Positively curved complex submanifolds immersed in a complex projective space II

Dedicated to Professor Y. Katsurada on her 60th birthday

By Koichi Ogiue

1. Introduction

Let $P_{m}(\boldsymbol{C})$ be a complex projective space of complex dimension m with the Fubini-Study metric of constant holomorphic sectional curvature 1. Recently S. Tanno [6] has proved the following result.

Proposition A. Let M be an n-dimensional complete complex submanifold immersed in $P_{n+p}(\boldsymbol{C})$. If every holomorphic sectional curvature of M with respect to the induced metric is greater than $1-\frac{n+2}{6 n^{2}}$, then M is complex analytically isometric to a linear subspace $P_{n}(\boldsymbol{C})$.

In this paper we shall prove the following theorems.
Theorem 1. Let M be an n-dimensional complete complex submanifold immersed in $P_{n+p}(\boldsymbol{C})$. If every Ricci curvature of M with respect to the induced metric is greater than $n / 2$, then M is complex analytically isometric to a linear subspace $P_{n}(\boldsymbol{C})$.

Theorem 1 is the best possible in this direction.
Theorem 2. Let M be an n-dimensional complete submanifold immersed in $P_{n+p}(\boldsymbol{C})$. If every holomorphic sectional curvature of M with respect to the induced metric is greater than δ, then M is complex analytically isometric to a linear subspace $P_{n}(\boldsymbol{C})$, where

$$
\delta= \begin{cases}\frac{3 n-1}{3 n+1} & (n \leq 5) \\ \frac{2 n-3}{2 n-2} & (n>5)\end{cases}
$$

Theorem 2 is an improvement of Proposition A.
Theorem 3. Let M be an n-dimensional complete complex submanifold immersed in $P_{n+p}(\boldsymbol{C})$. If $n \geq 2$ and if every sectional curvature of M with respect to the induced metric is greater than δ, then M is complex analytically

[^0]isometric to a linear subspace $P_{n}(\boldsymbol{C})$, where
\[

\delta=\left\{$$
\begin{array}{l}
\frac{5}{23} \quad(n=5) \\
\frac{5 n-2-\sqrt{9 n^{2}+60 n+4}}{8(n-5)}
\end{array}
$$ \quad(n \neq 5)\right.
\]

2. Preliminaries

Let J (resp. $\widetilde{J})$ be the complex structure of $M\left(\right.$ resp. $\left.P_{n+p}(\boldsymbol{C})\right)$ and g (resp. $\hat{\sigma}$) be the Kaehler metric of M (resp. $P_{n+p}(\boldsymbol{C})$). We denote by \boldsymbol{V} (resp. $\tilde{\nabla}$) the covariant differentiation with respect to g (resp. \tilde{g}). Then the second fundamental form σ of the immersion is given by

$$
\sigma(X, Y)=\tilde{\nabla}_{X} Y-\nabla_{X} Y
$$

Let R be the curvature tensor field of M. Then the equation of Gauss is

$$
\begin{aligned}
& g(R(X, Y) Z, W)=\tilde{\boldsymbol{g}}(\sigma(X, W), \sigma(Y, Z))-\tilde{g}(\sigma(X, Z), \sigma(Y, W)) \\
& \quad+\frac{1}{4}\{g(X, W) g(Y, Z)-g(X, Z) g(Y, W) \\
& \quad+g(J X, W) g(J Y, Z)-g(J X, Z) g(J Y, W)+2 g(X, J Y) g(J Z, W)\}
\end{aligned}
$$

Let $\xi_{1}, \cdots, \xi_{p}, \tilde{J} \xi_{1}, \cdots, \tilde{J} \xi_{p}$ be local fields of orthonormal vectors normal to M. If we set, for $i=1, \cdots, p$,

$$
\begin{aligned}
& g\left(A_{i} X, Y\right)=\tilde{g}\left(\sigma(X, Y), \xi_{i}\right) \\
& g\left(A_{i *} X, Y\right)=\tilde{g}\left(\sigma(X, Y), \tilde{J} \xi_{i}\right),
\end{aligned}
$$

then $A_{1}, \cdots, A_{p}, A_{1 *}, \cdots, A_{p *}$ are local fields of symmetric linear transformations. We can easily see that $A_{i *}=J A_{i}$ and $J A_{i}=-A_{i} J$ so that, in particular, $\operatorname{tr} A_{i}=\operatorname{tr} A_{i *}=0$. The equation of Gauss can be written in terms of $A_{i}{ }^{\prime} s$ as

$$
\begin{aligned}
g(R(X, Y) Z, W) & =\sum\left\{g\left(A_{i} X, W\right) g\left(A_{i} Y, Z\right)-g\left(A_{i} X, Z\right) g\left(A_{i} Y, W\right)\right. \\
& \left.+g\left(J A_{i} X, W\right) g\left(J A_{i} Y, Z\right)-g\left(J A_{i} X, Z\right) g\left(J A_{i} Y, W\right)\right\} \\
+ & \frac{1}{4}\{g(X, W) g(Y, Z)-g(X, Z) g(Y, W) \\
+ & g(J X, W) g(J Y, Z)-g(J X, Z) g(J Y, W)+2 g(X, J Y) g(J Z, W)\}
\end{aligned}
$$

Let S be the Ricci tensor of M. Then we have

$$
\begin{equation*}
S(X, Y)=\frac{n+1}{2} g(X, Y)-2 g\left(\sum A_{i}^{2} X, Y\right) . \tag{1}
\end{equation*}
$$

Let $\|\sigma\|$ be the length of the second fundamental form of the immersion so that $\|\boldsymbol{\sigma}\|^{2}=2 \sum \operatorname{tr} A_{i}^{2}$.

We know that the second fundamental form σ satisfies the following differential equation ([4]).

$$
\frac{1}{2} \boldsymbol{\|}\|\boldsymbol{\sigma}\|^{2}=\|\tilde{\boldsymbol{V}} \sigma\|^{2}+\sum \operatorname{tr}\left(A_{\lambda} A_{\mu}-A_{\mu} A_{\lambda}\right)^{2}-\sum\left(\operatorname{tr} A_{\lambda} A_{\mu}\right)^{2}+\frac{n+2}{2}\|\boldsymbol{\sigma}\|^{2},
$$

where Δ denotes the Laplacian and $\lambda, \mu=1, \cdots, p, 1^{*}, \cdots, p^{*}$. For a suitable choice of $\xi_{1}, \cdots, \xi_{p}, \tilde{\pi} \xi_{1}, \cdots, \tilde{\tau} \xi_{p}$, the above differential equation can be written as follows ($[5,6]$).

$$
\begin{equation*}
\frac{1}{2} \Delta\|\boldsymbol{\sigma}\|^{2}=\|\tilde{\sigma} \sigma\|^{2}-8 \operatorname{tr}\left(\sum A_{i}^{2}\right)^{2}-2 \sum\left(\operatorname{tr} A_{i}^{2}\right)^{2}+\frac{n+2}{2}\|\boldsymbol{\sigma}\|^{2} . \tag{2}
\end{equation*}
$$

3. Proof of Theorm 1

First we note that, by a theorem of Myers ([3]], M is compact.
Since $S-\frac{n}{2} g$ is positive definite, we can see from (1) that $I-4 \sum A_{i}^{2}$ is positive definite, where I denotes the identity transformation. This implies

$$
\begin{equation*}
\|\sigma\|^{2}<n . \tag{3}
\end{equation*}
$$

Moreover, since $A_{i}{ }^{\prime} s$ are symmetric linear transformations, ΣA_{i}^{2} is positive semi-definite. Since $\sum A_{i}^{2}$ and $I-4 \sum A_{i}^{2}$ can be transformed simultaneously by an orthogonal matrix into diagonal forms at each point of M, $\left(\Sigma A_{i}^{2}\right)\left(I-4 \Sigma A_{i}^{2}\right)$ is positive semi-definite. Hence we have

$$
\begin{equation*}
8 \operatorname{tr}\left(\sum A_{i}^{2}\right)^{2} \leq\|\boldsymbol{\sigma}\|^{2} . \tag{4}
\end{equation*}
$$

On the other hand, we can see

$$
\begin{equation*}
\sum\left(\operatorname{tr} A_{i}^{2}\right)^{2} \leq\left(\Sigma \operatorname{tr} A_{i}^{2}\right)^{2}=\frac{1}{4}\|\sigma\|^{4} . \tag{5}
\end{equation*}
$$

From (2), (3), (4) and (5), we have

$$
\begin{equation*}
\frac{1}{2} \Delta\|\sigma\|^{2} \geq \frac{1}{2}\|\sigma\|^{2}\left(n-\|\boldsymbol{\sigma}\|^{2}\right) \geq 0 . \tag{6}
\end{equation*}
$$

Hence, by a well-known theorem of E. Hopf, $\|\sigma\|^{2}$ is a constant. This, together with (3) and (6), implies $\|\boldsymbol{\sigma}\|=0$. Therefore M is a totally geodesic submanifold.

4. Proof of Theorem 2 and Theorem 3

To prove Theorem 2, we need the following Proposition due to Bishop and Goldberg (Theorem 8.1 in [2]).

Proposition 1. If every holomorphic sectional curvature of M is greater than δ, then every Ricci curvature of M is greater than μ, where

$$
\mu= \begin{cases}\frac{(3 n+1) \delta-(n-1)}{4} & (n \leq 5) \\ (n-1) \delta-\frac{n-3}{2} & (n>5)\end{cases}
$$

We can see that if

$$
\delta= \begin{cases}\frac{3 n-1}{3 n+1} & (n \leq 5) \\ \frac{2 n-3}{2 n-2} & (n>5)\end{cases}
$$

then $\mu=\frac{n}{2}$.
This, combined with Theorem 1, implies Theorem 2.
To prove Theorem 3, we need the following Proposition due to Berger ([1]).

Proposition 2. If $n \geq 2$ and if the sectional curvature K of M satisfies $\delta<K \leq 1$, then every holomorphic sectional curvature of M is greater than $\frac{\delta(8 \delta+1)}{1-\delta}$.

Let x be an arbitrary point of M and X be an arbitrary unit vector in $T_{x}(M)$. If $e_{1}=X, e_{2}, \cdots, e_{n}, J e_{1}, \cdots, J e_{n}$ is an orthonormal basis of $T_{x}(M)$, then

$$
S(X, X)=H(X)+\sum_{i=2}^{n}\left\{K\left(X, e_{i}\right)+K\left(X, J e_{i}\right)\right\}
$$

where $H(X)$ is the holomorphic sectional curvature of M determined by X and $K(X, Y)$ is the sectional curvature of M determined by X and Y. Hence, by Proposition 2, $K>\delta$ implies

$$
S(X, X)>\frac{\delta(8 \delta+1)}{1-\delta}+2(n-1) \delta
$$

We can see that if

$$
\delta=\left\{\begin{array}{l}
\frac{5}{23} \quad(n=5) \\
\frac{5 n-2-\sqrt{9 n^{2}+60 n+4}}{8(n-5)} \quad(n \neq 5),
\end{array}\right.
$$

then $\mathrm{S}(X, X)>\frac{n}{2}$.
This, combined with Theorem 1, implies Theorem 3,

> Department of Mathematics
> Tokyo Metropolitan University

Bibliography

[1] M. Berger: Pincement riemannien et pincement holomorphe, Ann. Scuola Norm. Sup. Pisa 14 (1960), 151-159.
[2] R. L. Bishop and S. I. Goldberg: Some implications of the generalized GaussBonnet theorem, Trans. Amer. Math. Soc. 112 (1964), 508-535.
[3] S. Myers: Riemannian manifolds with positive mean curvature, Duke Math. J. 8 (1941), 401-404.
[4] K. Ogiue: Differential geometry of algebraic manifolds, "Differential Geometry, in honor of K. Yano", Kinokuniya, Tokyo, 1972, 355-372.
[5] K. Ogiue: Positively curved complex submanifolds immersed in a complex projective space, to appear.
[6] S. TANNO: Compact complex submanifolds immersed in complex projective spaces, to appear.

[^0]: Work done under partial support by the Sakko-kai Foundation.

