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\S 1. Introduction

Let (M, g) be a Riemannian manifold with a positive definite metric
tensor g . By R we denote the Riemannian curvature tensor. By M_{p} we
denote the tangent space to M at p. Let X, Y\in M_{p} . Then R(X, Y) oper-
ates on the tensor algebra as a derivation at each point p. In a locally
symmetric space (i.e., \nabla R=0), we have R(X, Y)\cdot R=0 . We consider the
converse under some additional conditions.

THEOREM. Let (M, g) be a complete and irreducible 3-dimensi0nd
Riemannian manifold. Assume that the scalar curvature S is positive and
bounded away from zero (i.e. , S\geq\epsilon>0 for some constant \epsilon ). If (M, g)

satisfies
(^{*}) R(X, Y)\cdot R=0 for any p\in M and X,Y\in M_{p} ,

then (M, g) is of positive constant curvature.

This theorem follows from the following
PROPOSITION. Let (M, g) be a complete 3-dimensional Riemannian mani-

fold satisfying (^{*}) . Assume that S is positive and bounded away from zero.
Then (M, g) is either

(1) a space of positive constant curvature, or
(2) locally a product Riemannian manifold of a 2-dimensiond space

of positive curvature and a real line.
A consequence of Theorem is as follows:
COROLLARY. Let (M, g) be a compact and irreducible 3-dimensi0nd

Riemannian manifold. If (M, g) satisfies (^{*}) and S is positive, then (M, g)

is of positive constant curvature.

In Theorem the condition on the scalar curvature or something like
this is necessary, because of Takagi’s exanlple [6].

It may be noticed that (^{*}) is equivalent to R(X, Y)\cdot R_{1}=0, where R_{1}

denotes the Ricci curvature tensor. In this paper (M, g) is assumed to be
connected and of class C^{\infty} .

\S 2. Preliminaries

Let (M, g) be a 3-dimensional Riemannian manifold and assume (^{*}) on



3-dimensional Riemannian manifolds satisfying R(X, Y)\cdot R=0 257

(M, g). Since dimM=3, R(X, Y) is given by

(2. 1) R(X, Y)=R^{1}X\Lambda Y+X\Lambda R^{1}Y-(S/2)X\Lambda Y ,

where g(R^{1}X, Y)=R_{1}(X, Y) and (X\wedge Y)Z=g(Y, Z) X–g (X, Z)Y. Let (K_{1} ,
K_{2} , K_{3}) be eigenvalues of the Ricci transformation R^{1} at a point p. Then
(^{*}) is equivalent to (cf. Tanno [7], p. 302)

(2. 2) (K_{i}-K_{j})(2(K_{i}+K_{f})-S)=0t

Therefore we have three cases of eigenvalues of R^{1} : (K, K, K), (K, K, 0),
and (0, 0, 0) at each point p.

[A] If (K, K, K), K\neq 0, holds at some point x, then it holds on some
open neighborhood U of x. Hence U is an Einstein space, and K is con-
stant on U and on M. Therefore (M, g) is of constant curvature (cf. Ta-
kagi and Sekigawa [5] ).

[B] From now on we assume that rank R^{1}\leq 2 . Let W=\{x\in M ; rank
R^{1}=2 at x}. By W_{0} we denote one component of W. On W_{0} we have
two C^{\infty}-distributions D_{K} and D_{0} such that

D_{X}=\{X;R^{1}X=KX\} ,

D_{0}=\{Z ; R^{1}Z=0\}

For X, Y\in D_{X} and Z\in D_{0} , by (2. 1) we have

(2. 3) R(X, Y)=KX\wedge Y ,

R(Y, Z)=0 .
This shows that D_{0} is the nullity distribution. Since the index of nullity
at each point of M is 1 or 3, the index of nullity of M is 1. Thus, in-
tegral curves of D_{0} are geodesics, and complete if (M, g) is complete (cf.
Clifton and Maltz [2], Abe [1], etc.).

[C] Let \{E_{1}, E_{2}, E3\}=\{E\} be a local field of orthonormal frames such
that E_{3}\in D_{0} (consequently, E_{1},E_{2}\in D_{K}) and

\nabla_{E_{3}}E_{i}=0 i=1,2,3 ,

where \nabla denotes the Riemannian connection. We call this \{E\} an adapted
frame field. If we put

\nabla_{E_{i}}E_{f}=\sum B_{ifk}E_{k} ,

then we get B_{ifk}=-B_{ikf} and

(2. 4) B_{3if}=0 i,j =1,2, 3

The second Bianchi identity and (2. 3) give
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(2. 5) E_{3}K+K(B_{131}+B_{232})=0\tau

By (2. 4) and R (E_{i} , E3) E_{3}=\nabla_{E_{i}}\nabla_{E_{3}}E_{3}-\nabla_{E_{3}}\nabla_{E_{i}}E_{3}-\nabla_{[E_{i},E_{3}]}E_{3}=0, we get

(2. 6) E3 B_{131}+(B_{131})^{2}+B_{132}B_{231}=0 ,

E3 B_{132}+B_{131}B_{132}+B_{132}B_{232}=0 ,

E3 B_{231}+B_{231}B_{131}+B_{232}B_{231}=0 ,

E3 B_{232}+(B_{232})^{2}+B_{231}B_{132}=0

(2. 5) and (2. 6)_{2} , (2. 5) and (2. 6)_{3} , (2. 5) and (2. 6)_{1,4} imply

(2. 7) B_{132}=C_{1}(E)K ,\cdot B_{231}=C_{2}(E)K ,

(2. 8) B_{131}-B_{232}=D(E)K ,

where C_{1}(E), C_{2}(E) and D(E) are functions defined on the same domain as
\{E\} such that E3 C_{1}(E)=E_{3}C_{2}(E)=E_{3}D(E)=0 . By (2. 5) and (2. 8), we get

(2. 9) 2B_{131}=D(E)K-E_{3}K/Kr

[D] Let L=x(s) be an integral curve of D_{0} through x(0) with arc-
length parameter s. Then (2. 6)_{1} , (2. 7) and (2. 9) give

(2. 10) \frac{1}{2}\frac{d}{ds}(\frac{1}{K}\frac{dK}{ds})=HK^{2}+\frac{1}{4}(\frac{1}{K}\frac{dK}{ds})^{2} ,

where H=D(E)^{2}/4+C_{1}(E)C_{2}(E) . (2. 10) implies that H is independent of
the choice of the adapted frame fields \{E\} . Solving (2. 10), we get

(2. 11) K_{|L}=K(s)=\mathcal{T} or \pm 1/(\alpha s-\beta)^{2} for H=0 ,

(2. 12) K_{|L}=K(s)=\pm 1/[(\alpha s-\beta)^{2}-H/\alpha^{2}] for H\neq 0

where \gamma, \alpha\neq 0, and \beta are constant on L.
[E] Next we assume that W_{0} is oriented. Let {E_{1} , E_{2} , E3} be an

adapted frame field which is compatible with the orientation. We call it
an oriented adapted frame field. Then we see that f=C_{1}(E)-C_{2}(E) is
independent of the choice of oriented adapted frame fields, and hence f is
a C^{\infty}-function on W_{0} .

[F] f=0 holds on an open set U\subset W_{0} , if and only if D_{K} is integrable
on U. This is a geometrical meaning of f.

[G] (cf. Sekigawa [4]) Assume that E_{3}K=0 on W_{0} . If f\neq 0, we put
V=\{x\in W_{0} ; f(x)\neq 0\} . Let V_{0} be one component of V. E_{3}K=0 and (2. 10)
imply H=0, i.e. , D(E)^{2}=-4C_{1}(E)C_{2}(E) . We define a function \theta(E) by

cos 2\theta(E)=[C_{1}(E)+C_{2}(E)]/f ,

sin 2\theta(E)=D(E)/f .
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Define \{E^{*}\} by E_{3}^{*}=E_{3} and
E_{1}^{*}=\cos\theta(E)E_{1}- sin \theta(E)E_{2} ,
E_{2}^{*}=\sin\theta(E)E_{1}+\cos\theta(E)E_{2} .

Then we have D(E^{*})=0. Furthermore, for two oriented adapted frame
fields \{E\} and \{E’\} such that E_{3}=E_{3}’ , we have E_{1}^{*}(E)=\pm E_{1}^{*}(E’) and E_{2}^{*}(E)

=\pm E_{2}^{*}(E’) . H=0 and D(E^{*})=0 imply C_{1}(E^{*})C_{2}(E^{*})=0 . So we can
assume that C_{2}(E^{*})=0 [otherwise, change \{E_{1}^{*} , E_{2}^{*} , E_{3}^{*}\} - \{E_{2}^{*} , - E_{1}^{*} , E_{3}^{*}\} ].
Then we get

(2. 13) B_{132}^{*}\neq 0 , B_{231}^{*}=B_{131}^{*}=B_{232}^{*}=0 .
R(E_{1}^{*}, E_{\dot{2}}^{\star})E_{3}^{*}

. =0 implies B_{221}^{*}=0 and
(2. 14) E_{2}^{*}B_{132}^{*}+B_{121}^{*}B_{132}^{*}=0

R(E_{1}^{*}, E_{2}^{*})E_{1}^{*}=-KE_{2}^{*} implies

(2. 15) E_{2}^{*}B_{121}^{*}+(B_{121}^{*})^{2}=-Kt

\S 3. Proof of Proposition

In the proof we can assume that M is oriented. By [A] of \S 2, we
assume that rank R^{1}\leq 2 . Since S=2K is positive, rank R^{1}=2 on M and
W=W_{0}=M. f is defined on M. Since (M, g) is complete and S is bounded
away from zero, by (2. 11) and (2. 12) we have H=0 and E_{3}K=0 . So we
can apply [G] of \S 2. Assume that there is a point x_{0} such that f(x_{0})\neq 0 .
By B_{2if}^{*}=0, each trajectory of E_{2}^{*} is a geodesic in V_{0} . Let N be a trajec-
tory of E_{2}^{*} through x_{0} and parametrize it by arc-length parameter t such
that x(0)=x_{0} . Put fK=\pm k according to f(x_{0})<>\circ . k is a C^{\infty}-function on
M. Put B_{121}^{*}=h on V_{0} . Since B_{132}^{*}=C_{1}(E^{*})K=fK=\pm k, on N\cap V_{0}=(x(t))

\cap V_{0} we have

(3. 1) \frac{dk(t)}{dt} \dagger h(t)k(t)=0,\cdot

(3. 2) \frac{dh(t)}{dt}+h(t)^{2}=-K(t) ,

by (2. 14) and (2. 15). By the following Lemma we have a contradiction.
\dot{H}ence f=0 identically on M. Then [F] of \S 2 and Theorem A in [9] show
that (M, g) is locally a Riemannian product of a 2-dimensional Riemannian
manifold of positive curvature and a real line R.

LEMMA. The following (i)\sim(vi) are not compatible :
(i) k(t) and K(t) are C^{\infty}-functions on R,
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(ii) k(0)>0 ,
(iii) K(t)>0 for all t\in R ,
(iv) h(t) is a C^{\infty}-function defined on an opm intend I=\{t:k(t)>0\}

containing 0,

(v) \frac{dk(t)}{dt}+k(t)h(t)=0 on I ,

(vi) \frac{dh(t)}{dt}+h(t)^{2}=-K(t) on I
Proof. The first case: h(0)<0 . By (iii) and (vi) we get

(3. 3) \frac{dh(t)}{dt}=-(K(t)+h(t)^{2})<-h(t)^{2} .

Let h^{*}(t) be the solution of

(3. 4) \frac{dh^{*}(t)}{dt}=-h^{*}(t)^{2}

such that h^{*}(0)=h(0) . Then h(t)<h^{*}(t) for t:t>0 in I. Since h^{*}(t)=1/

(t-\alpha), we get h(t)<1/(t-\alpha), where \alpha=-1/h(0) and \alpha>t>0 . Since h(t) is
decreasing for t>0 in I, by (v) k(t) is increasing for t>0 in I. Hence,
k(t)>k(0)>0 . Then (v) is

\frac{dk(t)}{dt}=k(t)(-h(t))>k(0)(_{-}\frac{1}{t-\alpha})1

This shows that if tarrow\alpha-0, then dk(t)/dtarrow\infty . This contradicts (i).
The second case : h(0)=0 . By (vi) we get dh(O)/dt=-K(0)<0 .

Therefore we have some small positive number \epsilon such that k(\epsilon)>0 and
h(\epsilon)<0 . Hence, this case reduces to the first case.

The third case : h(0)>0 . For (3. 3) and (3. 4), we have h(t)>h^{*}(t)

for t:t<0 . Hence, h(t)>1/(t-\alpha), where \alpha=-1/h(0)<0 and \alpha<t<0 .
Then we get

\frac{dk(t)}{dt}=k(t)(-h(t))<k(0)(-\frac{1}{t-\alpha}) .

This implies that if tarrow\alpha+0, then dk(t)/dtarrow-\infty . This contradicts (i) .
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