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\S 0. Introduction

Riemannian spaces which admit some recurrent tensors have been
studied by many authors. Recently, T. Miyazawa and Gor\={o} Ch\={u}man [1]
have studied the subspaces of a Riemannian recurrent space. In this paper,
we would like to further study the subspaces of the Riemannian projective
recurrent spaces.

The Riemannian space V_{m} may be called a projective recurrent space
if Weyl’s projective curvature tensor

(0. 1) P_{kfi}^{h}= \overline{R}_{kfi}^{h}-\frac{1}{m-1}(\overline{R}_{fi}\delta_{k}^{h}-\overline{R}_{ki}\delta_{f}^{h})

satisfies the relation
(0. 2) \nabla_{l}P_{kfi}^{h}=K_{l}P_{kfi}^{h} ,

where \nabla_{l} denotes a covariant differentiation with respect to the metric
tensor g_{if} of the V_{m} . We will call K_{l} in (0.2) the vector of recurrence
of the space.

The present author wishes to express here his sincere thanks to PrO-
fessor Yoshie Katsurada and Doctor Tamao Nagai for their kindly guidance
and encouragement.

\S 1. Preliminary

Let us consider an n-dimensional subspace V_{n} , of local coordinate y^{a},
immersed in an m-dimensional Riemannian space V_{m} of local coordinate
x^{i} . Let B_{a}^{i}=\partial x^{i}/\partial y_{a} , then the rank of the matrix (B_{a}^{i}) is n, where the
indices h, i,j, \cdots , take the values 1, \cdots , m and the indices a, b, c. \cdots , the
values 1, \cdots , n(m>n) . We have the components g_{ab} of the fundamental
tensor for V_{n} given by the relation g_{ab}=B_{a^{i}}B_{b}^{f}g_{if} , g_{if} being the components
of the fundamental tensor for V_{m} .

Let N_{P}(P=n+1, \cdots, m) be unit normals to the V_{m} and mutually or-
thogonal, then we have the relations

(1. 1) g_{if}N_{P}^{i}N_{P}^{i}=e_{P} , g_{if}N_{P}^{i}N_{Q}^{f}=0(P\neq Q) , g_{if}B_{a^{i}}N_{P}^{f}=0 ,
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where e_{P} is an indicator.
The Euler-Schouten’s curvature tensor H_{ab}^{i} of the V_{n} is defined by

H_{ab}^{i}=\nabla_{a}B_{b}^{i},,

where \nabla_{a} denotes a covariant differentiation with respect to the fundamental
tensor g_{ab} of the V_{n} . If we put

(1. 2) H_{ab}^{i}= \sum_{P}e_{P}H_{abP}N_{P}^{i} ,

then the second fundamental tensor H_{abP} for N_{P}^{i} is given by

(1. 3) H_{abP}=H_{ab}^{i}N_{Pi}1

Theref.ore (1. 2) can be rewritten as

H_{ab}^{i}= \sum_{P}e_{P}H_{ab}^{f}N_{Pj}N_{P}^{i} .
The Gauss and Codazzi equation for the V_{n} can be written in the

following forms respectively :

(1. 4) R_{abcd}= \overline{R}_{ifkl}B_{a^{i}}B_{b}^{f}B_{c}^{k}B_{l}^{l},+\sum_{P}e_{P}(H_{bcP}H_{adP}-H_{acP}H_{b,lP}).,

(1. 5) \overline{\overline{R}}_{ifkl}B_{a^{i}}N_{P}^{f}B_{b}^{k}B_{c}^{l}=\nabla_{b}H_{acP}-\nabla_{c}H_{abP}+\sum_{Q}e_{Q}(L_{PQc}H_{abQ}-L_{PQb}H_{acQ}) ,

where we put

(1. 6) L_{QPa}=\nabla_{a}N_{Qi}N_{P}^{i}(=-L_{PQ\ell\iota}) .

\S 2. Reviews of the known results

We have studied a Riemannian space V_{m}(m>2) satisfying

(2. 1) \nabla_{l}W_{kfi}^{h}=K_{l}W_{kji}^{h}

for a non-zero vector K_{l} , where W_{kfi}^{h} is the s0-called concircular tensor
given by K. Yano [2] as follows :

(2. 2) W_{kji}^{h}= \overline{R}_{kfi}^{h}-\frac{1}{m(m-1)}\overline{R}(g_{fi}\delta_{k}^{h}-g_{ki}\delta_{f}^{h}) .

For brevity, we denote by CCK_{m}-space a Riemannian space defined by (2. 1).
We shall denote the following results that are necessary to prove our

theorems.
LEMMA 1. (T. Miyazawa [3])

A CCK_{m}-space is a projective recurrent space.
LEMMA 2. (T. Miyazawa [3])

A projective recurrent space is a CCK_{m}-space.
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\S 3. A totally umbilical surface immersed in a projective
recurrent space

From lemma 1 and lemma 2 we find that a CCK_{m}-space is equal to
a projective recurrent space. We assume that a V_{m} is a Riemannian pr0-

jective recurrent space, that is, CC\dot{K}_{m}-space. If H_{ab}^{i} satisfies the following
relation :

(3. 1) H_{ab}^{i}=g_{ab}H^{i}
,\cdot

where H^{i} is called the mean curvature vector and satisfies

(3. 2) H^{i}= \frac{1}{n}g^{ab}H_{ab}^{i} ,

then the V_{n} is called a totally umbilical surface. We assume that the
subspace V_{n} immersed in the V_{m} is totally umbilical.

Substituting (3. 1) into (1. 3), we have

(3. 3) H_{abP}=g_{ab}H^{i}N_{Pi} .
Putting H^{i}N_{Pi}=\rho_{P} , (3. 3), (3. 2) and (3. 1) can be rewritten respectively as:

(3. 4) H_{abP}=\rho_{Pg_{ab}} ,

(3. 5) H^{i}= \sum_{P}e_{P}\rho_{P}N_{P}^{i} ,

(3. 6) H_{ab}^{i}= \sum_{P}e_{P}\rho_{P}N_{P}^{i}g_{ab} .
Using (1. 1) and (3. 5), we have

(3. 7) H_{i}H^{i}= \sum_{P}e_{P}\rho_{P}^{2} .
Hereafter, for brevity, we will put H^{2}= \sum_{P}e_{P}\rho_{P}^{2} . Then the mean cur-

vature H is written as H^{2}=|H_{i}H^{i}| .
Substituting (3. 4) into (1. 4), we have

(3. 8) R_{abc\iota l}=\overline{R}_{ifkl}B_{a^{i}}B_{b}^{f}B_{c}^{k}B_{l}^{l},+H_{i}H^{i}(g_{bc}g_{ael}-g_{ac}g_{bd}) .
Differentiating (3. 4) covariantly with respect to y^{c}, substituting its result
and (3. 4) into (1. 5), we have

(3. 9) \overline{R}_{ifkl}B_{a}^{i}N_{P}^{f}B_{b}^{k}B_{c}^{l}=g_{ac}\nabla_{b}\rho_{P}-g_{ab}\nabla_{c}\rho_{P}+\sum_{Q}e_{Q}\rho_{Q}(L_{PQc}g_{ab}-L_{PQb}g_{ac}) .
Furthermore, differentiating (3. 8) covariantly with respect to y^{f} and

using (1. 6), (3. 8), (3. 9) and (2. 1),

(3. 10) \nabla_{f}R_{abcd}=K_{m}B_{f}^{m}[R_{abcd}-H_{i}H^{i}(g_{bc}g_{al},-g_{ac}g_{b\prime l})]

+ \frac{1}{m(m-1)}(B_{t^{m}}\nabla_{m}\overline{R}-B_{f}^{m}K_{m}\overline{R})(g_{bc}g_{al},-g_{ac}g_{bd})
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+\nabla_{f}(H_{i}H^{i})(g_{bc}g_{a\prime l}-g_{ac}g_{bd})

+ \frac{1}{2}[\nabla_{a}(H_{i}H^{i})(g_{bc}g_{fl},-g_{bd}g_{fc})+\nabla_{b}(H_{i}H^{i})(g_{la},g_{fc}-g_{ca}g_{f,l})

+\nabla_{c}(H_{i}H^{i})(g_{ad}g_{fb}-g_{bd}g_{fa})+\nabla_{d}(H_{i}H^{i})(g_{bc}g_{fa}-g_{ac}g_{f\prime l})] .
We assume that the mean curvature is a constant (\neq 0), then we have

(3. 11) \nabla_{f}R_{abcd}=K_{m}B_{f}^{m}[R_{abcl},-H_{i}H^{i}(g_{bc}g_{a’ l}-g_{ac}g_{bd})]

+ \frac{1}{m(m-1)}(B_{f}^{m}\nabla_{m}\overline{R}-B_{f}^{m}K_{m}\overline{R})(g_{bc}g_{ad}-g_{ac}g_{bd}) .

Contracting (3. 11) with g^{bc}, we get

(3. 12) \nabla_{f}R_{a’ l}=K_{m}B_{f}^{m}[R_{ad}-(n-1)H_{i}H^{i}g_{a’ l}]

+ \frac{1}{m(m-1)}(B_{f}^{m}\nabla_{m}\overline{R}-B_{f}^{m}K_{m}R)g_{ad} .

Transvecting (3. 12) with g^{ad}, we have

(3. 13) \nabla_{f}R=K_{n\iota}B_{f}^{m}[R-n (n-1) H_{i}H^{i}]

+ \frac{n(n-1)}{m(m-1)}(B_{f}^{m}\nabla_{m}\overline{\overline{R}}-B_{f}^{m}K_{m}\overline{R}) .

From the above equations, we can consider the following two cases:
(A) K_{m}B_{f}^{m}=K_{f}\neq 0 , ( B) K_{m}B_{f}^{m}=0 .

The case of (B) means that the recurrence vector K_{m} is orthogonal to the
V_{n} immersed in the V_{m} .

\S 4. The subspace with non-orthogonal recurrence vector
to the V_{n} .

In this section, let us consider that the recurrence vector is not or-
thogonal to the V_{n} . First we shall prove the following theorem.

THEOREM 4. 1. Let V_{n} be a totally umbilical surface immersed in
a projective recurrent space and let the recurrmce vector be not orthogonal
to the V_{n} . If the mean curvature is a constant (\neq 0, n\geqq 3), then the V_{n} is
a projective recurrent space.

PROOF. Substituting (A) into (3. 11) and (3. 12), we have

(4. 1) \nabla_{f}R_{abcd}=K_{f}[R_{abcd}-H_{i}H^{i}(g_{bc}g_{a’ l}-g_{ac}g_{b\iota l})]

+ \frac{1}{m(m-1)}(\nabla_{f}\overline{R}-K_{f}\overline{R})(g_{bc}g_{ad}-g_{ac}g_{bd}) ,



200 T. Yamada

(4. 2) \nabla_{f}R_{ae}, =K_{f}[R_{ad}-(n-1)H_{i}H^{i}g_{ad}]+ \frac{n-1}{m(m-1)}(\nabla_{f}\overline{R}-K_{f}\overline{R})g_{al}, ,

from which we have

K_{f}H_{i}H^{i}g_{ad}= \frac{1}{n-1}(K_{f}R_{aa}-\nabla_{f}R_{ad})+\frac{1}{m(m-1)}(\nabla_{f}\overline{R}-K_{f}\overline{R})g_{a’ l} .

Substituting this equation into (4. 1), we find

\nabla_{f}R_{abc\prime l}-\frac{1}{n-1}(\nabla_{f}R_{ad}g_{bc}-\nabla_{f}R_{ac}g_{b\prime l})

=K_{f}[R_{abcd}- \frac{1}{n-1}(R_{ad}g_{bc}-R_{ac}g_{bd})] ,

that is, \nabla_{f}P_{abca}=K_{f}P_{abcd} . This completes the proof.
The following lemma is well known [4]:

LEMMA 3. (M. Matsumoto [4]) In a projective recurrent space a re-
currence vector K_{l} is gradient.
From this lemma, after easy calculation, we have

LEMMA 4. The vector K_{f} defined by (A) is gradient.
THEOREM 4. 2. Let V_{n} be a totally umbilical surface immersed in

a projective recurrent space and let the recurrence vector be not orthogonal
to the V_{n} . If the mean curvature is constant (\neq 0, n\geqq 3), then V_{n} is an
Einstein space, or a recurrent space.

PROOF. Substituting (A) into (3. 13), we have

(4. 3) \nabla_{f}R=K_{f}[R-n(n–1) H_{i}H^{i}]+ \frac{n(n-1)}{m(m-1)}(\nabla_{f}\overline{\dot{R}}-K_{f}\overline{\overline{R}}) .

From (4. 3), we get

(4. 4) \nabla_{f}\overline{R}-K_{f}^{\nearrow}\overline{R}=\frac{m(m-1)}{n(n-1)}(\nabla_{f}R-K_{f}R)+m (m-1) K_{f}H_{i}H^{i}

Substituting (4. 4) into (4. 1) and (4. 2), we have

(4. 5) \nabla_{f}R_{abc\prime l}=K_{f}R_{abc\prime l}+\frac{1}{n(n-1)}(\nabla_{f}R-K_{f}R)(g_{bc}g_{aa}-g_{\alpha c}g_{ba}) ,

(4. 6) \nabla_{f}R_{ad}=K_{f}R_{ad}+\frac{1}{n}(\nabla_{f}R-K_{f}R)g_{ad}t

Differentiating (4. 6) covariantly with respect to y^{e}, we have
\nabla_{e}\nabla_{f}R_{ad}=\nabla_{e}K_{f}R_{a\prime f}

+K_{f}K_{e}R_{ad}-^{\frac{1}{n}}K_{f}K_{e}Rg_{ad}- \frac{1}{n}\nabla_{e}K_{f}Rg_{ad}+\frac{1}{n}\nabla_{e}\nabla_{f}Rg_{ad} .
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Exchanging the indices e and f and using the lemma 4, and subtracting
the equation obtained from the last result, we get \nabla_{f}\nabla_{e}R_{al},-\nabla_{e}\nabla_{f}R_{ad}=0 .
Applying Ricci’s identity to the left hand side of the last equation, we have
R_{bd}R_{fea}^{b}+R_{ab}R_{ferl}^{b}=0 . Differentiating this equation covariantly with respect
to y^{c} and substituting (4. 5) and (4. 6) into its equation, we have

(4. 7) (\nabla_{c}R-K_{c}R)(R_{f’ l}g_{ea}-- R_{e’ l}g_{fa}+R_{af}g_{e’ l}-R_{ae}g_{fd})=0l

Transvecting (4. 7) with g_{fd} , we have (\nabla_{c}R-K_{c}R)(Rg_{ae}-- nR_{ae})=0 . It fol-
lows that \nabla_{c}R-K_{c}R=0, or Rg_{ae}=nR_{ae} . If the former equation holds, then
V_{n} is a recurrent space according to (4. 5). If the latter equation holds,
then V_{n} is an Einstein space. This completes the proof.

COROLLARY 1. Let V_{n} be a totally geodesic surface immersed in
a projective recurrent space and let the recurrence vector be not orthogonal
to the V_{n} . Then V_{n} is a recurrent space, or an Einstein space.

COROLLARY 2. Let V_{n} be a totally geodesic surface immersed in
a projective recurrent space and let the recurrmce vector be not orthogonal
to the V_{n} , and V_{n} be not an Einstein space. Then V_{m} is a recurrent space.

\S 5. The subspace with orthogonal recurrence vector to the V_{n}

In this section, let us consider thst the recurrence vector is orthog0-
nal to the V_{n} .

THEOREM 5. 1. Let V_{n} be a totally umbilical surface immersed in
a proj.ective recurrent space and let the recurrmce vector be orthogonal to
the V_{n} . If the mean curvature is a constant (\neq 0, n\geqq 3), then V_{n} is sym-
metric in the sense of Cartan.

PROOF. From (4. 1) and (4. 3), we have

(5. 1) \nabla_{f}R_{abcel}=\frac{1}{m(m-1)}\nabla_{f}\overline{R}(g_{bc}g_{al},-g_{ac}g_{bl},) ,

(5. 2) \nabla_{f}R=\frac{n(n-1)}{m(m-1)}\nabla_{f}\overline{R} , \nabla_{f}\overline{R}=\frac{m(m-1)}{n(n-1)}\nabla_{f}R

Substituting (5. 2) into (5. 1), we have

(5. 3) \nabla_{f}R_{abcd}-^{\frac{1}{n(n-1)}}\nabla_{f}R(g_{bc}g_{a’ l}-g_{ac}g_{b,l})=0

The contraction with respect to g^{a\prime l} in (5. 3) gives \nabla_{f}R_{bc}-\frac{1}{n}\nabla_{f}Rg_{bc}=0 .

Transvecting this equation with g_{ac} , we get \nabla_{b}R=0, that is, R=constant.
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Therefore, from (5. 3) we find \nabla_{f}R_{abcd}=0 . This completes the proof.
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