On radicals of group rings of Frobenius groups

By Kaoru Motose

1. Introduction

Throughout the present paper, S will represent a Frobenius group with a Frobenius subgroup \mathfrak{P} and a Frobenius kernel \mathfrak{N} . Then, by [3; (25.2)], \mathfrak{G} is a semi-direct product of \mathfrak{G} and \mathfrak{R} . Let p be a prime divisor of $|\mathfrak{G}|$, and K an algebraically closed field of characteristic p. The purpose of this paper is to determine the K-dimension $[J(K\mathfrak{G}): K]$ of the radical $J(K\mathfrak{G})$ of the group ring K\empths. If p is a divisor of $|\mathfrak{N}|$ and \mathfrak{P} is a p-Sylow subgroup of \Re (of \Im), then by Thompson's theorem ([3; (25. 10]), \Re is a normal subgroup of \mathfrak{G} , and hence $[J(K\mathfrak{G}): K] = (\mathfrak{G}: \mathfrak{P}) \cdot (|\mathfrak{P}|-1)$ ([2; Ex. 64.1]). Therefore, in this paper, we shall restrict our attention to the case that pis a divisor of $|\mathfrak{F}|$. In §2, we shall prove that $[J(K\mathfrak{G}):K]=[J(K\mathfrak{F}):K]$, and in the subsequent sections from § 3, we shall study the dimension We shall use freely Tsushima's theorem ([6; Prop. 1]) and Zassenhaus' theorems ([8; Satz 8 and Satz 16]). In this paper, the groups of type A', \cdots , E', F, G in the sense of [8] will be called the groups of type A, \dots , type E, type F, type G, respectively. Moreover, every module is a left module and of finite dimension over K.

The author wishes to express his thanks to Mr. Y. Ninomiya for valuable discussion and advice.

2. $[J(K\mathfrak{G}): K] = [J(K\mathfrak{H}): K]$

Two irreducible $K\mathfrak{N}$ -modules \mathfrak{T}_1 , \mathfrak{T}_2 are said to be conjugate if \mathfrak{T}_1 is isomorphic to a $K\mathfrak{N}$ -module $X \otimes \mathfrak{T}_2$ ($\subseteq \mathfrak{T}_2^{\otimes} = K\mathfrak{G} \otimes_{K\mathfrak{N}} \mathfrak{T}_2$) for some $X \in \mathfrak{G}$. Let c be the number of p-regular classes of \mathfrak{F} , and d+1 the number of conjugate classes of \mathfrak{N} . At first, we shall state the following:

Lemma 1 (cf. [3; (25.4)]). If \mathfrak{T} is a non-trivial irreducible $K\mathfrak{R}$ -module, then $T^{\mathfrak{G}}$ is an irreducible $K\mathfrak{G}$ -module.

PROOF. By [6; Lemma 2], it suffices to prove that for every $X \in \mathfrak{F}^* = \mathfrak{F} - 1$, $X \otimes \mathfrak{T}(\subseteq \mathfrak{T}^{\mathfrak{G}})$ is not isomorphic to \mathfrak{T} as a $K\mathfrak{N}$ -module. Let $\mathfrak{R}(\neq 1)$ be a conjugate class of \mathfrak{N} and Y an element of \mathfrak{R} . Then, $\bigcup_{X \in \mathfrak{F}} \mathfrak{R}^X$ is a conjugate class of \mathfrak{B} containing Y. Since $C_{\mathfrak{G}}(Z) \subseteq \mathfrak{N}$ for every $Z \in \mathfrak{R}^*$, $(\mathfrak{G}: C_{\mathfrak{G}}(Y)) = |\mathfrak{F}| \cdot (\mathfrak{N}: C_{\mathfrak{R}}(Y))$ and hence $|\mathfrak{R}| \cdot |\mathfrak{F}| = |\bigcup_{X \in \mathfrak{F}} \mathfrak{R}^X|$. Thus, $\mathfrak{R}^X \neq \mathfrak{R}$ for every

 $X \in \mathfrak{H}$. Accordingly, $|\mathfrak{H}|$ is a divisor of d and $1+d/|\mathfrak{H}|$ is the number of orbits of a permutation group \mathfrak{H} acting on the set of all conjugate classes of \mathfrak{N} . Then, by Brauer's lemma ([3; (12.1)]), $1+d/|\mathfrak{H}|$ is the number of orbits of a permutation group \mathfrak{H} acting on the set of all complex irreducible characters of \mathfrak{N} . Hence, noting that p is not a divisor of $|\mathfrak{M}|$, $X \otimes \mathfrak{T}$ can not be isomorphic to \mathfrak{T} as a $K\mathfrak{N}$ -module for every element $X \in \mathfrak{H}^*$ (cf. [2; p. 600, Remark (1)]).

REMARK. By the proof of Lemma 1, we readily see the following:

- (1) $|\mathfrak{F}|$ is a divisor of d.
- (2) \Re contains $1+d/|\Im|$ conjugate classes of \Im .
- (3) $d/|\mathfrak{F}|$ is the number of non-trivial and non-conjugate irreducible $K\mathfrak{N}$ -modules.

Lemma 2. $c+d/|\mathfrak{S}|$ is the number of p-regular conjugate classes of \mathfrak{G} .

PROOF. Let $\mathfrak{C}_1=1$, \mathfrak{C}_2 , ..., \mathfrak{C}_h be all the conjugate classes of \mathfrak{F} , and X_j an element of \mathfrak{C}_j . Then, $\hat{\mathfrak{C}}_j=\bigcup_{x\in\mathfrak{R}}\mathfrak{C}_j^x$ is a conjugate class of \mathfrak{G} containing X_j . Since $\mathfrak{R}=\mathfrak{G}-\bigcup_{Y\in\mathfrak{G}}(\mathfrak{F}^Y-1)$, we have a disjoint union $\mathfrak{G}=\mathfrak{R}\cup\hat{\mathfrak{C}}_2\cup\ldots\cup\hat{\mathfrak{C}}_h$. By Remark (2), \mathfrak{R} contains $1+d/|\mathfrak{F}|$ conjugate classes of \mathfrak{G} . Hence, $c+d/|\mathfrak{F}|$ is the number of p-regular conjugate classes.

Since \mathfrak{F} is homomorphic to \mathfrak{G} , every irreducible $K\mathfrak{F}$ -module may be regarded as an irreducible $K\mathfrak{G}$ -module. Concerning irreducible representations of $K\mathfrak{G}$, we shall prove the following:

THEOREM 3. Let $\mathfrak{S}_1, \dots, \mathfrak{S}_c$ be all the non-isomorphic irreducible $K\mathfrak{S}$ -modules, and $\mathfrak{T}_1, \dots, \mathfrak{T}_{d/|\mathfrak{S}|}$ all the non-trivial and non-conjugate irreducible $K\mathfrak{N}$ -modules. Then, $\mathfrak{S}_1, \dots, \mathfrak{S}_c$ (as $K\mathfrak{S}$ -modules), $\mathfrak{T}_1^{\mathfrak{S}}, \dots, \mathfrak{T}_{d/|\mathfrak{S}|}^{\mathfrak{S}}$ exhaust the non-isomorphic irreducible $K\mathfrak{S}$ -modules.

PROOF. By Lemma 2, $c+d/|\mathfrak{F}|$ is the number of all non-isomorphic irreducible $K\mathfrak{G}$ -modules. Accordingly, by Lemma 1, it suffices to prove that the above modules exhaust all the non-isomorphic ones. Since \mathfrak{T}_i is a non-trivial $K\mathfrak{R}$ -module and \mathfrak{S}_j is a trivial $K\mathfrak{R}$ -module, it follows $\operatorname{Hom}_{K\mathfrak{G}}(\mathfrak{T}_i^{\mathfrak{G}},\mathfrak{S}_j)\cong \operatorname{Hom}_{K\mathfrak{R}}(\mathfrak{T}_i,\mathfrak{S}_j)=0$, and hence $\mathfrak{T}_i^{\mathfrak{G}}$ is not isomorphic to \mathfrak{S}_j . While, \mathfrak{T}_i is not conjugate to \mathfrak{T}_j for every $i\neq j$, and so $\operatorname{Hom}_{K\mathfrak{G}}(\mathfrak{T}_i^{\mathfrak{G}},\mathfrak{T}_j^{\mathfrak{G}})\cong \operatorname{Hom}_{K\mathfrak{R}}(\mathfrak{T}_i,\mathfrak{T}_j^{\mathfrak{G}})\cong \Sigma_{x\in\mathfrak{F}}\oplus \operatorname{Hom}_{K\mathfrak{R}}(\mathfrak{T}_i,X\otimes\mathfrak{T}_j)=0$, which means that $\mathfrak{T}_i^{\mathfrak{G}}$ is not isomorphic to $\mathfrak{T}_j^{\mathfrak{G}}$ for every $i\neq j$.

The next is fundamental in our whole study.

THEOREM 4. $[J(K\mathfrak{G}): K] = [J(K\mathfrak{G}): K]$, and so $J(K\mathfrak{G}) = J(K\mathfrak{G})E$ where $E = |\mathfrak{R}|^{-1} \sum_{x \in \mathfrak{R}} X$.

PROOF. By Th. 3, $[J(K\mathfrak{G}): K] = |\mathfrak{G}| - \sum_{i=1}^{c} [\mathfrak{S}_i: K]^2 - \sum_{i=1}^{d/|\mathfrak{S}|} [\mathfrak{T}_i^{\mathfrak{G}}: K]^2$

 $= |\mathfrak{G}| - (|\mathfrak{F}| - [J(K\mathfrak{F}): K]) - |\mathfrak{F}| (\sum_{i=1}^{d/|\mathfrak{F}|} [\mathfrak{T}_i: K]^2 |\mathfrak{F}|) = |\mathfrak{G}| - |\mathfrak{F}| + [J(K\mathfrak{F}): K] - |\mathfrak{F}| (|\mathfrak{R}| - 1) = [J(K\mathfrak{F}): K].$

COROLLARY 5 (D. A. R. Wallace [6]). If \mathfrak{F} is a p-Sylow subgroup of \mathfrak{F} , then $[J(K\mathfrak{F}): K] = |\mathfrak{F}| - 1$

3. Type A

In this section, we shall determine the dimension of $J(K\mathfrak{P})$ when \mathfrak{P} is of type A, namely, \mathfrak{P} is the group generated by two elements A and B with the defining relations:

- (1) $A^m = 1$, $B^n = A^t$, $BAB^{-1} = A^r$;
- (2) $(r-1, m)=r_0, r_0t=m;$
- (3) $r^{\nu} \neq 1$ (m) for $1 \leq \nu < n$, and $r^{n} \equiv 1$ (m);
- (4) (n, t)=1 and every prime divisor of n divides r_0 .

If p is a prime divisor of t, then $[J(K\mathfrak{H})\colon K]=n[J(K\langle A\rangle)\colon K]=n(m-m')$, where $m=m'p^e$ and (m',p)=1: Henceforth, we shall assume that p is a divisor of r_0n and $r_0n=n'p^e$ with (n',p)=1. Noting that $(r_0,t)=1$ and hence $\mathfrak{H}'=\langle A^{r_0},B^{n'}\rangle$ is a normal subgroup of \mathfrak{H} of index n', we can see $[J(K\mathfrak{H})\colon K]=n'[J(K\mathfrak{H}')\colon K]$. Thus, to our end, it suffices to determine the dimension $[J(K\mathfrak{H}')\colon K]$. Let ζ be a primitive t-th root of 1 in K, Θ_k a linear representation of $\langle A^{r_0}\rangle$ in K defined by $A^{r_0}\to \zeta^k$, $\mathfrak{H}'_k=\{X\in\mathfrak{H}'\mid \Theta_k^{(X)}=\Theta_k$ i. e. $\Theta_k^{(X)}(Y)=\Theta_k(XYX^{-1})$ for all $Y\in\langle A^{r_0}\rangle\}$, and $c_k=\min\{f>0\mid kr^{n'f}\equiv k(t)\}$. Then, $\mathfrak{H}'_k=\langle A^{r_0},B^{n'c_k}\rangle$ and Θ_k can be extended to a linear representation $\widehat{\Theta}_k$ of \mathfrak{H}'_k by $\widehat{\Theta}_k(A^{r_0i}B^{n'c_kj})=\Theta_k(A^{r_0i})$.

Theorem 6. Let $\{\Theta_{k_1}=1,\cdots,\Theta_{k_s}\}$ be the set of all non- \mathfrak{F}' -conjugate representations of $\langle A^{r_0} \rangle$ in K. Then, $\{\hat{\Theta}_{k_1}^{\mathfrak{F}'}=1,\cdots,\hat{\Theta}_{k_s}^{\mathfrak{F}'}\}$ is the set of all distinct irreducible representations of \mathfrak{F}' .

PROOF. Let \mathfrak{M}_i (resp. $\hat{\mathfrak{M}}_i$) be a representation module of Θ_{k_i} (resp. $\hat{\Theta}_{k_i}$). Then, by [6; Lemma 2], $\hat{\mathfrak{M}}_i^{\mathfrak{F}'}$ is an irreducible $K\mathfrak{F}'$ -module and $\operatorname{Hom}_{K\mathfrak{F}'}(\hat{\mathfrak{M}}_i^{\mathfrak{F}'}, \hat{\mathfrak{M}}_i^{\mathfrak{F}'}) \cong \operatorname{Hom}_{K\mathfrak{F}_i'}(\hat{\mathfrak{M}}_i, \hat{\mathfrak{M}}_j^{\mathfrak{F}'}) \subseteq \operatorname{Hom}_{K\langle A^r_0\rangle}(\mathfrak{M}_i, \hat{\mathfrak{M}}_j^{\mathfrak{F}'}) \cong \sum_{h} \bigoplus \operatorname{Hom}_{K\langle A^r_0\rangle}(\mathfrak{M}_i, G_h \otimes \mathfrak{M}_j) = 0$ for $i \neq j$, where $\mathfrak{F}' = \bigcup_{h} G_h \mathfrak{F}'_j$ is a left coset decomposition of \mathfrak{F}' modulo \mathfrak{F}'_j . Hence, $\hat{\mathfrak{M}}_i^{\mathfrak{F}'}$ is not isomorphic to $\hat{\mathfrak{M}}_j^{\mathfrak{F}'}$ for $i \neq j$. Since p is not a divisor of p, p is the set of p-regular elements of p. If p is conjugate to p then p is conjugate to p is not a divisor of p-regular classes and p is the set of all irreducible representations.

COROLLARY 7. (1) If p is a divisor of t, then $[J(K\mathfrak{F}): K] = n(m-m')$, where $m = m'p^e$ and (m', p) = 1.

(2) If p is a divisor of $r_0 n$, then $[J(K\mathfrak{F}): K] = mn - n'(\sum_{j=1}^s c_j^2)$, where $r_0 n = n' p^e$ and (n', p) = 1.

26 K. Motose

4. Modular irreducible representations of a finite group

Let \mathfrak{A} be a finite group, \mathfrak{B} a normal subgroup of \mathfrak{A} with $(\mathfrak{A}:\mathfrak{B})=p$, $\{\mathfrak{M}_1,\dots,\mathfrak{M}_a\}$ the set of all irreducible $K\mathfrak{B}$ -modules which can be extended to $K\mathfrak{A}$ -modules $\{\hat{\mathfrak{M}}_1,\dots,\hat{\mathfrak{M}}_a\}$, and $\{\mathfrak{M}_{a+1},\dots,\mathfrak{M}_{a+b}\}$ the set of all non-conjugate irreducible $K\mathfrak{B}$ -modules which can not be extended to $K\mathfrak{A}$ -modules*).

THEOREM 8. $\{\hat{\mathbb{M}}_1, \dots, \hat{\mathbb{M}}_a, \, \mathfrak{M}_{a+1}^{\mathfrak{N}}, \dots, \, \mathfrak{M}_{a+b}^{\mathfrak{N}} \}$ is the set of all irreducible $K\mathfrak{A}$ -modules and a+pb is the number of all irreducible $K\mathfrak{B}$ -modules.

PROOF. Let $\mathfrak L$ be an irreducible $K\mathfrak A$ -module, and $\mathfrak L$ a composition factor of $\mathfrak L$ as a $K\mathfrak B$ -module. Then, the $K\mathfrak A$ -module $\mathfrak L$ is a composition factor of $\mathfrak L^A$. If $\mathfrak B=I(\mathfrak L)$ (= $\{X\in\mathfrak A|X\otimes\mathfrak L\cong\mathfrak L\}$), then $\mathfrak L^A$ is irreducible and $\mathfrak L^A$ is isomorphic to $\mathfrak L$ by $[6\,;$ Lemma 3]. If $I(\mathfrak L)=\mathfrak A$, then $\mathfrak L$ can be extended to $\mathfrak L$ by $[6\,;$ Lemma 3]. Therefore, it remains only to prove that the above modules are all distinct. If $1\leq i\leq a$ and $a+1\leq j\leq a+b$, then $\mathrm{Hom}_{K\mathfrak A}(\mathfrak M_j^{\mathfrak A},\hat{\mathfrak M}_i)\cong \mathrm{Hom}_{K\mathfrak B}(\mathfrak M_j,\mathfrak M_i)=0$. While, if $a+1\leq i\neq j\leq a+b$, then $\mathrm{Hom}_{K\mathfrak A}(\mathfrak M_i^{\mathfrak A},\mathfrak M_j^{\mathfrak A})\cong \mathrm{Hom}_{K\mathfrak B}(\mathfrak M_i,\mathfrak M_j^{\mathfrak A})\cong \mathrm{Hom}_{K\mathfrak B}(\mathfrak M_i,\mathfrak M_j^{\mathfrak A})\cong \mathrm{Loset}$ decomposition of $\mathfrak A$ modulo $\mathfrak B$. Hence, the first assertion has been proved. Regarding $\mathfrak A/\mathfrak B$ as a permutation group acting on the set of all irreducible $K\mathfrak B$ -modules, we can see that the lengths of the orbits are 1 or p. Hence, by $[6\,;$ Lemma 3], a+pb is the number of all distinct irreducible $K\mathfrak B$ -modules.

5. Type B

In this section, we shall determine the dimension of $J(K\mathfrak{P})$ when \mathfrak{P} is of type B, namely, \mathfrak{P} is the group generated by elements A, B and R with the defining relations:

- (1) $\langle A, B \rangle$ is of type A;
- (2) $RAR^{-1}=A^{i}$, $RBR^{-1}=B^{i}$;
- (3) $l^2 \equiv 1$ (m), $l \equiv 1$ (n), and $l \equiv -1$ (4);
- (4) $n \equiv 0$ (2) and $R^2 = B^{nr_0/2}$.

If p is odd, then $[J(K\mathfrak{H}): K] = 2[J(K\langle A, B\rangle): K]$ and we can reduce the problem to that in § 3. Thus, we may, and shall, restrict our attension to the case p=2. Let $n=2^en'$ with (2,n')=1. Then, $\mathfrak{H}'=\langle A^{r_0},B^{n'},R\rangle$ is a normal subgroup of $\mathfrak{H}=\langle A^{r_0},B,R\rangle^{**}$ with $(\mathfrak{H}:\mathfrak{H}')=n'$, and hence $[J(K\mathfrak{H}):K]=n'[J(K\mathfrak{H}'):K]$. Obiously, $\mathfrak{H}''=\langle A^{r_0},B^{n'}\rangle$ is a normal subgroup of \mathfrak{H}' with $(\mathfrak{H}':\mathfrak{H}'')=2$. Now, let ζ be a primitive t-th root of 1 in K, η

^{*) &}quot;A KB-module $\widehat{\mathfrak{M}}$ can be extend to a KA-module $\widehat{\mathfrak{M}}$ " means that there exists a KA-module $\widehat{\mathfrak{M}}$ such that a KB-module $\widehat{\mathfrak{M}}$ is isomorphic to a KB-module \mathfrak{M} .

^{**)} $\mathfrak{F} = \langle A^{r_0}, B, R \rangle$ by $(r_0, t) = 1$.

a primitive r'-th root of 1 where $r_0=2^{r}r'$ with (2, r')=1, s the number of non- \mathfrak{F}'' -conjugate linear representations of $\langle A^{r_0} \rangle$, and $\{A_{k_i,j}|1 \leq i \leq s,\ 0 \leq k_i \leq t -1,\ 0 \leq j \leq r'-1\}$ the set of all irreducible representations of \mathfrak{F}'' defined by

$$A^{r_0} \longrightarrow Y = \begin{pmatrix} b_1 & 0 \\ \vdots & \ddots & 0 \\ 0 & b_{c_i} \end{pmatrix}, \quad B^{n'} \longrightarrow Z = \eta^j \begin{pmatrix} 0 & 1 \\ 1 & 0 & 0 \\ \vdots & \ddots & 0 \\ 0 & \vdots & \ddots & 0 \\ & & 1 & 0 \end{pmatrix}$$

where $b_{\alpha} = \zeta^{k_i r_{\alpha}}$, $r_{\alpha} = r^{n r_0 - n'(\alpha - 1)}$, $1 \le \alpha \le c_i = \min \{g > 0 | k_i \equiv k_i r^{n'g}(t)\}^*$. Then, the irreducible representations of \mathfrak{F}' are given in the following

THEOREM 9. $\Lambda_{k_i,j}$ can be extended to an irreducible representation $\hat{\Lambda}_{k_i,j}$ of \mathfrak{F}' if and only if

$$\begin{array}{lll} (1) & \left\{ \begin{array}{ll} k_i l \equiv k_i \ (t) \\ j l \equiv j \ (r') \end{array} \right. & \text{or} & (2) & \left\{ \begin{array}{ll} c_i \equiv 0 \ (2) \, , & k_i r^{n'c_i/2} \equiv k_i l \ (t) \\ j l \equiv j \ (r') \end{array} \right. \\ \end{array}$$

PROOF. At first, we shall notice that c_i is a divisor of $\tau = 2^{e^{-1}}r_0$ and hence $Z^{\tau} = I_{c_i}$ (the identity matrix of degree c_i). By $A^{r^{\tau n'}} = R^2AR^{-2} = A^{l^2} = A$, we see that $(r^n)^{\tau} \equiv 1$ (t), which implies that c_i is a divisor of τ . If $A_{k_i,j}$ can be extended, then there exists a regular matrix X of degree c_i such that $X^2 = Z^{\tau} = I_{c_i}$, $XY = Y^lX$ and $XZ = Z^lX$. Since $r^n \equiv 1$ (t) and $l \equiv 1$ (n), it follows $l \equiv 1$ (c_i) and $Z^l = \eta^{j(l-1)}Z$. By $XZ = \eta^{j(l-1)}ZX$, we have $jl \equiv j$ (r') and

$$X = egin{pmatrix} a_0 & a_{c_i-1} & a_1 \ a_1 & \cdot & \cdot & \ & \cdot & \cdot & \cdot \ a_{c_i-1} & a_1 & a_0 \end{pmatrix} egin{pmatrix} 1 & \eta^{j(l-1)} & 0 \ \eta^{2j(l-1)} & \cdot & \ & \cdot & \ 0 & \eta^{(c_i-1)j(l-1)} \end{pmatrix}.$$

Since $XY = Y^{l}X$ and X is regular, $k_{i}r^{n'\beta} \equiv k_{i}l$ (t) for a non zero a_{β} , where $0 \leq \beta < c_{i}$. Let γ be an integer such that $k_{i}r^{n'\gamma} \equiv k_{i}l$ (t) and $0 \leq \gamma < c_{i}$. Then, $k_{i}r^{n'(\beta-\gamma)} \equiv k_{i}$ (t) and hence $\beta \equiv \gamma$ (c_{i}). Therefore, $\beta = \gamma$ and the only a_{β} is non zero. By $X^{2} = I_{c_{i}}$, we have

^{*)} This assertion follows by the next proof: $\Lambda_{k_{\ell},j}$ is irreducible by Th. 6. If $\Lambda_{k_{\ell},a}$ is equivalent to $\Lambda_{k_{\ell},b}$, then $i=j,\Lambda_{k_{\ell},a}(B^{n'c_{\ell}})=\Lambda_{k_{\ell},b}(B^{n'c_{\ell}})$ and hence $ac_{\ell}\equiv bc_{\ell}$ (r'). Thus, a=b by noting that c_{ℓ} is a divisor of 2^{e} . Let \Re_{1} , \Re_{2},\cdots,\Re_{s} be conjugate classes of \mathfrak{F}'' which is contained in $\langle A^{r_{0}} \rangle$. Then $\{A^{2^{f}_{\ell}i}\cdot\Re_{f}|\ 0\leq i\leq r'-1, 1\leq j\leq s\}$ is the set of all 2-regular classes of \mathfrak{F}'' .

28 K. Motose

Conversely, if $k_i l \equiv k_i$ (t) and $j l \equiv j$ (r'), then $\Lambda_{k_i,j}$ can be extended to an irreducible representation $\hat{\Delta}_{k_i,j}$ of \mathfrak{F}' by $R \rightarrow I_{c_i}$. While, if $c_i \equiv 0$ (2), $k_i r^{n'c_i/2} \equiv k_i l$ (t), and $j l \equiv j$ (r'), then $\Lambda_{k_i,j}$ can be extended to an irreducible representation $\hat{\Lambda}_{k_i,j}$, of \mathfrak{F}' by $R \rightarrow \begin{pmatrix} 0 & I_{c_i/2} \\ I_{c_i/2} & 0 \end{pmatrix}$.

Now, combining Th. 8 with Th. 9, we readily obtain

COROLLARY 10. (1) If p>2, then $[J(K\mathfrak{S}): K]=2[J(K\langle A, B\rangle): K]$, where $\langle A, B \rangle$ is of type A.

(2) If p=2, then $[J(K\mathfrak{P}): K] = 2nm - 2n'r'(\sum_{i=1}^{s} c_i^2) + n'u(\sum_{i \in \mathfrak{Q}} c_i^2)$, where $u = |\{0 \le j \le r' - 1 | jl \equiv j \ (r')\}|$ and $\Omega = \{1 \le i \le s | \{c_i \equiv 0 \ (2) \\ k_i r^{n'c_i/2} \equiv k_i l \ (t) \}$ or $k_i l \equiv k_i \ (t) \}$.

6. Type C

In this section, we shall give the dimension of $J(K\mathfrak{P})$ when \mathfrak{P} is of type C, namely, \mathfrak{P} is a group generated by elements A, B, P and Q with defining relations:

- (1) $\langle A, B \rangle$ is of type A;
- (2) $\langle P, Q \rangle$ is the quaternion group of order 8;
- (3) $n \equiv m \equiv 1$ (2), $n \not\equiv 0$ (3) and $m \equiv 0$ (3);
- (4) $APA^{-1}=Q$, $AQA^{-1}=PQ$, PB=BP, BQ=QB.

At first, we shall prove that $\langle A^3, B \rangle$ is a normal subgroup of \mathfrak{F} . Since $A^{-1}B^2A = A^{(r+1)(r-1)}B^2$ and (r,3)=1, $A^{-1}B^2A$ is an element of $\langle A^3, B \rangle$. Noting that the order r_0n of B is odd, we can see that $A^{-1}BA$ is an element of $\langle A^3, B \rangle$, namely, $\langle A^3, B \rangle$ is a normal subgroup of \mathfrak{F} . Accordingly, if p>3 then $[J(K\mathfrak{F}):K]=24[J(K\langle A^3,B\rangle):K]=8[J(K\langle A,B\rangle):K]$. If p=2, then $[J(K\mathfrak{F}):K]=nm[J(K\langle P,Q\rangle):K]=7nm$. Henceforth, we shall restrict our attention to the case p=3. Since $\mathfrak{F}'=\langle A,P,Q\rangle$ is a normal subgroup of \mathfrak{F} with $(\mathfrak{F}:\mathfrak{F}')=n$, we have $[J(K\mathfrak{F}):K]=n[J(K\mathfrak{F}'):K]$. To our end, it suffices therefore to give the dimension of $J(K\mathfrak{F}')$. We consider the normal subgroup $\mathfrak{F}''=\langle A^3\rangle\times\langle P,Q\rangle$ of \mathfrak{F}' whose index is 3. Let ζ be a primitive m'-th root of 1 in K, where $m=3^em'$ with (3,m')=1, and Θ_j a linear representation defined by $A^3\to\zeta^j$. Let λ be a primitive 4-th root of 1 in K, and $\Gamma_0,\Gamma_1,\cdots,\Gamma_4$ irreducible representations defined by

$$\begin{cases} \Gamma_{0}(P) = 1 \\ \Gamma_{0}(Q) = 1 \end{cases}, \begin{cases} \Gamma_{1}(P) = 1 \\ \Gamma_{1}(Q) = -1 \end{cases}, \begin{cases} \Gamma_{2}(P) = -1 \\ \Gamma_{2}(Q) = 1 \end{cases}, \begin{cases} \Gamma_{3}(P) = -1 \\ \Gamma_{3}(Q) = -1 \end{cases}, \begin{cases} \Gamma_{4}(P) = \begin{pmatrix} \lambda & 0 \\ 0 & -\lambda \end{pmatrix}, \\ \Gamma_{4}(Q) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}. \end{cases}$$

Then, $\{\Delta_{ij} = \Gamma_i \otimes \Theta_j | 0 \le i \le 4, 0 \le j \le m'-1\}$ is the set of all irreducible representations of \mathfrak{P}'' .

THEREM 11. Δ_{ij} can be extended if and only if i=0 or 4.

PROOF. (1) i=0: Let σ be an element of K such that $\sigma^3 = \zeta$. Then Δ_{0j} can be extended to $\hat{\Delta}_{0j}$ by $A \rightarrow \sigma^j$.

- (2) i=1, 2, 3: If Δ_{ij} (i=1, 2, 3) can be extended, then $\Delta_{ij}(P) = \Delta_{ij}(Q) = 1$, which is a contradiction.
- (3) i=4: Let α be an element of K such that $\alpha^3 = (2(1+\lambda))^{-1}\zeta^j$. Then Δ_{ij} can be extended to $\hat{\Delta}_{ij}$ by $A \rightarrow \begin{pmatrix} \alpha & -\alpha \\ -\lambda\alpha & -\lambda\alpha \end{pmatrix}$.

The next is a combination of Ths. 8 and 11.

COROLLARY 12. (1) If p>3, then $[J(K\mathfrak{D}): K]=8[J(K\langle A, B\rangle): K]$.

- (2) If p=3, then $[J(K\mathfrak{H}): K] = 8nm-14nm'$, where $m=3^em'$ and (3, m')=1.
 - (3) If p=2, then $[J(K\mathfrak{P}): K]=7nm$.

7. Type D

In this section, we shall determine the dimension of $J(K\mathfrak{D})$ when \mathfrak{D} is of type D, namely, \mathfrak{D} is the group generated by elements A, B, P and Q with defining relations:

- (1) $\langle A, B \rangle$ is of type A;
- (2) $\langle P, Q \rangle$ is the quaternion group of order 8;
- (3) $n \equiv m \equiv 1$ (2) and $n \equiv 0$ (3);
- (4) AP=PA, AQ=QA, $BPB^{-1}=Q$ and $BQB^{-1}=PQ$.

If p>3 then $[J(K\mathfrak{H}):K]=24[J(K\langle A,B^3\rangle):K]=8[J(K\langle A,B\rangle):K]$ and our problem can be reduced to that in § 3. If p=2 then $[J(K\mathfrak{H}):K]=nm[J(K\langle P,Q\rangle):K]=7nm$. In what follows, we shall restrict our attention to the case p=3. If $r_0n=3^en'$ with (3,n')=1, then $\mathfrak{H}'=\langle A^{r_0},B^{n'},P,Q\rangle$ is a normal subgroup of \mathfrak{H} with $(\mathfrak{H}:\mathfrak{H}')=n'$ and $\mathfrak{H}''=\langle A^{r_0},B^{3n'}\rangle\times\langle P,Q\rangle$ is a normal subgroup of \mathfrak{H}' with $(\mathfrak{H}':\mathfrak{H}')=3$. Now, let ζ be a primitive t-th root of 1 in K, and Λ_{k_j} $(1\leq j\leq s)$ a representation of $\langle A^{r_0},B^{3n'}\rangle$ defined by

$$A^{r_0} \longrightarrow \begin{pmatrix} b_1 & 0 \\ b_2 & \\ & \ddots & \\ 0 & b_{c_j} \end{pmatrix}, \quad B^{3n'} \longrightarrow \begin{pmatrix} 0 & 1 \\ 1 & 0 & \\ & 1 & \ddots & \\ 0 & & 1 & 0 \end{pmatrix},$$

where $b_i = \zeta^{k_j r'_i}$, $r'_i = r^{r_0 n - 3n'i + 3n'}$, $1 \le i \le c_j = \min\{f > 0 | k_j r^{3n'f} \equiv k_j(t)\}$. Then, $\{\Delta_{ij} = \Gamma_i \otimes \Lambda_{k_j} | 0 \le i \le 4, 1 \le j \le s\}$ is the set of all irreducible representations of \mathfrak{F}'' , where $\{\Gamma_i | 0 \le i \le 4\}$ is the set of all irreducible representations of $\langle P, Q \rangle$, which has given in § 6. Concerning irreducible representations of

30 K. Motose

D', we have the following:

Theorem 13. Δ_{ij} can be extended if and only if $k_j \equiv k_j r^{n'}$ (t) and i=0 or 4.

PROOF. (1) i=0: If Δ_{0j} can be extended then there exists a regular matrix $X=(a_{\alpha\beta})$ of degree c_j such that $X\Delta_{0j}(A^{r_0})=\Delta_{0j}(A^{r_0})^{\nu}X$ and $\nu=r^{n'}$. There holds then $a_{\alpha\beta}b_{\beta}=a_{\alpha\beta}b_{\alpha}^{\nu}$ with some α , β . Since X is regular, we obtain $b_{\beta}=b_{\alpha}^{\nu}$, and hence $k_{j}\nu^{(-3\alpha+3\beta+1)}\equiv k_{j}$ (t). Noting that $\nu^{3e}\equiv 1$ (t) and $(3^{e},-3\alpha+3\beta+1)=1$, it follows $k_{j}\equiv k_{j}r^{n'}$ (t). Conversely, if $k_{j}\equiv k_{j}r^{n'}$ (t) then $c_{j}=1$ and so Δ_{0j} can be extended to a linear representation $\hat{\Delta}_{0j}$ of \mathfrak{F}' by $B^{n'}\rightarrow 1$.

- (2) i=1, 2, 3: If Δ_{ij} (i=1, 2, 3) can be extended then $\Delta_{ij}(P) = \Delta_{ij}(Q) = I_{c_j}$, which is a contradiction.
- (3) i=4: If Δ_{4j} can be extended then, by making use of the same argument as in (1), we have $k_j \equiv k_j r^{n'}$ (t). Conversely, if $k_j \equiv k_j r^{n'}$ (t) and $n' \equiv 1$ (3), then Δ_{4j} can be extended to a representation $\hat{\Delta}_{4j}$ by $B^{n'} \rightarrow \begin{pmatrix} a & -a \\ -a\lambda & -a\lambda \end{pmatrix}$, where $a^3 = (2(1+\lambda))^{-1}$. While, if $k_j \equiv k_j r^{n'}$ (t) and $n' \equiv 2$ (3), then Δ_{4j} can be extended to a representation $\hat{\Delta}_{4j}$ by $\hat{B}^{n'} \rightarrow \begin{pmatrix} a & a\lambda \\ -a\lambda & a\lambda \end{pmatrix}$

where $a^3 = (2(1+\lambda))^{-1}$. While, if $k_j \equiv k_j r^{n}$ (t) and $n' \equiv 2$ (3), then Δ_{4j} can be extended to a representation $\hat{\Delta}_{4j}$ by $B^{n'} \rightarrow \begin{pmatrix} a & a\lambda \\ -a & a\lambda \end{pmatrix}$, where $a^3 = (2(1-\lambda))^{-1}$.

By Ths. 8 and 13, we obtain the following:

Corollary 14. (1) If p>3 then $[J(K\mathfrak{D}): K]=8[J(K\langle A, B\rangle): K]$.

- (2) If p=3 then $[J(K\mathfrak{P}): K]=8nm+10vn'-24n'(\sum_{j=1}^{s}c_{j}^{2})$, where $v=|\{1\leq j\leq s|k_{j}r^{n'}\equiv k_{j}\ (t)\}|$.
 - (3) If p=2 then $[J(K\mathfrak{S}): K]=7$ nm.

8. Type E

In this section, we shall give the dimension of $J(K\mathfrak{D})$ when \mathfrak{D} is of type E, namely, \mathfrak{D} is the group generated by elements A, B, P, Q and R with defining relations:

- (1) $\langle A, B, P, Q \rangle$ is of type C;
- (2) $R^2 = P^2$, $(RQ)^2 = 1$;
- (3) $RAR^{-1}=A^{i}$, $RBR^{-1}=B^{i}$;
- (4) $l^2 \equiv 1$ (m), $l \equiv 1$ (n) and $l \equiv -1$ (3).

If p is odd then $[J(K\mathfrak{H})\colon K]=2[J(K\langle A,B,P,Q\rangle)\colon K]$. We may restrict therefore our attention to the case p=2. Since $\mathfrak{H}'=\langle A,P,Q,R\rangle$ is a normal subgroup of \mathfrak{H} whose index is odd n, $[J(K\mathfrak{H})\colon K]=n[J(K\mathfrak{H}')\colon K]$. Obviously, $\langle P,Q\rangle$ is a normal subgroup of $\mathfrak{H}''=\langle A,P,Q\rangle$ and $K\mathfrak{H}''/J(K\mathfrak{H}'')\cong K(\mathfrak{H}''/\langle P,Q\rangle)\cong K\langle A\rangle$. Thus, the set of all irreducible representations of \mathfrak{H}'' coincides with that of all irreducible representations of $\langle A\rangle$. Now, let

 ω be a primitive m-th root of 1 in K, and Θ_j an irreducible representation of \mathfrak{F}'' defined by $A \rightarrow \omega^j$, $P \rightarrow 1$, $Q \rightarrow 1$. Then, $\{\Theta_j | 0 \leq j \leq m-1\}$ is the set of all irreducible representations of \mathfrak{F}'' in K.

Theorem 15. Θ_j can be extended if and only if $j \equiv jl$ (m).

PROOF. If $j \equiv jl \ (m)$ then Θ_j can be extended to a representation $\hat{\Theta}_j$ of $\hat{\Theta}'$ by $R \rightarrow 1$. The converse is almost evident.

Combining Th. 15 with Th. 8, we obtain the following:

COROLLARY 16. (1) If p is odd then $[J(K\mathfrak{P}): K] = 2[J(K\langle A, B, P, Q\rangle): K]$, where $\langle A, B, P, Q\rangle$ is of type C.

(2) If p=2 then $[J(K\mathfrak{P}): K] = n(14m+u)$, where $u = |\{0 \le j \le m-1|j = jl \ (m)\}|$.

9. Ordinary representations of SL(2, 5)

In this section, we recall the character table of SL(2, 5) and two irreducible (ordinary) representations of degree 2 of SL(2, 5), which will be need in §§ 10 and 11. These results were given by I. Schur [5; p. 128].

**	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}$	$\begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$	$\begin{pmatrix} -1 & 0 \\ 1 & -1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$	$\begin{pmatrix} -1 & 0 \\ 2 & -1 \end{pmatrix}$
$\overline{\varphi_1}$	1	1	1	1	1	1	1	1	1
$arphi_{2}$	2	-2	-1	1	0	− ₹	3	$-\varepsilon$	ε
$arphi_3$	2	-2	-1	1	0	-ε	ε	− ₹	ē
$arphi^{}_{4}$	3	3	0	0	-1	₹	Ē	ε	ε
$arphi_{5}$	3	3	0	0	-1	ε	ε	Ē	Ē
$arphi_6$	4	4	1	1	0	-1	-1	-1	-1
$arphi_7$	4	-4	1	-1	0	-1	1	-1	1
$arphi_{8}$	5	5	-1	-1	1	0	0	0	0
$arphi_{9}$	6	-6	0	0	0	1	-1	1	-1

Character table of SL(2, 5)

$$\varepsilon = (1 + \sqrt{5})/2, \ \bar{\varepsilon} = (1 - \sqrt{5})/2$$

SL(2, 5) is generated by two elements P and Q with the defining relations: $P^2 = Q^3 = (PQ)^5$, $P^4 = 1$, and has two irreducible representations Φ_2 and Φ_3 defined by

$$\Phi_2(P) = \begin{pmatrix} -\eta & \eta \\ -\eta - \eta^{-1} & \eta \end{pmatrix}, \quad \Phi_2(Q) = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix} \quad \text{and} \quad$$

^{*} representatives of conjugate classes, ** characters

$$m{arPhi}_3(P) = egin{pmatrix} -\eta^2 & \eta^2 \ -\eta^2 - \eta^{-2} & \eta^2 \end{pmatrix}, \quad m{arPhi}_3(Q) = egin{pmatrix} 0 & 1 \ -1 & 1 \end{pmatrix},$$

where η is a primitive 5-th root of 1.

10. Type F

In this section, we shall give the dimension of $J(K\mathfrak{H})$ when \mathfrak{H} is of type F, namely, $\mathfrak{H} = \langle A, B \rangle \times \langle P, Q \rangle$, where $\langle A, B \rangle$ is of type A, $(|\langle A, B \rangle|, 30) = 1$ and $\langle P, Q \rangle$ ($\cong SL(2, 5)$) has the following relations: $P^2 = Q^3 = (PQ)^5$, $P^4 = 1$. If p > 5 then $[J(K\mathfrak{H}): K] = 120[J(K\langle A, B \rangle): K]$ and our problem is reduced to that in § 3. If $p \le 5$ then $[J(K\mathfrak{H}): K] = nm[J(K\langle P, Q \rangle): K]$. The dimension of $J(K\langle P, Q \rangle)$ for $p \le 5$ is given in the next theorem.

THEOREM 17. (1) If p=5 then $[J(K \cdot SL(2,5)): K]=65$.

- (2) If p=3 then $[J(K \cdot SL(2,5)): K]=41$.
- (3) If p=2 then $[J(K \cdot SL(2,5)): K] = 95$.

PROOF. Let Φ_{ν} be a representation whose character is φ_{ν} , and $\bar{\Phi}_{\nu}$ (resp. $\bar{\varphi}_{\nu}$) a modular representation (resp. character) associated with Φ_{ν} (resp. φ_{ν}).

- (1) By Brauer's result [1; p. 588], {1, 2, 3, 4, 5} is the set of all degrees of irreducible representations of SL(2, 5).
- (2) Since SL(2, 5) coincides with its commutator subgroup, $\bar{\varphi}_1$ is only the linear character. Thus, by the character table of SL(2, 5), $\bar{\varphi}_2$ and $\bar{\varphi}_3$ are different irreducible characters. Since φ_4 , φ_5 and φ_9 belong to blocks of defect 0, $\overline{\varphi}_4$, $\overline{\varphi}_5$, $\overline{\varphi}_9$ are irreducible. Next, we shall prove that $\overline{\varphi}_6$ is irreducible. Regarding φ_6 as an irreducible character of the alternative group A_5 , we consider an irreducible character $\hat{\varphi}_6$ of the symmetric group S_5 which is an extendion of φ_6 . Then, $\bar{\varphi}_6$ is an extendion of $\bar{\varphi}_6$ and irreducible by [4; p. 31]. Now, let Ψ be a composition factore of $\bar{\Phi}_6$. Then, $I(\Psi) = A_5$ or S_5 . If $I(\Psi)=A_5$ then $\Psi^{S_5}=\bar{\Phi}_6$, and then $\bar{\Phi}_6$ has two conjugate composition factors Ψ , Ψ' . However, by the character table of SL(2,5) Ψ , Ψ' are different from Φ_2 , Φ_3 . Accordingly, SL(2,5) has at least eight irreducible modular representations, which is contrary to the fact that there are only seven 3-regular classes in SL(2, 5). We have seen therefore $I(\Psi) = S_5$. Then, by making use of the same argument as in [3; (9.12)], Ψ can be extended to an irreducible representation $\hat{\Psi}$ of S_5 . Since $\hat{\Psi}$ is a composition factor of Ψ^{S_5} , Ψ^{S_5} is not irreducible. Noting that $\widehat{\Phi}_6$ is a composition factor of Ψ^{S_5} and $\Psi^{S_5}|_{A_6}$ $=\Psi\oplus\Psi$, we can easily see that $\bar{\varPhi}_6$ is equivalent to the irreducible representation Ψ .
- (3) By making use of the same argument as in (2), we see that $\bar{\varphi}_1$, $\bar{\varphi}_2$, $\bar{\varphi}_3$ are irreducible. Since PSL(2, 5) is isomorphic to A_5 , φ_6 can be regarded

as an irreducible character of A_5 and belongs to a block of defect 0 (as a character of A_5). Hence $\{\bar{\boldsymbol{\varphi}}_1, \bar{\boldsymbol{\varphi}}_2, \bar{\boldsymbol{\varphi}}_3, \bar{\boldsymbol{\varphi}}_6\}$ is the set of all irreducible representations of SL(2,5) for p=2.

COROLLARY 18. (1) If p>5 then $[J(K\mathfrak{H}): K]=120[J(K\langle A, B\rangle): K]$, where $\langle A, B \rangle$ is of type A.

- (2) If p=5 then $[J(K\mathfrak{P}): K]=65 nm$.
- (3) If p=3 then $[J(K\mathfrak{P}): K]=41 \, nm$.
- (4) If p=2 then $[J(K\mathfrak{D}): K]=95 nm$.

11. Type G

In this section, we shall give the dimension of $J(K\mathfrak{D})$ when \mathfrak{D} is of type G, namely, \mathfrak{D} is the group generated by elements A, B, P, Q and R with defining relations:

- (1) $\langle A, B, P, Q \rangle$ is of type F;
- (2) $R^2 = (RP)^4 = P^2$;
- (3) $RAR^{-1}=A^{i}$, $RBR^{-1}=B^{i}$;
- (4) $l^2 \equiv 1$ (m), $l \equiv 1$ (n).

If p is odd then $[J(K\mathfrak{H})\colon K]=2[J(K\langle A,B,P,Q\rangle)\colon K]$ and we can reduce our problem to that in § 10. In what follows, we shall restrict our attention to the case p=2. Since $\mathfrak{H}'=\langle A,P,Q,R\rangle$ is a normal subgroup of \mathfrak{H} with $(\mathfrak{H}:\mathfrak{H}')=n$ (odd) and $[J(K\mathfrak{H})\colon K]=n[J(K\mathfrak{H}')\colon K]$, it suffices to determine the dimension of $J(K\mathfrak{H}')$. Let ω be a primitive m-th root of 1 in K, and Θ_j a linear character of $\langle A \rangle$ in K defined by $A \to \omega^j$. We consider $\mathfrak{H}''=\langle P,Q\rangle\times\langle A\rangle$, which is a normal subgroup of \mathfrak{H}' with $(\mathfrak{H}'\colon\mathfrak{H}'')=2$. Then, $\{A_{ij}=\bar{\boldsymbol{\Phi}}_i\otimes\Theta_j\mid i=1,\ 2,\ 3,\ 6,\ 0\leq j\leq m-1\}$ is the set of all irreducible representations of \mathfrak{H}'' (cf. the proof of Th. 17). Noting that $\varphi_6=\varphi_2\cdot\varphi_3$ (cf. the character table of SL(2,5)), we obtain the following:

THEOREM 19. Δ_{ij} can be extended if and only if $j \equiv jl$ (m).

PROOF. If there exists a regular matrix X such that $X^2 = (X \mathcal{A}_{ij}(P))^4 = \mathcal{A}_{ij}(P)^2$ and $X \mathcal{A}_{ij}(A) X^{-1} = \mathcal{A}_{ij}(A)$, then $j \equiv jl \ (m)$. Conversely, if $j \equiv jl \ (m)$ then \mathcal{A}_{ij} can be extended to a representation $\hat{\mathcal{A}}_{ij}$ of \mathfrak{F}' such that $\hat{\mathcal{A}}_{ij}(R)$ is the identity matrix.

By Th. 8 and Th. 19, we readily obtain the following:

COROLLARY 20. (1) If p is odd then $[J(K\mathfrak{S}): K] = 2[J(K\langle A, B, P, Q\rangle): K]$, where $\langle A, B, P, Q\rangle$ is of type F.

(2) If p = 2 then $[J(K\mathfrak{H}): K] = n(190 m + 25 u)$, where $u = |\{0 \le j \le m -1 \mid j \equiv jl \ (m)\}|$.

Department of Mathematics, Shinshu University

References

- [1] R. BRAUER and C. NESBITT: On the modular characters of groups, Ann. of Math. 42 (1941), 556-590.
- [2] C. W. CURTIS and I. REINER: Representation theory of finite groups and associative algebras, Wiley, New York, 1962.
- [3] W. FEIT: Characters of finite groups, Benjamin, New York, 1967.
- [4] G. de B. ROBINSON: Representation theory of the symmetric groups, Univ. of Toronto, 1961.
- [5] I. SCHUR: Untersuchungen über die Darstellungen der endlichen Gruppen durch gebrochene lineare Substitutionen, J. Reine Angew. Math. 132 (1907), 85-137.
- [6] Y. TSUSHIMA: Radicals of group algebras, Osaka J. Math. 4 (1967), 179-182.
- [7] D. A. R. WALLACE: Note on the radical of a group algebra, Proc. Cambridge Philos. Soc. 54 (1958), 128-130.
- [8] H. ZASSENHAUS: Über endlichen Fastkörper, Abh. Math. Sem. Hansischen Univ. 11 (1936), 187-220.

(Received November 15, 1972) (Revised April 8, 1973)