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1. Introduction

In this paper we shall prove the following theorem.

THEOREM. Let G be a doubly transitive group on the set 2={1,2,---, n}
containing no regular normal subgroup. If the stabilizer G,, of points 1
and 2 is isomosphic to a simple group PSL (2, 2™), then one of the following
holds :

(1) n=7 and G is the alternating group A; of degree seven,

(2) mn=12 and G is the Mathieu group M, of degree eleven.

In Yamaki proved in the case m=2. Therefore we may
assume m>2. A proof of [Theorem| is similar to that of [7].

Let X be a subset of a permutation group. Let F(X) denote the set
of all fixed points of X and a(X) be the number of points in F(X). Ng(X)
acts on F(X). Let X(X) and X(X) be the kernel of this representation
and its image, respectively. The other notation is standard.

2. Preliminaries

Let G,; be PSL(2, 2™ with m>2. Let K be a Sylow 2-subgroup of
G, Then Ng, (K) is a complete Frobenius group with complement H.
Let I be an involution of G with the cycle structure (1,2):--. Then I
normalizes G, ,.

LemMMA 1. It may be assumed that the action of I on G,, is trivial
or the field automorphism.

Proor. Let ¢ be a homomorphism of <7, G,.> into Aut PSL(2, 2™).
If ker ¢#1 and ¢(I)#1, then we can replace I by an element (#1) of ker
é. If ker ¢=1, then I induces an outer automorphism. Since <I, G;,>
has two classes of involution, I is conjugate to the field automorphism.

By Lemma 1 I is contained in Ng(H)N Ng(K). Let = be an involution
of Cx(I). Let = fix ¢ points of 2, say 1,2,---,z. By a theorem of Witt
[11, Th. 9.4] x(z) is doubly transitive on F(z).

LEMMA 2. n=i(fi—p~+T)[1, where B is the number of involutions with
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the cycle structures (1, 2)--- which are conjugate to v and 1 =[G, ,: Ce(r)NG,]
—gm 1,
 Proor. See [4], [5] or
Lemma 3. (1) |CxD)|=|K| or {|K| and every involution of Cx(I)
ts Cyz(l)-conjugate to <. .
(2) Every involution of G is conjuate to I or Ir.

Proor. The property (1) is trivial from [Lemma 1. Every involution
of G is conjugate to an involution of <K, I>—K. By (1) every involution
of <I,K>—K is Cy(I)-conjugate to I or Ir. This proves the lemma.

LEmMMA 4. If G has one class of involutions, then B=[G,,: Cq, (I)]
ro 2. If G has two classes of involutions, then B=1 and a(I)=i or
B=2"—1 and a(It)=i, and I contralizes G,,.

Proor. If Cx(I)#K, then I is conjugate to Ir by Lemma 1. There-
fore if G has two classes of involutions, Cx(I)=K, and hence I centralizes

G.. and |Cy,  (Ir)|=|K]|. This proves the lemma.
LEMMA 5. X(z) contains a regular normal subgroup, or the Sfollowing
hold : R
1(c)=PSL@3,2), i=7, |K|=16, |CclI)| =4,
a(HK)=a(K)=3 and <I,K> is indecomposable.
Proor. See [7, Lem. 4].
LemMMmA 6. Cx(I)#K if every involution is conjugate to .
Proor. See [7, Lem. 5].
LemMa 7. If Cx(I)#K, then K has no orbit of length 2.
Proor. See [7, Lem. 6].

3. The case n is odd

If X(r) contains a regular normal subgroup, then let i be a power of
a prime p.
Let ¢7(2) be the number of involutions in G; which fix only the point 1.

LEMMA 8. ¢F(2) is the number of involutions with the cycle structure
(1, 2)--- which are not conjugate to r.

ProOOF. See [7, Lem. 1].
LeMMA 9. a(HK) is odd if G has two classes of involutions.
Proor. See [7, Lem. 8].

LEMMA 10. «(G,,) is odd if G has two classes of involutions.
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Proor. By Ce(I) contains G;,. By F(<I,HK>)
contains unique point a. If a is a point of F(G,,), then a(G,,) is odd.
Assume q is not a point of F (Gy,). Let 4 be an orbit of G, containing a.
Since I centralizes G, ,, F(I) contains 4. Since HK is a maximal subgroup
of Gy, G,;.,=HK and H fixes two point of 4. Thus a(<I, H>)>2 and
<I, H> is isomorphic to a subgroup of G,,. This is a contradiction.

LEmMaA 11. ¢f(2)=0.

Proor. The proof is similar to that of [7, Lem. 9]. Assume g;*(2)#0.
By I centralizes G,,. By a(G,;) is odd. Let a be
the point of F(<I, G,,>). Every involution of <I, G,,> fixes the point
a and by <I, G,,> contains every involution which fixes only
the point a.  If a(I)=1, then ¢{(2)=1 and G has a regular normal sub-
group by Z*-theorem [3]. Thus a(I)=: and a(lr)=1. The subgroup gener-
ated by all involutions which fix only @ is a characteristic subgroup of G,
and it is <G,,,I>. Thus it is half-transitive on 2—{a}. Since {1, 2} is
an orbit of <I,G,,>, G,, must be a 2-group. This is a contradiction.

By this lemma it may be assumed that every involution is conjugate
to . Thus a Sylow 2-subgroup of Cg(z) is also that of G.

LemMA 12. X(zr) contains a regular normal subgroup, a(z)>a(K) and
K has an orbit of length 2. |

Proor. See [7, Lem. 10~Lem. 12].
Since Cx(I)#K by Lemma 6, [Lemma 12 contradicts

4. The case n is even

By X(r) contains a regular normal subgroup. By X(7) is
either a group of semi-linear transformations over GF(q), q¢ even, or
PSL(2, q)V, where V is a 2-dimensional vector space over GF(q).

Case (I). a(c)=a(K). Sylow 2-subgroups of G, are independent. By
[9] G, contains a normal subgroup Gj of odd index such that Gi/0(G,) is
isomorphic to PSL(2, 2™)=G,, and 0(G,) is contained in Z(G,). Thus Gi=
0(G,)G,; and G, is normal in G, which is a contradiction. '

Case (II). a(r)>a(K).

Lemma 13. Xx(z)=PSL(2,q)V.

Proor. See [7, Lem. 23].

Lemma 14. |K]|#8.
Proor. Assume |K|=8. By I centralizes HK and hence

Gi.. By and 6 G has two classes of involutions and B=1 or
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63. Since X(c)=PSL(2,4), i=|V|=16. Since n=:i(f(—1+)r)[7, =63, and
n=16% Thus H is a Sylow 7-subgroup of G. Since a(l)=0, j=a(H) is
even. By the theorem of Witt |Ng(H)| =2j(j—1)|H|. Since |X(H).,|=1
or 2, j is a factor of 16 by [4]. Since j—1 is a factor of 9(n—1)=3-5-17
and n—j is divisible by 7, j=4. Let P be a subgroup of G,; of order 3.
Since I centralizes P, a(P)=j' is even. By the theorem of Witt |Ng(P)|=
2-95'(j/—1) and j/—1 1is divisible by 3 since a Sylow 3-subgroup of G,, is
cyclic. |X(P),|=1,2 or 6. By and [6] j'=6, 28 or ;' is a power of 2.
Since j'—1 is a factor of 15-17-7 and n—j’ is divisible by 3, /=4 or 16.
Let Q be a Sylow 17-subgroup of G;. If Ng(Q)=Ce (Q), it may be as-
sumed by the Frattini argument that Q normalizes K. Since |Ng(K)|=
|[KH|a(K)(a(K)—1) and a(K)<i, this is a contradiction. Thus |Ng (Q)| is
even and |Cq (Q)] is odd. [G;: N (Q)] is a multiple of 4:7-9 and a factor
of-4-7-9-15. This contradicts the theorem of Sylow. This completes the
proof.

Since X(c)=PLS(2, g), Cg,(r) is nonsolvable. Since G, has one class
of involutions, so is G;/0(G,). By G, has a normal subgroup Gi of
odd index such that Gj/0(G,) is isomorphic to PSL(2,2™). Thus Cg4 (z) is
solvable, which is a contradiction. ‘

Thus the proof of is complete.
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