3-dimensional Riemannian manifolds satisfying
R(X,Y)-R=0

By Shikichi Tanno

§ 1. Introduction

Let (M,g) be a Riemannian manifold with a positive definite metric
tensor g. By R we denote the Riemannian curvature tensor. By M, we
denote the tangent space to M at p. Let X, YeM,. Then R(X,Y) oper-
ates on the tensor algebra as a derivation at each point p. In a locally
symmetric space (i.e., FR=0), we have R(X,Y)-R=0. We consider the
converse under some additional conditions.

THEOREM. Let (M,g) be a complete and irreducible 3-dimensional
Riemannian manifold. Assume that the scalar curvature S is positive and
bounded away from zero (i.e., S>>0 for some constant ¢). If (M,g)
satis fies ' 4

(*) R(X,Y)-R=0 for any peM and X,YeM,,
then (M, g) is of positive constant curvature.

This theorem follows from the following

ProposITION. Let (M, g) be a complete 3-dimensional Riemannian mani-

fold satisfying (*). Assume that S is positive and bounded away from zero.
Then (M, g) is either

(1) - a space of positive constant curvature, or

(2) locally a product Riemannian manifold of a 2-dimensional space
of positive curvature and a real line.

A consequence of eoreml| is as follows :

COROLLARY. Let (M,g) be a compact and irreducible 3-dimensional
Riemannian manifold. If (M, q) satisfies (*) and S is positive, then (M, g)
is of positive constant curvature. '

In the condition on the scalar curvature or something like
this is necessary, because of Takagi’s example [6].

It may be noticed that (*) is equivalent to R(X,Y)-R,=0, where R,

denotes the Ricci curvature tensor. In this paper (J,g) is assumed to be
connected and of class C*.

§ 2. Preliminaries

Let (M, g) be a 3-dimensional Riemannian manifold and assume (*) on
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(M, g). Since dim M=3, R(X,Y) is given by
(2.1) R(X,Y)=RXAY+XARY—(S[2)XNY,
where ¢ (R'X,Y)=R,(X,Y) and (XAY)Z=¢(Y,2)X—g(X,Z2)Y. Let (K|,

K;, K;) be eigenvalues of the Ricci transformation R' at a point p. Then
(*) is equivalent to (cf. Tanno [7], p. 302) '

(2. 2) (K,—K,)(2(K.+K,)—S)=0.

Therefore we have three cases of eigenvalues of R': (K, K, K), (K, K, O),
~and (0,0,0) at each point p. A '

[A] If (K,K,K), K&%0, holds at some point x, then it holds on some
open neighborhood U of x. Hence U is an Einstein space, and K is con-
stant on U and on M. Therefore (M, g) is of constant curvature (cf. Ta-
kagi and Sekigawa [5]).

[B] From now on we assume that rank R'<2. Let W={xeM ; rank
R'=2 at x}. By W, we denote one component of W. On W, we have
two C=-distributions Dy and D, such that

D;={X; RRX =KX},
D, ={Z ; RZ=0}.
For X, YeD, and ZeD,, by (2.1) we have
(2.3) R(X,Y)=KXAY,
: R(Y,Z)=0.
This shows that D, is the nullity distribution. Since the index of nullity

at each point of M is 1 or 3, the index of nullity of M is 1. Thus, in-
tegral curves of D, are geodesics, and complete if (M,g) is complete (cf.

Clifton and Maltz [2], Abe [1], etc.).
[C] Let {E., E;, E;}={E} be a local field of orthonormal frames such
that E.eD, (consequently, E,,E;€Dy) and

Vo Ei=0 i=1,2,3,

where F denotes the Riemannian connection. We call this {E} an adapted
frame field. If we put

Ve E;= 2B Ey,
then we get B,;;= —B,;,; and
(2. 4) By, =0 ij=1,23.
The second Bianchi identity and (2. 3) give
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. (2. 5) E3K+ K(3131 + Bzgz) = O
By (2.4) and R(E;, E3)E;=V V5 Es—V 3V 5, Es—V 5,51 E;=0, we get
(2. 6) E; By +(B) + B By =0,

E,B5+ By By + B By =0,

E,B,y+ B,y Byyy+ B3y By =0,

E, B+ (B + By Bl =0..
(2.5) and (2.6),, (2.5) and (2. 6);, (2.5) and (2. 6),,, imply
(2.7) By=C/(E)K, By=GC(E)X
(2. 8) By — By =D(E)K,
where C,(E), C,(E) and D(E) are functions defined on the same domain as
{E} such that E;C\(E)=E;C,(E)=E;D(E)=0. By (2.5) and (2. 8), we get
2.9) 2B,y = D(EYK—E;K|K .

[D] Let L=x(s) be an integral curve of D, through x(0) with arc-
length parameter s. Then (2.6), (2.7) and (2.9) give '
1d{(1 dK 1/1 dK
(2. 10) 77;(76 ds> HE + (K ds)
where H=D(E}/4+ C,(E) C,(E). (2.10) implies that H is independent of
the choice of the adapted frame fields {E}. Solving (2. 10), we get

(2.11) K;=K(s)=7 or =1/(as—py for H=0,
(2.12) K =K(s)= £1/[(es—pr—HJa’]  for H¥0

where 7, a¥0, and j are constant on L.

[E] Next we assume that W, is oriented. Let {E,, E;, E;} be an
adapted frame field which is compatible with the orientation. We call it
an oriented adapted frame field. Then we see that f=C,(E)—C,(E) is
independent of the choice of oriented adapted frame fields, and hence f is
a C>-function on W,.

[F] f=0 holds on an open set UC W, if and only if Dy is integrable
on U. This is a geometrical meaning of f.

[G] (cf. Sekigawa [4]) Assume that E;K=0 on W,. If =0, we put
V={xeW,; f()+0}. Let V, be one component of V. E;K=0 and (2. 10)
imply H=0, i.e., D(Ef=—4C,(E)C,(E). We define a function §(E) by

cos 26 (E )=[C1( )+ G (E ]/f
sin 20 (E) = D(E)/f .



8-dimensional Riemannian manifolds satisfying R(X,Y)R=0 259

Define {E*} by Ef=E, and

E¥ =cos@(E)E,—sin§(E) E,,

EY =sin§(E)E,+cos0(E)E,.
Then we have D(E*)=0. Furthermore, for two oriented adapted frame
fields {E} and {E'} such that E,=E,, we have E}(E)=+E}(E') and E}(E)
=+ E(E'). H=0 and D(E*)=0 imply C,(E*)C,(E*)=0. So we can
assume that C,(E*)=0[otherwise, change {Ef, Ef, Ef¥}—{E;, —E}, Ef}].
Then we get

(2. 13) By%+0, By=B43=DB5%=0.
R(EY, EF)Ef =0 implies B};=0 and

(2. 14) E; B+ By By, =0.
R(E}, EF)Ef = —KE3¥ implies

(2. 15) E; By +(Bhy)P=—K.

§ 3. Proof of Proposition »

In the proof we can assume that M is oriented. By [A] of §2, we
assume that rank R'<2. Since S=2K is positive, rank R'=2 on M and
W=W,=M. fis defined on M. Since (M, g)is complete and .S is bounded
away from zero, by (2.11) and (2. 12) we have H=0 and E;K=0. So we
can apply [G] of §2. Assume that there is a point x, such that f(x,)=+0.
By Bj;;=0, each trajectory of EF is a geodesic in V,. Let N be a trajec-
tory of Ey through x, and parametrize it by arc-length parameter ¢ such
that £(0)=x,. Put fK= £k according to f{x,)=0. £ is a C~-function on
M. Put Bf=h on V,. Since Bfy=C/(E*) K=fK=+k, on NN Vy=(x(?))
NV, we have

(3.1) d j,t(t) TR R =0,
(3. 2) d;’f) +h(tf = —K(2),

by (2.14) and (2.15). By the following we have a contradiction.
Hence f=0 identically on M. Then [F] of §2 and A in [9] show
that (MM, g) is locally' a Riemannian product of a 2-dimensional Riemannian
manifold of positive curvature and a real line R.

LeMMA. The following (i)~(vi) are not compatible :

(1) k() and K(t) are C*-functions on R,



260 S. Tanno

(ii) k(0)>0,

(ii) K(&)>O0 for all teR, |

(iv) h(2) is a C*-function defined on an open interval I={t: k(t)>0}
containing 0,

v) Lk h=0 on 1,

i) & gt(t) R =—K() on I.

Proof. The first case: h(0)<0. By (iii) and (vi) we get

3.3) LR _(K(0)+heF)< —h(.

Let h*(¢) be the solution of

(3. 4) ‘?’Z(t) -

such that 2*(0)=A(0). Then A())<h*() for ¢: >0 in I Since A*(£)=1/
(t—a), we get h(t)<1/(t—a), where a=—1/h(0) and a>£>0. Since h(?) is
decreasing for t>0 in I, by (v) k() is increasing for £>0 in I. Hence,
k(t)>k(0)>0. Then (v) is

LD = k0 (~h0)>20)(~725)-

I—a

This shows that if #—>a—0, then dk(¢)/dt—>oc0. This contradicts (i)

The second case: A(0)=0. By (vi) we get dh(0)/dt=—K(0)<O0.
Therefore we have some small positive number ¢ such that 2(¢)>0 and
h(¢)<0. Hence, this case reduces to the first case. v

The third case: A(0)>0. For (3.3) and (3.4), we have h(£)>h*(#)
for t: t<0. Hence, h()>1/(t—a), where a=—1/R(0)<0 and a<£<0.
Then we get

LY — ko (~nw)<r0)(—25).

i—«a
This implies that if z—»a+0, then dk(¢)/dt—>—oco. This contradicts (i).
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