On radicals of group rings of Frobenius groups

By Kaoru MoToOSE

1. Introduction

Throughout the present paper, & will represent a Frobenius group with
a Frobenius subgroup © and a Frobenius kernel . Then, by [3; (25. 2)],
® is a semi-direct product of § and N. Let p be a prime divisor of |®],
and K an algebraically closed field of characteristic p. The purpose of this
paper is to determine the K-dimension [J(K®): K] of the radical J(K®)
of the group ring K®. If p is a divisor of |0| and P is a p-Sylow sub-
group of N (of @), then by Thompson’s theorem ([3; (25. 10]), B is a normal
subgroup of ®, and hence [J(K®): K]=(®: P)-(|B]—1) ([2; Ex. 64.1]).
Therefore, in this paper, we shall restrict our attention to the case that p
is a divisor of |9|. In §2, we shall prove that [J(K®): K]=[J(K®): K],
and in the subsequent sections from §3, we shall study the dimension
of J(K®). We shall use freely Tsushima’s theorem ([6; Prop. 1]) and
Zassenhaus’ theorems ([8; Satz 8 and Satz 16]). In this paper, the groups
of type A), ---, E"), F), G) in the sense of will be called the groups of
type A, -, type E, type F, type G, respectively. Moreover, every module
is a left module and of finite dimension over K.

The author wishes to express his thanks to Mr. Y. Ninomiya for valuable
discussion and advice.

2. [J(KS): K]=[J(K9S): K]

Two irreducible KN-modules ¥,, &, are said to be conjugate if T, is
isomorphic to a KN-module X®T, (CITF=KOR xn<,) for some Xe@. Let
¢ be the number of p-regular classes of 9, and d+1 the number of conjugate
classes of M. At first, we shall state the following:

Lemma 1 (cf. [3;(25. 4)]). If £ is a non-trivial irreducible KN-module,
then T® is an irreducible K®-module.

Proor. By [6; Lemma 2], it suffices to prove that for every Xe9*
=9P—1, XQIT(CIT®) is not isomorphic to T as a KN-module. Let K(#*1)
be a conjugate class of M and Y an element of & Then, U xs®* is a con-
jugate class of & containing Y. Since Cgx(Z)CN for every ZeR*, (B: Cx(Y)
=|9|-N: Cp(Y)) and hence |R]:|D|=|U ze8%|. Thus, 8K for every
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Xe®. Accordingly, |9| is a divisor of d and 1+d/|9| is the number of
orbits of a permutation group 9 acting on the set of all conjugate classes
of . Then, by Brauer’s lemma ([3; (12.1)]), 1+d/|9| is the number of
orbits of a permutation group 9 acting on the set of all complex irreducible
characters of . Hence, noting that p is not a divisor of |R|, X®<T can
not be isomorphic to £ as a KN-module for every element Xe®* (cf. [2;
p. 600, Remark (1)]).

REMARK. By the proof of Lemma 1, we readily see the following:

(1) |9| is a divisor of d.

(2) M contains 1+d/|9| conjugate classes of &.

(3) dJ|9| is the number of non-trivial and non-conjugate irreducible
KN-modules.

LEMMA 2. c¢+d||9] is the number of p-regular conjugate classes of ®.

Proor. Let €,=1, G, ---, €, be all the conjugate classes of 9, and X;
an element of €,;. Then, €,= U &% is a conjugate class of & containing
X;. Since N=G— U yes(D'—1), we have a disjoint union G=NUEV...UE,.
By Remark (2), % contains 1+d/|®| conjugate classes of @. Hence, c+d/|9D|
is the number of p-regular conjugate classes.

Since § is homomorphic to ®, every irreducible K $-module may be
regarded as an irreducible K®-module. Concerning irreducible representa-
tions of K®, we shall prove the following:

THEOREM 3. Let &,, -+, &, be all the non-isomorphic irreducible K -
modules, and X, -+, %y, all the non-trivial and non-conjugate irreducible

KN-modules. Then, &, --,&, (as K&-modules), T, -, X35 exhaust the

non-isomorphic irreducible K®&-modules.

Proor. By c+d[|9| is the number of all non-isomorphic
irreducible K®-modules. Accordingly, by [Lemma 1, it suffices to prove that
the above modules exhaust all the non-isomorphic ones. Since &, is a non-
trivial K9-module and &; is a trivial KRN-module, it follows Hom,4(ZT®, &))
=Homy(Z,;,®,)=0, and hence TY is not isomorphic to &;. While, &, is
not conjugate to ¥, for every i#j, and so Homyg (TP, TF)=Homgy (T, TJ)
=Y e @Homzn (T,;, X®T,;)=0, which means that T¥ is not isomorphic to
T% for every i#j.

The next is fundamental in our whole study.

THEOREM 4. [J(K®): K]=[J(K®D): K], and so JKO)=J(KD)E
where E=|N| '] zenX. _

Proor. By Th. 3, [J(K®): K]=|®|—X¢,[6;: KP—X#P'[E¢: KT
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=8| (9| -[J(K9): K)—IDI(ZLP'[T,: KPID)N=I8]|—|9]+[J(KD): K]
— 91N -1)=[J(K9): K].

CoroLLARY 5 (D. A. R. Wallace [6]). If 9 is a p-Sylow subgroup of
S, then [J(KO®): K]=|9|— .

3. Type 4

In this section, we shall determine the dimension of J(K$) when $
is of type A, namely,  is the group generated by two elements A and B
with the defining relations:

(1) Am=1, B*=A’, BAB'=A4";

(2) (r—1,m)=r,, rt=m;

(3) 7#1 (m) for 1<v<n, and r"=1 (m);

(4) (n,£)=1 and every prime divisor of 7n divides 7.

If p is a prime divisor of # then [J(K9): K]=n[J(K(A)): K]=
n(m—m'), where m=m'p® and (m', p)=1: Henceforth, we shall assume that
p is a divisor of 7, and rgu=n'p* with (', p)=1. Noting that (r,, )=1 and
hence $'=(A" B*)> is a normal subgroup of § of index ', we can see
[J(KD): K]=n'[J(K®'): K]. Thus, to our end, it suffices to determlne the
dimension [J(K®"): K]. Let  be a primitive #th root of 1 in K, 6; a
linear representation of (A in K defined by A™—{* 9;={Xe9’ |6® =6,
ie. OP(Y)=0,XYX™) for all Ye(A™)}, and ¢,=min {f>0|kr""=k (£}
Then, $,=(A™, B”%*) and 6, can be extended to a linear representation
6, of 9; by 6,(AB"*+)=6, (A’ “).

THEOREM 6. Let {6, = ,0,,) be the set of all non-9'-conjugate
representations of {A™) in K. T hen (6% =1, -, 60} is the set of all distinct
irreducible representations of 9'.

Proor. Let M (resp. 9%,) be a representation module of 6;, (resp. 6.,
Then, by [6; Lemma 2], ?" is an irreducible K9’-module and Hom o (IRP",
@?,)SHomK%; (fmm iﬁi&?')gHomme (mz, g’jz?’)_:a__ Zh ® HOInK(A”O) (mu Gh ®mj)
=0 for i#j, where §'=U,G,9} is a left coset decomposition of ' modulo
©;. Hence, ft?" is not isomorphic to M}’ for i#j. Since p is not a divisor
of ¢, {A™) is the set of p-regular elements of §'. If 6; is conjugate to 6,
then A™* is conjugate to A", and conversely. Hence, s is the number of
p-regular classes and {6%|1<i<s} is the set of all irreducible representations.

COROLLARY 7. (1) If p is a divisor of t, then [J(KD): K]=n(m—m'),
where m=m'p® and (m/, p)=

(2) If p is a divisor of ren, then [J(K9): K]l=mn—n'(35-:¢5), where
ran=n'p? and (n', p)=1.
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4. Modular irreducible representations of a finite group

Let % be a finite group, B a normal subgroup of A with (A: B)=p,
{IM,, -+, M,} the set of all irreducible KB-modules which can be extended
to KA-modules {&k,, -, M.}, and {Moi1, -+, M4} the set of all non-conjugate
irreducible K®B-modules which can not be extended to K¥U-modules*®’.

THEOREM 8. {it,, oo, R, IR o, IRZ.,} is the set of all irreducible
KU-modules and a+pb is the number of all irreducible KB-modules.

Proor. Let & be an irreducible KX-module, and £ a composition factor
of € as a KB-module. Then, the K%A-module & is a composition factor of
T4 I B=IX) (={XeA| XRL=T}), then T4 is irreducible and T is isomor-
phic to £ by [6; Lemma 3]. If I(Z)=%, then £ can be extended to & by
[6; Lemma 3]. Therefore, it remains only to prove that the above modules
are all distinct. If 1<i<a and a+1<j<a-+b, then Homgy (IM%, M=
Homgs (M;, M;)=0. While, if a+1<i#j<a+b, then Homyy (M%, M¥)=
Homgg (M, M) = Y122/ @ Homgg (M, X*Q@IM,)=0, where A= U2 X*B is a
left coset decomposition of ¥ modulo B. Hence, the first assertion has been
proved. Regarding A/B as a permutation group acting on the set of all
irreducible K®B-modules, we can see that the lengths of the orbits are 1
or p. Hence, by [6; Lemma 3], a+pb is the number of all distinct irredu-
cible K®B-modules.

5. Type B

In this section, we shall determine the dimension of J(K$) when § is
of type B, namely, § is the group generated by elements A, B and R with
the defining relations:

(1) (A, B) is of type A;

(2) RAR'=A', RBR'=PB;

(3) =1 (m), I=1 (n), and I=—1 (4);

(4) n=0 (2) and R*=B""",

If p is odd, then [J(K®): K]=2[J(K(A, B)): K] and we can reduce
the problem to that in §3. Thus, we may, and shall, restrict our attension
to the case p=2. Let n=2°%' with (2,7/)=1. Then, $'=(A" B*,R) is
a normal subgroup of = (A%, B, R)** with (9: $')=n', and hence
[J(K®D): K]=n'[J(K®'):K]. Obiously, ”=(A™, B*) is a normal subgroup
of ®' with (9’: $”)=2. Now, let { be a primitive #th root of 1 in K, %

*) “A K®B-module I can be extend to a K¥-module M’ means that there exists a K9-

module M such that a KB-module M is isomorphic to a K8-module M.
**) ©=(A", B, R) by (ry, £)=1.
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a primitive 7/-th root of 1 where r,=27" with (2, 7)=1, s the number of
non-9”-conjugate linear representations of {A™), and {4, ,]1<i<s, 0<k;<¢
—1, 0<j<7'—1} the set of all irreducible representations of 9" defined by

by 0 0 1
1 0
A Y= B ——Z=y 0
. o ..
0 b 10

°

where b, =%, r,=r"""1 1<a<c;=min {g>0|k, =k, (£)}*. Then,
the irreducible representations of 9’ are given in the following

THEOREM 9. 4, ; can be extended to an irreducible representation /iki, p

of ©' if and only if
f kl=kFk; (2)
lil=j (7'

[e=0 (2), kamit=Pkl (¢)
\il=j ()

Proor. At first, we shall notice that ¢; is a divisor of 7=2°"'r, and
hence Z'=1I,, (the identity matrix of degree c,). By A =RPAR*=A"=A,
we see that (»* =1 (¢), which implies that ¢, is a divisor of r. If 4, ; can
be extended, then there exists a regular matrix X of degree ¢; such that
X?=Z=I,, XY=Y'X and XZ=Z'X. Since r"=1 () and =1 (n), it follows
I=1 (c;) and Z'=9'""VZ. By XZ=»"""YZX, we have jl=j (') and

2)

Ay Ay a, 1
o J(-1) 0
a -
X=|% . . A
et 1D
a1 a, a 0 pi

Since XY=Y*X and X is regular, k7r**=*k,[ () for a non zero a,, where
0<p<c;. Let 7 be an integer such that 27""=k/l (¢) and 0<7<c;. Then,
k"¢ =Pk, (£) and hence =7 (¢;). Therefore, =7 and the only a; is non
zero. By X?=1I,, we have

J kl=k, (t)
li=j )

*) This assertion follows by the next proof:
Agg,s is irreducible by Th. 6. If Ak;.a is equivalent to 4z;,3, then i=j, Ax;,a(B*°t)=Ak,p
(Br'<;)and hence aci=bc; (). Thus, a=b by noting that ¢; is a divisor of 2¢. Let &,

R,+, R8s be conjugaté classes of §/ which is contained in {A7). Then {Azf”’ﬁjl
0<i<r'—1,1<j<s} is the set of all 2-regular classes of 9.

or (

{QEO (2), krvt=Fk] (2)
A=j )
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Conversely, if kl=k, () and jl=j (r'), then 4, ; can be extended to an
irreducible representation 4,,; of §’ by R—1I... Whlle if ¢,=0 (2), kg’
=kl (t), and jl=j ('), then 4, ; can be extended to an irreducible repre-
sentation /i,ci,j, of ' by R— 0 Ly .

Ici/z O

Now, combining Th. 8 with Th. 9, we readily obtain

CorOLLARY 10. (1) If p>2, then [J(KD): K]=2[J(K{(A, B)): K],
where {A, B) is of type A.

(2) If p=2, then [J(KD): K]=2nm—2n"r' (L i-1c2)+n'u(3 oc?), where

u={0<j<r—1|jl=j ()| and 2= {1Si£sl {Zig}?; k(0 O k=t (t)}.

6. Type C

In this section, we shall give the dimension of J(K9) when 9 is of
type C, namely, $ is a group generated by elements A, B P and Q with
defining relations:

(1) <A, B) is of type A;

(2) <P, Q) is the quaternion group of order 8;
(3) n=m=1 (2), n=0 (3) and m=0 (3);
(4) APA'=Q, AQA'=PQ, PB=BP, BQ=QB.

At first, we shall prove that (A% B) is a normal subgroup of §. Since
A'BPA=A"""VB and (r, 3)=1, A7'B’A is an element of (A% B). Noting
that the order r7» of B is odd, we can see that A"'BA is an element of
(A% B), namely, (A% B) is a normal subgroup of . Accordingly, if p>3
then [J(K9): K]=24[J(K(A? B)): K]=8[J(K{A, B)): K]. If p=2, then
[J(KD): Kl=nm[J(K{(P, Q)): K]=7Tnm. Henceforth, we shall restrict our
attention to the case p=3. Since $'=<(A, P,Q) is a normal subgroup of
O with (D: 9)=n, we have [J(KD): K]=n[J(KD"): K]. To our end, it
suffices therefore to give the dimension of J(K®'). We consider the normal
subgroup 9" =(A%» x (P, Q) of §" whose index is 3. Let { be a primitive
m/-th root of 1 in K, where m=3m’ with (3, m’)=1, and 6, a linear repre-
sentation defined by A*—»{’. Let 1 be a primitive 4-th root of 1 in K, and
r,,I,,--, I, irreducible representations defined by

I'y(P)= I'(P)=1 I'(P)=—1 ([';(P)=-—1 ]"4(P)=<g _2)
Fo(Q)=1" r@--1lre-1 n@=--1 r-= ° —(1))

Then, {4,,=I":6,/0<i<4, 0<j<m’'—1} is the set of all irreducible repre-
sentations of 9.
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THEREM 11. 4,;; can be extended if and only if i=0 or 4.

ProoF. (1) i=0: Let ¢ be an element of K such that ¢°={. Then
4y; can be extended to d,; by A—d’. '

(2) i=1,2,3: If 4;; (=1,2,3) can be extended, then 4;;,(P)=4;;(Q)
=1, which is a contradiction.

(3) i=4: Let a be an element of K such that &®*=(2(1+2))"¢?. Then
4,; can be extended to 4,; by A——>< a —a )

—la —
The next is a combination of Ths. 8 and 11.

CoROLLARY 12. (1) If p>3, then [J(K®): K]=8[J(K(A, B)): K].

(2) If p=3, then [J(KD): K]=8nm—14nm', where m =3°m’' and
(3, m")=1.

(3) If p=2, then [J(KD): K]=Tnm.

7. Type D

In this section, we shall determine the dimension of J(K$) when $ is
of type D, namely, © is the group generated by elements A, B, P and Q
with defining relations:

(1) <A, B) is of type A;

(2) <P, Q) is the quaternion group of order 8;

(3) n=m=1 (2) and n=0 (3);

(4) AP=PA, AQ=QA, BPB'=Q and BQB'=PQ.

If >3 then [J(KD): K]=24[J(K{A, B®): K]=8[J(K{A, B)): K] and
our problem can be reduced to that in §3. If p=2 then [J(K®): K]=
nm[J(K{(P, Q)): K]=7nm. In what follows, we shall restrict our attention
to the case p=3. If ryn=3n" with (3, #')=1, then '=C(A™, B”,P, Q) is a
normal subgroup of ® with ($: $')=n' and $"=<{A", Bs">><(P Q) is a
normal subgroup of ' with (9': $”)=3. Now, let { be a primitive #th
root of 1 in K, and 4, (1<j<s) a representation of (A%, B*) defined by

b, 0 0 1
b, 10.
Aro—s " , B» , 1 :
0 b, o 10

5
where b,=C%1"s, r/=r7n 43 1 <i<c,;=min {f >0|k;7*'=k; (¢)}. Then,
{4i;=T,@ 4, lO<z<4 1<j<s} is the set of all irreducible’ representations

of 9", Where {I",|J0<i<4} is the set of all irreducible representations of
(P, Q>, which has given in §6. Concerning irreducible representations of
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9’, we have the following:

THEOREM 13. 4;; can be extended if and only if k;=k;r™ () and
1=0 or 4.

Proor. (1) i=0: If 4, can be extended then there exists a regular
matrix X =(a,) of degree ¢, such that Xd4,,(A™)=4,;(A"*X and v=r".
There holds then a,b,=a,.b: with some a, 8. Since X is regular, we obtain
by=>b., and hence kp***¥**V=pE; (. Noting that »*=1 (#) and (3°, —3a+.
38+1)=1, it follows k;=kp (z). Conversely, if k,=k" (£) then ¢,=1 and
so 4y; can be extended to a linear representation Jd,; of §' by B*—1.

(2) ¢=1,2,38: If 4;; ((=1,2,3) can be extended then 4,,(P)=4,,(Q)
=1,,, which is a contradiction.

(3) i=4: If 4,; can be extended then, by making use of the same
argument as in (1), we have k,=k;7* (. Conversely, if k,=ks" () and
n'=1 (3), then 4,; can be extended to a representation 4,; by B"’-—>< a —a >,

—ald —al
where @*=(2(1+2)"". While, if =k, (¢) and #'=2 (3), then 4,; can be
extended to a representation 4,; by B¥—/ a al\, where a@=0201 -

(—a a])
By Ths. 8 and 13, we obtain the following:

COROLLARY 14. (1) If p>3 then [J(KD): K]=8[J(K(A, B)): K].

(2) If p=3 then [J(KD): K]1=8nm+10vn'—247n'(35.,c2), where v=
{1<j<slks™' =k, ()}].

(3) If p=2 then [J(KD): K]=Tnm.

8. Type E

In this section, we shall give the dimension of J(K9) when 9 is of
type E, namely, § is the group generated by elements A, B, P, Q and R
with defining relations:

(1) <A, B, P, Q) is of type C;

(2) R=P, (RQF=1;

(3) RAR'=A’, RBR'=PB,;

(4) =1 (m), I=1 (n) and I=—1 (3).

If p is odd then [J(KD): K]=2[J(K{A, B, P, Q)): K]. We may re-
strict therefore our attention to the case p=2. Since ' =(A, P, Q, R) is
a normal subgroup of § whose index is odd 7, [J(KD): K]=n[J(K9"): K].
Obviously, (P, Q) is a normal subgroup of 9”"=(A, P, Q) and K9"[J(K")
=K(D"/KP, Q))=K(A). Thus, the set of all irreducible representations of
9" coincides with that of all irreducible representations of (A)>. Now, let
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® be a primitive m-th root of 1 in K, and ; an irreducible representation
of " defined by A—w’, P-1, Q—1. Then, {8,/0<j<m—1} is the set of
all irreducible representations of " in K.

THEOREM 15. 8, can be extended if and only if j=jl (m).

Proor. If j=jl (m) then 6, can be extended to a representation 6,
of @ by R—1. The converse is almost evident.

Combining Th. 15 with Th. 8, we obtain the following:

COROLLARY 16. (1) If p is odd then [J(KD): K]=2[J(K(A, B, P,
Q)): K1, where (A, B, P, Q) is of type C.

(2) If p=2 then [J(KD): K]=n(l4m+u), where u=|{0<j<m—1|j
=yl (m)}.

9. Ordinary representations of SL(2,5)

In this section, we recall the character table of SL(2, 5) and two ir-
reducible (ordinary) representations of degree 2 of SL(2,5), which will be
need in §§10 and 11. These results were given by I Schur [5; p. 128].

Character table of SL(2, 5)

* 1 0\[/—1 O\[/0 —1\|/1 —=1\{/2 O\|/1 O\|/—1 O\|/1 O\|/—1 O
*k (0 1) ( 0 -—1> <1 —1) <1 O) <0 —-2) (1 l) ( 1 ——1) (2 1) ( 2 —1)
o 1 1 1 1 1 1 1 1
Py 2 -2 -1 1 0 —& g —e €
@3 2 -2 -1 1 0 —e ¢ —& &
Py 3 3 0 0 -1 g & & &
@5 3 0 —1 € € & H
P 4 1 0 -1 -1 -1 -1
7 4 —4 1 -1 0 —1 1 —1
s 5 5 -1 —1 1 0 0 0 0
Py 6 —6 0 0 0 -1 1 -1

* representatives of conjugate classes, ** characters
e=(1+45)2, E=(1—V5)/2

SL(2, 5) is generated by two elements P and Q with the defining rela-
tions: P*=(Q*=(PQY, P*=1, and has two irreducible representations @, and
@, defined by

— 0 1
mz(P>=( i ’7), ¢2(Q)=<_1 1) and
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o —77 7 [ 01
@3(P>_<—v2—v-2 AR 3!

where 7 is a primitive 5-th root of 1.

. 10. Type F .

In this section, we shall give the dimension of J(K9) when § is of
type F, namely, $={A, B) x (P, Q), where (A, B) is of type A, (|{4, B)|,
30)=1 and (P, Q) (=SL(2,5)) has the following relations: P?*=Q?=(PQY,
P‘=1. If p>5 then [J(KD): K]=120[J(K{A, BY): K] and our problem
is reduced to that in §3. If p<5 then [J(KD): K]=nm[J(K{(P, Q)): K].
The dimension of J(K{(P, Q)) for p<5 is given in the next theorem.

TueOREM 17. (1) If p=5 then [J(K-SL(2,5)): K]=65.
(2) If p=3 then [J(K-SL(2,5): K]=41.
(3) If p=2 then [J(K-SL(2,5)): K]=95.

ProoF. Let @, be a representation whose character is ¢,, and @, (resp.
¢,) a modular representation (resp. character) associated with @, (resp. ¢,).

(1) By Brauer’s result [1; p. 588], {1, 2, 3, 4, 5} is the set of all degrees
of irreducible representations of SL(2, 5).

"(2) Since SL(2,5) coincides with its commutator subgroup, @, is only
the linear character. Thus, by the character table of SL(2,5), &, and g, are
different irreducible characters. Since ¢,, ¢; and ¢, belong to blocks of defect
0, ¢4, @5, py are irreducible. Next, we shall prove that g is irreducible.
Regarding ¢; as an irreducible character of the alternative group As;, we
consider an irreducible character @; of the symmetric group .S; which is an
extendion of ¢;. Then, @ is an extendion of g; and irreducible by [4; p.
31]. Now, let ¥ be a composition factore of @. Then, I(¥)=A; or S;.
If I(¥)=A; then US:=@,, and then ®s has two conjugate composition factors
¥, ¥'. However, by the character table of SL(2,5) ¥, ¥’ are different from
@,, @;. Accordingly, SL(2,5) has at least eight irreducible modular repre-
sentations, which is contrary to the fact that there are only seven 3-regular
classes in SL(2,5). We have seen therefore I(¥)=S;. Then, by making
use of the same argument as in [3; (9.12)], ¥ can be extended to an irre-
ducible representation # of S;. Since ¥ is a composition factor of ¥S, ¥
is not irreducible. Noting that & is a composition factor of ¥ and s,
=UPY, we can easily see that &, is equivalent to the irreducible repre-
sentation ¥.

(3) By making use of the same argument as in (2), we see that ¢, @,
@3 are irreducible. Since PSL(2, 5) is isomorphic to A;, ¢s can be regarded
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as an irreducible character of A; and belongs to a block of defect 0 (as a
character of A;). Hence {@,, &,, @;, &5} is the set of all irreducible repre-
sentations of SL(2,5) for p=2.

CorOLLARY 18. (1) If p>5 then [J(KD): K]=120[J(K{(A, B)): K],
where (A, B) is of type A.

(2) If p=5 then [J(KD): K]=65nm.

(3) If p=3 then [J(KD): K]=41nm.

(4) If p=2 then [J(KD): K]=95nm.

11. Type G

In this section, we shall give the dimension of J(K9) when $ is of
type G, namely, © is the group generated by elements A, B, P, Q and R
with defining relations:

(1) <A, B, P, Q) is of type F;
(2) R:=(RP}=P?;
(3) RAR'=A’, RBR'=F;

(4) P=1 (m), I=1 (n).

If p is odd then [J(KD): K]=2[J(K(A, B, P, Q)): K] and we can
reduce our problem to that in §10. In what follows, we shall restrict our
attention to the case p=2. Since =<4, P, Q, R) is a normal subgroup
of § with (D: 9)=n (odd) and [J(KD): K]=n[J(KD'): K], it suffices to
determine the dimension of J(K9'). Let o be a primitive m-th root of 1
in K, and O, a linear character of (A) in K defined by A—e’. We con-
sider 9" =(P, Q) x (A), which is a normal subgroup of ' with ($': $")=2
Then, {4,,=8,80,|i=1, 2, 3,6, 0<j<m—1} is the set of all irreducible
representations of 9" (cf. the proof of Th. 17). Noting that @s=¢,- s (cf.
the character table of SL(2,5)), we obtain the following:

TueoreM 19. 4,; can be extended if and only if j=jl (m).

Proor. If there exists a regular matrix X such that X*=(X4,,(P))'=
4;;(P) and X4,;(A)X'=4,;(A), then j=jl ( ). Conversely, if j=jl (m) then
4;; can be extended to a representation 4,; of §' such that 4dy;(R) is the
identity matrix.

By Th. 8 and Th. 19, we readily obtain the following:

COoROLLARY 20. (1) If p is odd then [J(KD): K]=2[J(K(A4, B, P,
Q>): K], where {A, B, P, Q) is of type F.

(2) If p=2 then [J(KD): K]l=n(190m+25u), where u=|{0<j<m
—1|j=jl (m)}|.
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