On a certain subspace of the Riemannian projective recurrent space

By Toshikiyo Yamada

§ 0. Introduction

Riemannian spaces which admit some recurrent tensors have been studied by many authors. Recently, T. Miyazawa and Gorō Chūman [1] have studied the subspaces of a Riemannian recurrent space. In this paper, we would like to further study the subspaces of the Riemannian projective recurrent spaces.

The Riemannian space V_{m} may be called a projective recurrent space if Weyl's projective curvature tensor

$$
\begin{equation*}
P_{k j i}{ }^{n}=\bar{R}_{k j i}{ }^{n}-\frac{1}{m-1}\left(\bar{R}_{j i} \delta_{k}{ }^{n}-\bar{R}_{k i} \delta_{j}{ }^{h}\right) \tag{0.1}
\end{equation*}
$$

satisfies the relation

$$
\begin{equation*}
\nabla_{l} P_{k j i}{ }^{h}=K_{l} P_{k j i}{ }^{h}, \tag{0.2}
\end{equation*}
$$

where ∇_{l} denotes a covariant differentiation with respect to the metric tensor $g_{i j}$ of the V_{m}. We will call K_{l} in (0.2) the vector of recurrence of the space.

The present author wishes to express here his sincere thanks to Professor Yoshie Katsurada and Doctor Tamao Nagai for their kindly guidance and encouragement.

§ 1. Preliminary

Let us consider an n-dimensional subspace V_{n}, of local coordinate y^{a}, immersed in an m-dimensional Riemannian space V_{m} of local coordinate x^{i}. Let $B_{a}{ }^{i}=\partial x^{i} / \partial y_{a}$, then the rank of the matrix $\left(B_{a}{ }^{i}\right)$ is n, where the indices h, i, j, \cdots, take the values $1, \cdots, m$ and the indices a, b, c, \cdots, the values $1, \cdots, n(m>n)$. We have the components $g_{a b}$ of the fundamental tensor for V_{n} given by the relation $g_{a b}=B_{a}{ }^{i} B_{b}{ }^{j} g_{i j}, g_{i j}$ being the components of the fundamental tensor for V_{m}.

Let $N_{P}(P=n+1, \cdots, m)$ be unit normals to the V_{m} and mutually orthogonal, then we have the relations

$$
\begin{equation*}
g_{i j} N_{P}^{i} N_{P}^{i}=e_{P}, \quad g_{i j} N_{P}^{i} N_{Q}{ }^{j}=0(P \neq Q), \quad g_{i j} B_{a}{ }^{i} N_{P}{ }^{j}=0, \tag{1.1}
\end{equation*}
$$

where e_{P} is an indicator.
The Euler-Schouten's curvature tensor $H_{a b}{ }^{i}$ of the V_{n} is defined by

$$
H_{a b}{ }^{i}=\nabla_{a} B_{b}{ }^{i},
$$

where ∇_{a} denotes a covariant differentiation with respect to the fundamental tensor $g_{a b}$ of the V_{n}. If we put

$$
\begin{equation*}
H_{a b}^{i}=\sum_{P} e_{P} H_{a b P} N_{P}^{i} \tag{1.2}
\end{equation*}
$$

then the second fundamental tensor $H_{a b P}$ for N_{P}^{i} is given by

$$
\begin{equation*}
H_{a b P}=H_{a b}{ }^{i} N_{P i} . \tag{1.3}
\end{equation*}
$$

Therefore (1.2) can be rewritten as

$$
H_{a b}{ }^{i}=\sum_{P} e_{P} H_{a b}{ }^{j} N_{P j} N_{P}^{i}
$$

The Gauss and Codazzi equation for the V_{n} can be written in the following forms respectively:

$$
\begin{align*}
& R_{a b c d}=\bar{R}_{i j k l} B_{a}{ }^{i} B_{b}{ }^{j} B_{c}{ }^{k} B_{d}{ }^{l}+\sum_{P} e_{P}\left(H_{b c P} H_{a d P}-H_{a c P} H_{b d P}\right), \tag{1.4}\\
& \bar{R}_{i j k l} B_{a}{ }^{i} N_{P}{ }^{j} B_{b}{ }^{k} B_{c}{ }^{c}=\nabla_{b} H_{a c P}-V_{c} H_{a b P}+\sum_{Q} e_{Q}\left(L_{P Q c} H_{a b Q}-L_{P Q b} H_{a c Q}\right), \tag{1.5}
\end{align*}
$$

where we put

$$
\begin{equation*}
L_{Q P a}=\nabla_{a} N_{Q i} N_{P}^{i}\left(=-L_{P Q a}\right) . \tag{1.6}
\end{equation*}
$$

§ 2. Reviews of the known results

We have studied a Riemannian space $V_{m}(m>2)$ satisfying

$$
\begin{equation*}
\nabla_{l} W_{k j i}{ }^{h}=K_{l} W_{k j i}{ }^{k} \tag{2.1}
\end{equation*}
$$

for a non-zero vector K_{l}, where $W_{k j i}{ }^{h}$ is the so-called concircular tensor given by K. Yano [2] as follows:

$$
\begin{equation*}
W_{k j i}{ }^{n}=\bar{R}_{k j i}{ }^{n}-\frac{1}{m(m-1)} \bar{R}\left(g_{j i} \delta_{k}{ }^{n}-g_{k i} \delta_{j}{ }^{n}\right) . \tag{2.2}
\end{equation*}
$$

For brevity, we denote by CCK_{m}-space a Riemannian space defined by (2.1).
We shall denote the following results that are necessary to prove our theorems.

Lemma 1. (T. Miyazawa [3])
A CCK ${ }_{m}$-space is a projective recurrent space.
Lemma 2. (T. Miyazawa [3])
A projective recurrent space is a $C C K_{m}$-space.
§ 3. A totally umbilical surface immersed in a projective recurrent space

From lemma 1 and lemma 2 we find that a CCK_{m}-space is equal to a projective recurrent space. We assume that a V_{m} is a Riemannian projective recurrent space, that is, CCK_{m}-space. If $H_{a b}{ }^{i}$ satisfies the following relation :

$$
\begin{equation*}
H_{a b}{ }^{i}=g_{a b} H^{t}, \tag{3.1}
\end{equation*}
$$

where H^{i} is called the mean curvature vector and satisfies

$$
\begin{equation*}
H^{i}=\frac{1}{n} g^{a b} H_{a b}^{b}, \tag{3.2}
\end{equation*}
$$

then the V_{n} is called a totally umbilical surface. We assume that the subspace V_{n} immersed in the V_{m} is totally umbilical.

Substituting (3.1) into (1.3), we have

$$
\begin{equation*}
H_{a b P}=g_{a b} H^{i} N_{P i} . \tag{3.3}
\end{equation*}
$$

Putting $H^{i} N_{P t}=\rho_{P}$, (3.3), (3.2) and (3.1) can be rewritten respectively as:

$$
\begin{align*}
& H_{a b P}=\rho_{P} g_{a b}, \tag{3.4}\\
& H^{i}=\sum_{P} e_{P} \rho_{P} N_{P}^{i}, \\
& H_{a b}^{i}=\sum_{P} e_{P} \rho_{P} N_{P}^{i} g_{a b} . \tag{3.6}
\end{align*}
$$

$$
H_{i} H^{i}=\sum_{P} e_{P} \rho_{P}^{2}
$$

Hereafter, for brevity, we will put $H^{2}=\sum_{P} e_{P} \rho_{P}^{2}$. Then the mean curvature H is written as $H^{2}=\left|H_{i} H^{i}\right|$.

Substituting (3.4) into (1.4), we have

$$
\begin{equation*}
R_{a b c a}=\bar{R}_{i j k l} B_{a}{ }^{i} B_{b}{ }^{j} B_{c}{ }^{k} B_{a}{ }^{2}+H_{\imath} H^{i}\left(g_{b c} g_{a d}-g_{a c} g_{b a}\right) . \tag{3.8}
\end{equation*}
$$

Differentiating (3.4) covariantly with respect to y^{c}, substituting its result and (3.4) into (1.5), we have

$$
\begin{equation*}
\bar{R}_{i j k l} B_{a}{ }^{i} N_{P}^{j} B_{b}{ }^{k} B_{c}{ }_{c}=g_{a c} \nabla_{b} \rho_{P}-g_{a b} \nabla_{c} \rho_{P}+\sum_{Q} e_{Q} \rho_{Q}\left(L_{P Q c} g_{a b}-L_{P Q b} g_{a c}\right) . \tag{3.9}
\end{equation*}
$$

Furthermore, differentiating (3.8) covariantly with respect to y^{f} and using (1.6), (3.8), (3.9) and (2.1),

$$
\begin{align*}
\nabla_{f} R_{a b c d}= & K_{m} B_{f}^{m}\left[R_{a b c d}-H_{i} H^{i}\left(g_{b c} g_{a d}-g_{a c} g_{b d}\right)\right] \tag{3.10}\\
& +\frac{1}{m(m-1)}\left(B_{f}^{m} \nabla_{m} \bar{R}-B_{f}^{m} K_{m} \bar{R}\right)\left(g_{b c} g_{a i}-g_{a c} g_{b d}\right)
\end{align*}
$$

$$
\begin{aligned}
& +\nabla_{f}\left(H_{i} H^{i}\right)\left(g_{b c} g_{a d}-g_{a c} g_{b d}\right) \\
& +\frac{1}{2}\left[\nabla_{a}\left(H_{i} H^{i}\right)\left(g_{b c} g_{f a}-g_{b d} g_{f c}\right)+\nabla_{b}\left(H_{i} H^{i}\right)\left(g_{c a} g_{f c}-g_{c a} g_{f d}\right)\right. \\
& \left.+\nabla_{c}\left(H_{i} H^{i}\right)\left(g_{a d} g_{f b}-g_{b d} g_{f a}\right)+\nabla_{d}\left(H_{i} H^{i}\right)\left(g_{b c} g_{f a}-g_{a c} g_{f d}\right)\right]
\end{aligned}
$$

We assume that the mean curvature is a constant $(\neq 0)$, then we have

$$
\begin{align*}
\nabla_{f} R_{a b c a}= & K_{m} B_{f}^{m}\left[R_{a b c a}-H_{i} H^{i}\left(g_{b c} g_{a d d}-g_{a c} g_{b d}\right)\right] \tag{3.11}\\
& +\frac{1}{m(m-1)}\left(B_{f}^{m} \nabla_{m} \bar{R}-B_{f}^{m} K_{m} \bar{R}\right)\left(g_{b c} g_{a d}-g_{a c} g_{b d}\right)
\end{align*}
$$

Contracting (3.11) with $g^{b c}$, we get

$$
\begin{align*}
\nabla_{f} R_{a d}= & K_{m} B_{f}^{m}\left[R_{a d}-(n-1) H_{i} H^{i} g_{a d}\right] \tag{3.12}\\
& +\frac{1}{m(m-1)}\left(B_{f}^{m} \nabla_{m} \bar{R}-B_{f}^{m} K_{m} R\right) g_{a d}
\end{align*}
$$

Transvecting (3.12) with $g^{a d}$, we have

$$
\begin{align*}
\nabla_{f} R= & K_{m} B_{f}^{m}\left[R-n(n-1) H_{i} H^{i}\right] \tag{3.13}\\
& +\frac{n(n-1)}{m(m-1)}\left(B_{f}^{m} \nabla_{m} \bar{R}-B_{f}^{m} K_{m} \bar{R}\right)
\end{align*}
$$

From the above equations, we can consider the following two cases:

$$
\text { (A) } K_{m} B_{f}^{m}=K_{f} \neq 0, \quad \text { (B) } \quad K_{m} B_{f}^{m}=0
$$

The case of (B) means that the recurrence vector K_{m} is orthogonal to the V_{n} immersed in the V_{m}.

§4. The subspace with non-orthogonal recurrence vector to the V_{n}.

In this section, let us consider that the recurrence vector is not orthogonal to the V_{n}. First we shall prove the following theorem.

Theorem 4.1. Let V_{n} be a totally umbilical surface immersed in a projective recurrent space and let the recurrence vector be not orthogonal to the V_{n}. If the mean curvature is a constant $(\neq 0, n \geqq 3)$, then the V_{n} is a projective recurrent space.

Proof. Substituting (A) into (3.11) and (3.12), we have

$$
\begin{align*}
\nabla_{f} R_{a b c d}= & K_{f}\left[R_{a b c a}-H_{i} H^{i}\left(g_{b c} g_{a d}-g_{a c} g_{b_{d}}\right)\right] \tag{4.1}\\
& +\frac{1}{m(m-1)}\left(\nabla_{f} \bar{R}-K_{f} \bar{R}\right)\left(g_{b c} g_{a d}-g_{a c} g_{b d}\right)
\end{align*}
$$

$$
\begin{equation*}
\nabla_{f} R_{a d}=K_{f}\left[R_{a d}-(n-1) H_{i} H^{i} g_{a d}\right]+\frac{n-1}{m(m-1)}\left(\nabla_{f} \bar{R}-K_{f} \bar{R}\right) g_{a d}, \tag{4.2}
\end{equation*}
$$

from which we have

$$
K_{f} H_{i} H^{i} g_{a d}=\frac{1}{n-1}\left(K_{f} R_{a d}-\nabla_{f} R_{a d}\right)+\frac{1}{m(m-1)}\left(\nabla_{f} \widetilde{R}-K_{f} \stackrel{\widetilde{R}}{ }\right) g_{a d} .
$$

Substituting this equation into (4.1), we find

$$
\begin{aligned}
\nabla_{f} R_{a b c l}- & \frac{1}{n-1}\left(\nabla_{f} R_{a d} g_{b c}-\nabla_{f} R_{a c} g_{b d}\right) \\
& =K_{f}\left[R_{a b c a}-\frac{1}{n-1}\left(R_{a d} g_{b c}-R_{a c} g_{b d}\right)\right],
\end{aligned}
$$

that is, $\nabla_{f} P_{a b c a l}=K_{f} P_{a b c d}$. This completes the proof.
The following lemma is well known [4]:
Lemma 3. (M. Matsumoto [4]) In a projective recurrent space a recurrence vector K_{l} is gradient.
From this lemma, after easy calculation, we have
Lemma 4. The vector K_{f} defined by (A) is gradient.
Theorem 4.2. Let V_{n} be a totally umbilical surface immersed in a projective recurrent space and let the recurrence vector be not orthogonal to the V_{n}. If the mean curvature is constant $(\neq 0, n \geqq 3)$, then V_{n} is an Einstein space, or a recurrent space.

Proof. Substituting (A) into (3.13), we have

$$
\begin{equation*}
\nabla_{f} R=K_{f}\left[R-n(n-1) H_{i} H^{i}\right]+\frac{n(n-1)}{m(m-1)}\left(\nabla_{f} \bar{R}-K_{f} \tilde{R}\right) . \tag{4.3}
\end{equation*}
$$

From (4.3), we get

$$
\begin{equation*}
\nabla_{f} \bar{R}-K_{f} \bar{R}=\frac{m(m-1)}{n(n-1)}\left(\nabla_{f} R-K_{f} R\right)+m(m-1) K_{f} H_{i} H^{i} . \tag{4.4}
\end{equation*}
$$

Substituting (4.4) into (4.1) and (4.2), we have

$$
\begin{equation*}
\nabla_{f} R_{a b c c l}=K_{f} R_{a b c a l}+\frac{1}{n(n-1)}\left(\nabla_{f} R-K_{f} R\right)\left(g_{b c} g_{a d}-g_{a c} g_{b a}\right), \tag{4.5}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{f} R_{a d}=K_{f} R_{a d}+\frac{1}{n}\left(\nabla_{f} R-K_{f} R\right) g_{a d} \tag{4.6}
\end{equation*}
$$

Differentiating (4.6) covariantly with respect to y^{e}, we have

$$
\begin{aligned}
\nabla_{e} \nabla_{f} R_{a d}= & \nabla_{e} K_{f} R_{a d} \\
& +K_{f} K_{e} R_{a d}-\frac{1}{n} K_{f} K_{e} R g_{a d}-\frac{1}{n} \nabla_{e} K_{f} R g_{a d}+\frac{1}{n} \nabla_{e} \nabla_{f} R g_{a d} .
\end{aligned}
$$

Exchanging the indices e and f and using the lemma 4, and subtracting the equation obtained from the last result, we get $\nabla_{f} \nabla_{e} R_{a d}-\nabla_{e} \nabla_{f} R_{a d}=0$. Applying Ricci's identity to the left hand side of the last equation, we have $R_{b d} R_{f e a}^{b}+R_{a b} R_{f e d}{ }^{b}=0$. Differentiating this equation covariantly with respect to y^{c} and substituting (4.5) and (4.6) into its equation, we have

$$
\begin{equation*}
\left(\nabla_{c} R-K_{c} R\right)\left(R_{f d} g_{e a}-R_{e d} g_{f a}+R_{a f} g_{e d}-R_{a e} g_{f d}\right)=0 \tag{4.7}
\end{equation*}
$$

Transvecting (4.7) with $g_{f d}$, we have $\left(\nabla_{c} R-K_{c} R\right)\left(R g_{a e}-n R_{a e}\right)=0$. It follows that $\nabla_{c} R-K_{c} R=0$, or $R g_{a e}=n R_{a e}$. If the former equation holds, then V_{n} is a recurrent space according to (4.5). If the latter equation holds, then V_{n} is an Einstein space. This completes the proof.

Corollary 1. Let V_{n} be a totally geodesic surface immersed in a projective recurrent space and let the recurrence vector be not orthogonal to the V_{n}. Then V_{n} is a recurrent space, or an Einstein space.

Corollary 2. Let V_{n} be a totally geodesic surface immersed in a projective recurrent space and let the recurrence vector be not orthogonal to the V_{n}, and V_{n} be not an Einstein space. Then V_{m} is a recurrent space.

§5. The subspace with orthogonal recurrence vector to the \boldsymbol{V}_{n}

In this section, let us consider thst the recurrence vector is orthogonal to the V_{n}.

Theorem 5.1. Let V_{n} be a totally umbilical surface immersed in a projective recurrent space and let the recurrence vector be orthogonal to the V_{n}. If the mean curvature is a constant $(\neq 0, n \geqq 3)$, then V_{n} is symmetric in the sense of Cartan.

Proof. From (4.1) and (4.3), we have

$$
\begin{align*}
& \nabla_{f} R_{a b c d}=\frac{1}{m(m-1)} \nabla_{f} \bar{R}\left(g_{b c} g_{a d}-g_{a c} g_{b d}\right), \tag{5.1}\\
& \nabla_{f} R=\frac{n(n-1)}{m(m-1)} \nabla_{f} \bar{R}, \quad \nabla_{f} \bar{R}=\frac{m(m-1)}{n(n-1)} \nabla_{f} R \tag{5.2}
\end{align*}
$$

Substituting (5.2) into (5.1), we have

$$
\begin{equation*}
\nabla_{f} R_{a b c d}-\frac{1}{n(n-1)} \nabla_{f} R\left(g_{b c} g_{a d}-g_{a c} g_{b d}\right)=0 \tag{5.3}
\end{equation*}
$$

The contraction with respect to $g^{a d}$ in (5.3) gives $\nabla_{f} R_{b c}-\frac{1}{n} \nabla_{f} R g_{b c}=0$. Transvecting this equation with $g_{a c}$, we get $\nabla_{b} R=0$, that is, $R=$ constant.

Therefore, from (5.3) we find $\nabla_{f} R_{a b c d}=0$. This completes the proof. Department of Mathematics, Hokkaido Uniersitv

References

[1] T. Miyazawa and G. Chūman: On certain subspaces of Riemannian recurrent space, Tensor, N.S. 23 (1972) 253-260.
[2] K. Yano: Concircular geometry, I, Proc. Imp. Acad., Tokyo 16 (1940), 195-200.
[3] T. Miyazawa: On Riemannian spaces admitting some recurrent tensors, TRU Math. J,. 2 (1966), 11-18.
[4] M. Matsumoto: On Riemannian spaces with recurrent projective curvature, Tensor, U.S. 19 (1968), 11-18.
[5] A. G. Walker: On Ruse's space of recurrent curvature, Proc. Lond. Math. Soc., (2), 52 (1950), 36-64.

