of all isometries of G/H. In a Riemannian
homogeneous space the action of any element of G is of isometric one, so
G can be regarded as a subgroup of I(G/H). In this space the known
scalars such as the scalar curvature : R=R_{ij}g^{ij} , the mass scalar of Ricci
tensor: R_{if}R^{ij}, and the mass scalar of curvature tensor: R_{ijkl}R^{ijkl} are all
constant.

Now we introduce the concept of known three kinds of Riemannian
homogeneous spaces.

(1) A Riemannian manifold M is called a globally (locally) symmetric
space if at each point of M the geodesic symmetry at this point can be
extendes to the isometrie of M (the geodesic symmetry is a local isometry).

(2) A Riemannian manifold M is called weakly symmetric space if
a subgroup G of I(M) act on M transitively and there is an element \mu of
I(M) satisfying the following three conditions

i) \mu G\mu^{-1}=G , ii) G\ni\mu^{2} ,

iii) Let x and y be any pair of points on M, then there exists an
element m of G such that \mu x=my , \mu y=mx .

A globally symmetric space can be regarded as a weakly symmetric space
if we put G=I(M), \mu=I.

Let D(G/H) denote the set of differential operators which are invariant
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by the action of each element of G in the sense of \S 1. In our space
D(G/H) is not a trivial one because of the existence of the Laplacian
operator. The invariantness of the Laplacian operator may be obtained
directly from its definition. Following to A. Lichnerowicz we give a char-
acterization of invariant differential operators by the invariantness of coeffi-
cient tensor fields as follows.

THEOREM 3.1. (A. Lichnerowicz) Any invariant differential operator
in D(G/H) can be expressed as follows
(3. 1) Df= \sum_{p}a_{p}^{i_{1}\cdots i_{p}}\nabla_{i_{1}}\cdots\cdots\nabla_{i_{p}}f,

where the coefficient symmetric tensors a_{p} ’s are invariant ones by the action
of G, that is, Lie derivatives of a_{p}^{i_{1}\cdots i_{p}} with respect to the infifinitesimal
transformation corresponding to any element of the Lie algebra of G vanish.

As the action of each element of G on G/H is of isometric one, we
can deduce the invariant property of the Laplacian operator from this
theorem.

Our main concern in the present paper lies on a Riemannian homoge-
neous space on which D(G/H) be a commutative algebra, so we call such
a space “the space which satisfies the condition (c)” for the brevity’ sake.
We start with aiming at the two object one of which is the problem already
mentioned in the introduction, the another is exposing out of latent pro-
perties and formulas of symmetric spaces by making available use of the
commutativity of D(G/H).

The following is a well known theorem due to K. Yano and S. Bochner
being fundamental in order to study a harmonic vector field in a hom-
ogemeouse space.

THEOREM 3. 2. In a compact Riemannian manifold the inner product
\xi_{i}\eta^{i} of a killing vector field \xi and a harmonic one \eta is constant.

As a corollary of this theorem we have
THEOREM 3. 3. In a compact Riemannian manifold the Lie’s bracket

product [\xi, \eta] of a killing vector field \xi and a harmonic one \eta annihilates.

PROOF. From Theorem 3. 2 we have by taking covariant derivatives

(3. 2) 0=\nabla_{k}(\xi_{i}\eta^{i})=(\nabla_{k}\xi_{i})\eta^{i}+\xi_{i}\nabla_{k}\eta^{i}

From the definition of killing vector field and of harmonic one, these satisfy
the following equations respectively

(3. 3) \nabla_{j}\xi_{i}+\nabla_{i}\xi_{j}=0, \nabla_{f}\eta_{i}=\nabla_{i}\eta_{j} .
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Substituting from (3. 3) into (3. 2) we obtain
-(\nabla_{i}\xi_{k})\eta^{\dot{i}}+(\nabla_{i}\eta^{k})\xi^{i}=0.

The followings are main results in the present paper.

THEOREM 3. 4. In a compact Riemannian homogeneous space with the
condition (c), any harmonic vector field must be a parallel oue.

PROOF. From Theorem 3. 3, any harmonic vector field must be an
invariant one by the group G. From the assumption of the condition (c)

and Theorem 2. 1 it must be a killing one. Consequently a harmonic vector
field in such a space must be a parallel one. q.e.d.

As a special case of the above theorem we have
THEOREM 3. 5. In a compact globally symmetric Riemannian manifold

or as a slight generalization, in a compact weakly symmetric Riemannian
manifold, any harmonic vector field must be a papallel one.

PROOF. In a compact globally symmetric Riemannian manifold, the
theorem of I. M. Gelfand introduced in \S 0 shows the commutativity of
D(G/H). In a weakly symmetric case, as Selberg has shown D(G/H) is
commutative also. We can apply Theorem 3. 4 to the both cases.

REMARK. The analogous results with Theorem 3. 5 in the case of
globally symmetric case have been obtained by M. Matsumoto and T. Naga-
no and others [4] [5]. In a globally symmetric case our result coincides
with Nagano’s. He shows that with a suitable exchange of the Riemannian
metric any harmonic vector field can be regarded as a parallel one in
a compact homogenous space. Our situation is a little different from Na-
gano’s because we are fixing our invariant metric. Theorem 3. 5 in fact
can be obtained directly from Theorem 3. 3, for it is well known that in
a symmetric homogeneous space any invariant tensor be a parallel one with
respect to the first canonical connection in the sense of Nomizu [6].

From Theorem 3. 4 we have
THEOREM 3. 6. In a compact Riemannian homogeneous space with the

condition (c), one of the following conditions means the vanishing of the

first Betti number.
(i) The determiant of the matrix of Ricci tensor is non zero.
(ii) The space is irreducible.
(iii) The determinant of the matrix of the tensor field R_{ijkl}R_{h}^{jkl} is

non zero.
PROOF. Each one of these three conditions means non existence of

non trivial parallel vector field. On the other hand from Theorem 3. 4 any



On the commutator of differential operators 41

harmonic vector field must be a parallel one in such a space, so we have
proved the theorem.

REMARK. There are many other conditions of assuring the non ex-
istence of nontrivial parallel vector field, for instance \det. (R_{ijkl}R^{jk})\neq 0 .
Without any assumption of compactness we have

THEOREM 3. 7. In a Riemannian homogeneous space with the condition
(c) (especially in a globally or weakly symmetric Rimannian space) the
following conditions (i) and (ii) are equivalent and from these the condi-
tion (iii) follows.

(i) There is no invariant differential operator of the first order.
(ii) The centralizer of the Lie algebra of G in the algebra of killing

vector fields is trivial.
(iii) G semi simple.
PROOF. The equivalence of (i) and (ii) follows directly from Theorem

2. 1 (ii) means (iii) evidently.
For the differential operators of the second order we have

THEOREM 3. 8. In a Riemannian homogeneous space satisfying the
condition (c) any invariant symmetric tensor field \eta_{ih} must satisfy the fol-
lowing conditions
(3. 4) \nabla_{k}\eta_{ij}+\nabla_{i}\eta_{jk}+\nabla_{j}\eta_{ki}=0 .

PROOF. From the necessity part of Theorem 2. 2 we have (3. 4).
Note that the conditions ii) and iii) of Theorem 2. 2’ is identical if (3. 4) is
satisfied and \eta_{ih} be the one of the following tensor fields R_{ij} , R_{ijkl}R_{h}^{jkl} etc.

As a corollary of this theorem we have
THEOREM 3. 9. In a Riemannian homogeneous space satisfying the

condition (c) Ricci tensor R_{ij} and the tensor R_{ijkl}R_{h}^{jkl} satisfy the equation
(0. 2) and (0. 1) respectively.
We have a general form of this type of theorems

THEOREM 3. 10. In a Riemannian homogeneous space satisfying the
condition (c) any symmetric tensor which is an invariant one must satisfies
the following condition
(3. 5) \nabla_{i_{p+1}}\eta_{i_{1}\cdots i_{p}}+\nabla_{i}\eta_{i_{2}\cdots i_{-1}i_{p}}+\cdots\cdots+\nabla_{i_{p}}\eta_{i_{p+1}i_{1}\cdots i_{p-1}}=0.

It may be a surprising matter that in a weakly symmetric space (0. 1) and
(0. 2) consist. But we have no application of these formulas till nowadays.
There may be some meaning in the case of hermitian space [9].
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Osaka University
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