Product-projective changes of affine connections in a locally product space ### By Shigeyoshi Fujimura Holomorphically projective changes of affine connections in an almost complex space have been studied by S. Ishihara, T. Ōtsuki, S. Tachibana, Y. Tashiro and others (cf. Chapter XII of [5]). Problems analogous to this arise in an almost product space, and S. Tachibana ([2]) and S. Yamaguchi ([3], [4]) have studied infinitesimal product-projective transformations of a locally decomposable Riemannian space. We shall devote this paper to study product-projective changes of affine connections in a locally product space. The author wishes to express here his sincere thanks to Professor Yoshie Katsurada for her kindly guidance and encouragement. # § 1. Locally product spaces and affine connections Let M_n be an *n*-dimensional locally product space such that M_n is a locally product space $M_p \times M_q$ of p- and q-dimensional spaces M_p and M_q (p+q=n). Then, M_n is covered by such a system of coordinate neighbourhoods $\{(U, x^h)\}$ that in any intersection of two coordinate neighbourhoods (U, x^h) and $(U', x^{h'})$ we have $$(1.1) x^{\alpha'} = x^{\alpha'}(x^{\alpha}) \quad \text{and} \quad x^{\epsilon'} = x^{\epsilon'}(x^{\epsilon})$$ with $$|\partial_{\alpha}x^{\alpha'}| \neq 0$$ and $|\partial_{\kappa}x^{\kappa'}| \neq 0$, where $\partial_{\lambda} = \partial/\partial x^{\lambda}$, the indices α , β , γ , δ , ε run over the range $1, 2, \dots, p$, the indices κ , λ , μ , ν , ω run over the range $p+1, \dots, p+q$ (=n) and the Latin indices run over the range $1, 2, \dots, n$. Such a coordinate system will be called a separating coordinate system of M_n . If we define ϕ_i^h by $$(1.2) \qquad (\phi_i^h) = \begin{pmatrix} D_i^{\alpha} & 0 \\ 0 & -D_i^{\alpha} \end{pmatrix}$$ in each separating coordinate neighbourhood, ϕ_i^n is a tensor field on M_n and satisfies $$\phi_i^h \phi_i^j = D_i^h \,,$$ where D_i^h is a Kronecker's delta. Conversely, consider an *n*-dimensional space M_n which admits a tensor field $\phi_i^h(\neq D_i^h)$ satisfying (1.2) for a certain system of coordinate neighbourhoods of M_n , then, this system is a separating coordinate system, therefore, M_n is a locally product space. Such a tensor field ϕ_i^h is called a locally product structure tensor field. From now on, we shall assume that the space is a locally product space. Now suppose that there is given an affine connection Γ_{ij}^h on a space M_n with a locally product structure tensor field ϕ_i^h . In order that ϕ_i^h is covariantly constant with respect to Γ_{ij}^h , it is necessary and sufficient that locally subspaces M_p and M_q of $M_n = M_p \times M_q$ are parallel in M_n with respect to Γ_{ij}^h , that is, an arbitrary contravariant vector tangent to M_p (resp. M_q), displaced parallelly in any direction, is still tangent to M_p (resp. M_q) (cf. Chapter X of [5]). And it is equivalent to (1.4) $$\Gamma^{\alpha}_{\beta\varsigma} = \Gamma^{\alpha}_{\varsigma\beta} = \Gamma^{\alpha}_{\varsigma\lambda} = \Gamma^{\varsigma}_{\lambda\alpha} = \Gamma^{\varsigma}_{\alpha\lambda} = \Gamma^{\varsigma}_{\alpha\beta} = 0.$$ Such a symmetric affine connection will be called a ϕ -connection in what follows. #### § 2. ϕ -planar curves We now consider the curve $x^h = x^h(t)$ in a space M_n with an affine connection Γ_{ij}^h satisfying the ordinary differential equations $$(2.1) \qquad \frac{d^2x^h}{dt^2} + \Gamma_{ij}^h \frac{dx^i}{dt} \frac{dx^j}{dt} = f(t) \frac{dx^h}{dt} + g(t)\phi_i^h \frac{dx^i}{dt}$$ where f(t) and g(t) are certain functions of t, and we will call this curve a ϕ -planar curve. From the theory of ordinary differential equations, it follows that there exists uniquely a ϕ -planar curve through an arbitrary point Q of M_n such that the curve has an arbitrary tangent vector at Q as the vector tangent to the curve at Q. We see directly from (2.1) that, for a ϕ -connection Γ_{ij}^h , a curve $x^h = x^h(t)$ is a ϕ -planar curve if and only if the 2-plane determined by two vector fields dx^h/dt and $\phi_i^h dx^i/dt$ is parallel along the curve itself. And for a ϕ -connection Γ_{ij}^h on $M_n = M_p \times M_q$, since $\Gamma_{\beta r}^a$ and $\Gamma_{i\mu}^\epsilon$ can be regarded as the connections on M_p and M_q , respectively, then, we see that a curve $x^h = x^h(t)$ is a ϕ -planar curve if and only if the curve $x^a = x^a(t)$ is a geodesic in M_p and the curve $x^r = x^r(t)$ is a geodesic in M_q . # § 3. Product-projective changes of affine connections We consider the conditions for two affine connections to have all ϕ -planar curves in common. Such connections will be called to be P-projectively related to each other. Theorem 1. Two symmetric affine connections Γ_{ij}^h and $\overline{\Gamma}_{ij}^h$ are P-projectively related to each other if and only if (3.1) $$\Gamma_{ij}^{h} = \overline{\Gamma}_{ij}^{h} + 2U_{(i}D_{j)}^{h} + 2V_{(i}\phi_{j)}^{h}$$ holds for certain vector fields U_h and V_h . In (3.1), parentheses mean taking a symmetric part with respect to indices in a parenthesis, for example, $$T_{(hij)} = (T_{hij} + T_{ijh} + T_{jhi} + T_{ihj} + T_{jih} + T_{hji})/3!$$. PROOF When Γ_{ij}^h is given by (3.1), it is obvious that Γ_{ij}^h and $\overline{\Gamma}_{ij}^h$ are P-projectively related to each other. Conversely, we suppose that Γ_{ij}^h and $\overline{\Gamma}_{ij}^h$ have all ϕ -planar curves in common. Then, from the following equations $$\frac{d^2x^{\hbar}}{dt^2} + \Gamma^{\hbar}_{ij} \frac{dx^i}{dt} \frac{dx^j}{dt} = f(t) \frac{dx^{\hbar}}{dt} + g(t)\phi^{\hbar}_i \frac{dx^i}{dt}$$ and $$\frac{d^2x^h}{dt^2} + \overline{\Gamma}_{ij}^h \frac{dx^i}{dt} \frac{dx^j}{dt} = \overline{f}(t) \frac{dx^h}{dt} + \overline{g}(t) \phi_i^h \frac{dx^i}{dt},$$ we have for any point and any vector field W^h (3.2) $$S_{ij}^{h}W^{i}W^{j} = f^{*}W^{h} + g^{*}\phi_{i}^{h}W^{i}$$ where f^* and g^* depend on both the point and W^h , and $S_{ij}^h = \Gamma_{ij}^h - \overline{\Gamma}_{ij}^h$. Multiplying W^k to (3.2) and taking the skew-symmetric part with respect to indices h and k, we have (3.3) $$S_{ij}^{[h}D_i^{k]}W^iW^jW^i = g^*\phi_i^{[h}D_j^{k]}W^iW^j$$ where brackets mean taking a skew-symmetric part with respect to indices in a bracket, for example, $$T_{[hi]} = (T_{hi} - T_{ih})/2!$$. If g^* vanishes identically, from the symmetric part of (3.3) with respect to indices i, j and l, we have $$S_{(ij}^{[h]}D_{i)}^{k]}=0.$$ Contracting (3.4) by D_k^i , we can obtain $$S_{ij}^{h} = 2S_{k(i)}^{h}D_{j}^{h}/(n+1).$$ Therefore, it follows that Γ_{ij}^h and $\overline{\Gamma}_{ij}^h$ are projectively related to each other, that is, $U_h = S_{ih}^t/(n+1)$ and $V_h = 0$. If g^* does not vanish, eliminating g^* from (3.3), we have $$(3.6) (S_{ij}^{\lceil h} D_{i}^{k \rceil} \phi_{b}^{\lceil a} D_{a}^{e \rceil} - \phi_{i}^{\lceil h} D_{i}^{k \rceil} S_{ba}^{\lceil a} D_{j}^{e \rceil}) W^{i} W^{j} W^{i} W^{b} W^{a} = 0.$$ Taking a symmetric part of (3.6) with respect to indices i, j, l, b and d, we get $$(3.7) S_{(ij)}^{\lceil h} D_i^{k \rceil} \phi_b^{\lceil a} D_d^{c \rceil} - \phi_{(i}^{\lceil h} D_i^{k \rceil} S_{bd}^{\lceil a} D_j^{c \rceil} = 0.$$ Contracting (3.7) by $D_k^i D_c^i \phi_a^b$, we have $$(3.8) \qquad -(n^{2}+2n-\bar{n}^{2}-2)S_{ij}^{h}$$ $$=2\left\{S_{kl}^{k}\phi_{a}^{l}+\bar{n}S_{ka}^{k}-(n+1)\phi_{l}^{k}S_{ka}^{l}\right\}D_{(i}^{a}\phi_{j)}^{h}$$ $$+2\left\{\phi_{l}^{k}S_{kb}^{l}\phi_{a}^{b}+\bar{n}\phi_{l}^{k}S_{ka}^{l}-(n+1)S_{ka}^{k}\right\}D_{(i}^{a}D_{j)}^{h}$$ $$+2\left\{2\phi_{l}^{h}S_{k(i}^{l}\phi_{j)}^{k}-S_{kl}^{h}\phi_{i}^{k}\phi_{j}^{l}\right\}-2\bar{n}\left\{2S_{k(i}^{h}\phi_{j)}^{k}-S_{ij}^{k}\phi_{k}^{h}\right\}.$$ Therefore, we have $$(3.9) \begin{cases} S^{\alpha}_{\beta 7} = 2 \left\{ S^{\hbar}_{\hbar (7} D^{\alpha}_{\beta)} + \phi^{\hbar}_{i} S^{i}_{\hbar (7} D^{\alpha}_{\beta)} \right\} / (n + \bar{n} + 2) , \\ S^{\alpha}_{\beta z} = \left(S^{\hbar}_{\hbar z} + \phi^{\hbar}_{i} S^{i}_{\hbar z} \right) D^{\alpha}_{\beta} / (n + \bar{n}) , \\ S^{\alpha}_{z\lambda} = S^{\varepsilon}_{\alpha\beta} = 0 , \\ S^{\varepsilon}_{\lambda\alpha} = \left(S^{\hbar}_{\hbar\alpha} - \phi^{\hbar}_{i} S^{i}_{\hbar\alpha} \right) D^{\varepsilon}_{\lambda} / (n - \bar{n}) , \text{ and} \\ S^{\varepsilon}_{\lambda\mu} = 2 \left\{ S^{\hbar}_{\hbar (\mu} D^{\varepsilon}_{\lambda)} - \phi^{\hbar}_{i} S^{i}_{\hbar (\mu} D^{\varepsilon}_{\lambda)} \right\} / (n - \bar{n} + 2) . \end{cases}$$ On the other hand, putting $$S_{ij}^{h} = U_{i}D_{j}^{h} + U_{j}^{*}D_{i}^{h} + V_{i}\phi_{j}^{h} + V_{j}^{*}\phi_{i}^{h}$$, we have from (3.9) $$\left\{ \begin{array}{l} U_{\alpha} + V_{\alpha} = U^{*}{}_{\alpha} + V^{*}{}_{\alpha} = (S^{h}{}_{\hbar\alpha} + \phi^{h}_{i}S^{i}{}_{\hbar\alpha})/(n + \bar{n} + 2) \,, \\ U_{\kappa} + V_{\kappa} = U^{*}{}_{\kappa} + V^{*}{}_{\kappa} = (S^{h}{}_{\hbar\kappa} + \phi^{h}_{i}S^{i}{}_{\hbar\kappa})/(n + \bar{n}) \,, \\ U_{\alpha} - V_{\alpha} = U^{*}{}_{\alpha} - V^{*}{}_{\alpha} = (S^{h}{}_{\hbar\alpha} - \phi^{h}_{i}S^{i}{}_{\hbar\alpha})/(n - \bar{n}) \,, \quad \text{and} \\ U_{\kappa} - V_{\kappa} = U^{*}{}_{\kappa} - V^{*}{}_{\kappa} = (S^{h}{}_{\hbar\kappa} - \phi^{h}_{i}S^{i}{}_{\hbar\kappa})/(n - \bar{n} + 2) \,. \end{array} \right.$$ Hence, we can obtain $$U_{\rm h} = U*_{\rm h} = \frac{(2p+1)A_{\rm h} - A_{\it i}\phi^{\it i}_{\it h}}{8p(p+1)} + \frac{(2q+1)B_{\rm h} + B_{\it i}\phi^{\it i}_{\it h}}{8q(q+1)}$$ and $$V_{h} = V_{h}^{*} = \frac{(2p+1)A_{h} - A_{i}\phi_{h}^{i}}{8p(p+1)} - \frac{(2q+1)B_{h} + B_{i}\phi_{h}^{i}}{8q(q+1)},$$ where n = p + q, $\bar{n} = p - q$, $A_h = S_{ih}^i + \phi_j^i S_{ih}^j$ and $B_h = S_{ih}^i - \phi_j^i S_{ih}^j$. COROLLARY 1. In order that two symmetric affine connections are P-projectively related to each other, it is necessary and sufficient that the following quantities Π_{ij}^h corresponding to these connections coincide: $$\begin{split} H^{h}_{ij} &= \Gamma^{h}_{ij} - \frac{2(n+1)(n^{2}+2n-\bar{n}^{2})}{(n^{2}-\bar{n}^{2})((n+2)^{2}-\bar{n}^{2})} \left\{ \Gamma^{k}_{k(i}D^{h}_{j)} + \phi^{k}_{l}\Gamma^{l}_{k(i}\phi^{h}_{j)} \right\} \\ &+ \frac{2\bar{n}(n^{2}+2n+2-\bar{n}^{2})}{(n^{2}-\bar{n}^{2})((n+2)^{2}-\bar{n}^{2})} \left\{ \Gamma^{k}_{k(i}\phi^{h}_{j)} + \phi^{k}_{l}\Gamma^{l}_{k(i}D^{h}_{j)} \right\} \\ &- \frac{4\bar{n}(n+1)}{(n^{2}-\bar{n}^{2})((n+2)^{2}-\bar{n}^{2})} \left\{ \Gamma^{k}_{kl}\phi^{l}_{(i}D^{h}_{j)} + \phi^{k}_{l}\Gamma^{l}_{km}\phi^{m}_{(i}\phi^{h}_{j)} \right\} \\ &+ \frac{2(n^{2}+2n+\bar{n}^{2})}{(n^{2}-\bar{n}^{2})((n+2)^{2}-\bar{n}^{2})} \left\{ \Gamma^{k}_{kl}\phi^{l}_{(i}\phi^{h}_{j)} + \phi^{k}_{l}\Gamma^{l}_{km}\phi^{m}_{(i}D^{h}_{j)} \right\}. \end{split}$$ Theorem 2. Let Γ_{ij}^h be a ϕ -connection and $\overline{\Gamma}_{ij}^h$ a symmetric affine connection to be P-projectively related to Γ_{ij}^h . In order for $\overline{\Gamma}_{ij}^h$ to be a ϕ -connection, it is necessary and sufficient that $U_h = \phi_h^i V_i$ in (3.1). PROOF. When we denote by \overline{V} and $\overline{\overline{V}}$ the operators of covariant differentiation with respect to Γ_{ij}^h and $\overline{\Gamma}_{ij}^h$, respectively, we have If $U_h = \phi_h^i V_i$, it follows from (3.10) that $\overline{\Gamma}_{ij}^h$ is a ϕ -connection. Conversely, if $\overline{V}_j \phi_i^h$ and $\overline{V}_j \phi_i^h$ vanish, we have $$(n\phi_{\it h}^{\it j} \!-\! \bar{n}D_{\it h}^{\it j})(U_{\it j} \!-\! \phi_{\it j}^{\it i}V_{\it i}) = 0$$ by virtue of (3.10). Since the matrix $(n\phi_h^j - \bar{n}D_h^j)$ is regular, we can obtain $U_h = \phi_h^i V_i$. COROLLARY 2. Let Γ_{ij}^h be a ϕ -connection and $\overline{\Gamma}_{ij}^h$ a symmetric affine connection to be P-projectively related to Γ_{ij}^h . In order for $\overline{\Gamma}_{ij}^h$ to be a ϕ -connection, it is necessary and sufficient that, in (3.1), $$U_h = AS_{ih}^i + BS_{ij}^i \phi_h^j$$ and $V_h = BS_{ih}^i + AS_{ij}^i \phi_h^j$ where $A = (n+2)/((n+2)^2 - \bar{n}^2)$, $B = -\bar{n}/((n+2)^2 - \bar{n}^2)$ and $S_{ij}^h = \Gamma_{ij}^h - \overline{\Gamma}_{ij}^h$. PROOF. If $\overline{\Gamma}_{ij}^h$ is a ϕ -connection, it follows from Theorem 2 that $V_h = \phi_h^i U_i$. Therefore, from (3.1), we have $$\left\{ \begin{array}{l} U_{\alpha} = V_{\alpha} = S_{\hbar\alpha}^{\hbar}/(n+\bar{n}+2) \quad \text{and} \\ U_{\epsilon} = -V_{\epsilon} = S_{\hbar\kappa}^{\hbar}/(n-\bar{n}+2) \,. \end{array} \right.$$ When we put $$(3. 12) U_h = AS_{ih}^i + BS_{ij}^i \phi_h^j,$$ from (3.11) and (3.12), we get $$A = (n+2)/((n+2)^2 - \bar{n}^2)$$ and $B = -\bar{n}/((n+2)^2 - \bar{n}^2)$. Conversely, for such U_h and V_h , it is obvious that $\overline{\Gamma}_{ij}^h$ is a ϕ -connection. COROLLARY 3. In order that two ϕ -connections are P-projectively related to each other, it is necessary and sufficient that the following quantities Π_{ij}^h corresponding to these connections coincide: $$\begin{split} \Pi_{ij}^{h} &= \Gamma_{ij}^{h} - \frac{2(n+2)}{(n+2)^{2} - \bar{n}^{2}} \left\{ \Gamma_{k(i}^{k} D_{j)}^{h} + \Gamma_{kl}^{k} \phi_{(i}^{l} \phi_{j)}^{h} \right\} \\ &+ \frac{2\bar{n}}{(n+2)^{2} - \bar{n}^{2}} \left\{ \Gamma_{k(i}^{k} \phi_{j)}^{h} + \Gamma_{kl}^{k} \phi_{(i}^{l} D_{j)}^{h} \right\}. \end{split}$$ # § 4. The product-projective curvature tensor field Let Γ_{ij}^h and $\overline{\Gamma}_{ij}^h$ be ϕ -connections to be P-projectively related to each other, B_{ijk}^h and \overline{B}_{ijk}^h the curvature tensor fields of Γ_{ij}^h and $\overline{\Gamma}_{ij}^h$, respectively, and, B_{hi} and \overline{B}_{hi} the Ricci tensor fields of Γ_{ij}^h and $\overline{\Gamma}_{ij}^h$, respectively. Then, we get the relations (4. 1) $$B^{h}_{ijk} = \bar{B}^{h}_{ijk} + 2D^{h}_{i}P_{[jk]} + 2\phi^{h}_{i}P_{i[k}\phi^{l}_{j]} + 2P_{i[k}D^{h}_{j]} + 2\phi^{l}_{i}P_{i[k}\phi^{h}_{j]}$$ and (4.2) $$B_{hi} = \bar{B}_{hi} + P_{ih} - (n+1)P_{hi} - \bar{n}\phi_h^j P_{ji} + 2\phi_h^j \phi_i^k P_{(jk)}$$ where $P_{ni} = \overline{V}_i U_n - U_n U_i - V_n V_i$. LEMMA 1. For ϕ -connections Γ_{ij}^h and $\overline{\Gamma}_{ij}^h$ to be P-projectively related to each other, P_{hi} in (4.1) and (4.2) satisfies $$(4.3) \qquad ((n+\bar{n})^2-4)((n-\bar{n})^2-4)P_{hi} = n(4-n^2+\bar{n}^2)T_{hi}+2(4-n^2-\bar{n}^2)\{T_{[ih]}+\phi_h^j\phi_i^kT_{(jk)}\} +\bar{n}(4+n^2-\bar{n}^2)\phi_h^jT_{ji}+4n\bar{n}\{\phi_h^jT_{[ij]}+\phi_i^jT_{(hj)}\},$$ where $T_{hi} = B_{hi} - \bar{B}_{hi}$. PROOF. From (4.2), we have $$\begin{cases} P_{\alpha\beta} = ((n+\bar{n}) T_{\alpha\beta} + 2T_{\beta\alpha})/(4 - (n+\bar{n})^2), \\ P_{\alpha\kappa} = -T_{\alpha\kappa}/(n+\bar{n}+2), \\ P_{\kappa\alpha} = -T_{\kappa\alpha}/(n-\bar{n}+2), \text{ and} \\ P_{\kappa\lambda} = ((n-\bar{n}) T_{\kappa\lambda} + 2T_{\lambda\kappa})/(4 - (n-\bar{n})^2). \end{cases}$$ On the other hand, when we put $$\begin{split} P_{hi} &= AT_{hi} + BT_{ih} + \phi_h^j (CT_{ji} + DT_{ij}) \\ &+ \phi_i^j (ET_{hj} + FT_{jh}) + \phi_h^j \phi_i^k (GT_{jk} + HT_{kj}) \,, \end{split}$$ calculating $P_{\alpha\beta}$, $P_{\alpha\alpha}$, $P_{\kappa\alpha}$ and $P_{\kappa\lambda}$, and comparing to (4.4), we get $$\begin{split} A &= (n + \bar{n} - 1)/2 \left(4 - (n + \bar{n})^2 \right) + (n - \bar{n} - 1)/2 \left(4 - (n - \bar{n})^2 \right), \\ B &= G = H = 1/2 \left(4 - (n + \bar{n})^2 \right) + 1/2 \left(4 - (n - \bar{n})^2 \right), \\ C &= (n + \bar{n} - 1)/2 \left(4 - (n + \bar{n})^2 \right) - (n - \bar{n} - 1)/2 \left(4 - (n - \bar{n})^2 \right), \quad \text{and} \\ D &= E = F = 1/2 \left(4 - (n + \bar{n})^2 \right) - 1/2 \left(4 - (n - \bar{n})^2 \right). \end{split}$$ Therefore, we can obtain (4.3). Theorem 3. Let Γ_{ij}^h and $\overline{\Gamma}_{ij}^h$ be ϕ -connections to be P-projectively related to each other. Then, the tensor fields defined by $$(4.5) P_{ijk}^{h} = B_{ijk}^{h} + 2Q_{i[j}D_{k]}^{h} + 2\phi_{i}^{l}Q_{i[j}\phi_{k]}^{h} + 2D_{i}^{h}Q_{[kj]} + 2\phi_{i}^{h}Q_{i[j}\phi_{k]}^{l}$$ are equal to each other for such connections, where Q_{hi} is defined by $$(4.6) \qquad ((n+\bar{n})^2-4)((n-\bar{n})^2-4)Q_{hi}$$ $$= n(4-n^2+\bar{n}^2)B_{hi}+2(4-n^2-\bar{n}^2)\{B_{[ih]}+\phi_h^j\phi_i^kB_{(jk)}\}$$ $$+\bar{n}(4+n^2-\bar{n}^2)\phi_h^jB_{ji}+4n\bar{n}\{\phi_h^jB_{[ij]}+\phi_i^jB_{(hj)}\}.$$ We call such a tensor field P^h_{ijk} the product-projective curvature tensor field, briefly, P-P curvature tensor field. The proof of Theorem 3 follows from (4.1) and Lemma 1. If a tensor field T_{hi} satisfies $\phi_h^j \phi_i^k T_{jk} = T_{hi}$, we say that T_{hi} is pure. Lemma 2. Let Γ_{ij}^h and $\overline{\Gamma}_{ij}^h$ be ϕ -connections to be P-projectively related to each other. The following conditions are equivalent to each other: - i) $B_{ni} \bar{B}_{ni}$ is symmetric and pure. - ii) U_h and V_h in (3.1) are gradient vector fields. PROOF. From (4.3) and the definition of P_{ni} in (4.1), we have $$\begin{split} P_{[hi]} &= \{ \bar{n} \, T_{j[h} \phi_{i]}^{j} + (n+2) \, T_{[hi]} \} \, / \Big((n+2)^{2} - \bar{n}^{2} \Big), \\ P_{j[i} \phi_{h]}^{j} &= \{ (n+2) \, T_{j[h} \phi_{i]}^{j} + \bar{n} \, T_{[hi]} \} \, / \Big((n+2)^{2} - \bar{n}^{2} \Big), \\ P_{[hi]} &= \bar{V}_{[i} \, U_{h]}, \quad \text{and} \quad P_{j[i} \, \phi_{h]}^{j} = \bar{V}_{[i} \, V_{h]}, \end{split}$$ where $T_{hi} = B_{hi} - \bar{B}_{hi}$. By means of these equations, we have $$T_{[hi]} = T_{j[h}\phi_{i]}^{j} = 0.$$ Therefore, the proof is completed. COROLLARY 4. Let Γ_{ij}^h and $\overline{\Gamma}_{ij}^h$ be ϕ -connections to be P-projectively related to each other. If U_h and V_h in (3.1) are gradient vector fields, i.e., $B_{hi}-\overline{B}_{hi}$ is symmetric and pure, the P-P curvature tensor field has the following form: $$(4.7) P_{ijk}^{h} = B_{ijk}^{h} + \frac{2(n-2)}{(n-2)^{2} - \bar{n}^{2}} \left\{ B_{i[k}D_{j]}^{h} + \phi_{i}^{l}B_{l[k}\phi_{j]}^{h} \right\}$$ $$- \frac{2\bar{n}}{(n-2)^{2} - \bar{n}^{2}} \left\{ B_{i[k}\phi_{j]}^{h} + \phi_{i}^{l}B_{l[k}D_{j]}^{h} \right\}.$$ The proof of this corollary is followed from Theorem 3 and Lemma 2. And (4.7) coincides with the product-projective curvature tensor field of [2]. # § 5. A P-projectively flat connection. The ϕ -connection which is P-projectively related to a flat connection will be called the P-projectively flat connection. Now let Γ^h_{ij} be a P-projectively flat connection. Then, since \bar{B}^h_{ijk} and \bar{B}_{hi} of a flat connection $\bar{\Gamma}^h_{ij}$ vanish, it follows from Theorem 3 that \bar{P}^h_{ijk} vanishes and (5.1) $$0 = \nabla_{h} P_{ijk}^{h}$$ $$= \nabla_{k} B_{ij} - \nabla_{j} B_{ik} + \nabla_{k} Q_{ij} - \nabla_{j} Q_{ik} + 2\nabla_{i} Q_{[kj]} + 2\phi_{i}^{l} \{\phi_{k}^{h} \nabla_{(h} Q_{l)j} - \phi_{j}^{h} \nabla_{(h} Q_{l)k}\}.$$ Therefore, we have $$(5.2) \qquad V_{\tau}B_{\alpha\beta}-V_{\beta}B_{\alpha\tau}+2(V_{\tau}Q_{\alpha\beta}-V_{\beta}Q_{\alpha\tau})+4V_{\alpha}Q_{[\tau\beta]}=0,$$ $$(5.3) \qquad V_{\kappa}B_{\alpha\beta}-V_{\beta}B_{\alpha\kappa}-4V_{(\alpha}Q_{\beta)\kappa}=0,$$ $$(5.4) \qquad V_{\lambda}B_{\alpha \epsilon} - V_{\epsilon}B_{\alpha \lambda} = V_{\beta}B_{\epsilon \alpha} - V_{\alpha}B_{\epsilon \beta} = 0,$$ (5.5) $$V_{\lambda}B_{\kappa\alpha} - V_{\alpha}B_{\kappa\lambda} + 4V_{(\lambda}Q_{\kappa)\alpha} = 0 , \text{ and }$$ $$(5.6) \qquad V_{\mu}B_{\kappa\lambda}-V_{\lambda}B_{\kappa\mu}+2(V_{\mu}Q_{\kappa\lambda}-V_{\lambda}Q_{\kappa\mu})+4V_{\kappa}Q_{[\mu\lambda]}=0.$$ On the other hand, from (4.6), we have (5.7) $$\begin{cases} B_{\alpha\beta} = 2Q_{\beta\alpha} - (n+\bar{n})Q_{\alpha\beta}, \\ B_{\alpha\kappa} = -(n+\bar{n}+2)Q_{\alpha\kappa}, \\ B_{\kappa\alpha} = -(n-\bar{n}+2)Q_{\kappa\alpha}, \text{ and } \\ B_{\kappa\lambda} = 2Q_{\lambda\kappa} - (n-\bar{n})Q_{\kappa\lambda}. \end{cases}$$ Since Γ_{ij}^h is a ϕ -connection, from (1.4) and (5.7), we get $$(5.8) V_h B_{\alpha\beta} = 2 V_h Q_{\beta\alpha} - (n + \bar{n}) V_h Q_{\alpha\beta},$$ (5. 10) $$\nabla_h B_{ra} = -(n - \bar{n} + 2) \nabla_h Q_{ra}$$, and $$(5.11) V_h B_{\kappa\lambda} = 2 V_h Q_{\lambda\kappa} - (n - \bar{n}) V_h Q_{\kappa\lambda}.$$ Substituting (5.8) in (5.2), we have Permuting the ordered indices $\{\alpha, \beta, 7\}$ by $\{\beta, \gamma, \alpha\}$ and $\{\gamma, \alpha, \beta\}$ of (5.12), and adding them to (5.12), we can obtain $$(5.13) V_{\tau} Q_{\alpha\beta} - V_{\beta} Q_{\alpha\tau} = 0$$ for p and q greater than 2. Next, substituting (5.8) and (5.9) in (5.3), we have (5. 14) $$2 \left(\nabla_{\kappa} Q_{\beta \alpha} - \nabla_{\alpha} Q_{\beta \varepsilon} \right) = (n + \bar{n}) \left(\nabla_{\kappa} Q_{\alpha \beta} - \nabla_{\beta} Q_{\alpha \varepsilon} \right).$$ Exchanging indices α and β in (5.14), and adding it to (5.14), we can obtain $$(5.15) V_{\mathfrak{s}} Q_{\mathfrak{a}\mathfrak{s}} - V_{\mathfrak{s}} Q_{\mathfrak{a}\mathfrak{s}} = 0.$$ From (5.4), (5.9) and (5.10), we have $$(5.16) V_{\lambda}Q_{\alpha\kappa} - V_{\kappa}Q_{\alpha\lambda} = V_{\beta}Q_{\kappa\alpha} - V_{\alpha}Q_{\kappa\beta} = 0.$$ By means of calculations similar to (5.13) and (5.15), we have (5. 17) $$V_{\alpha}Q_{\lambda \epsilon} - V_{\epsilon}Q_{\lambda \alpha} = V_{\mu}Q_{\epsilon \lambda} - V_{\lambda}Q_{\epsilon \mu} = 0$$ for p and q greater than 2. Therefore, from (5. 13), (5. 15), (5. 16) and (5.17), we get THEOREM 4. If Γ_{ij}^h is a P-projectively flat connection, for p and q greater than 2, $$(5.18) V_{j}Q_{hi} - V_{i}Q_{hj} = 0.$$ COROLLARY 5. Let M_n be a locally product space of M_p and M_q admitting a symmetric affine connection, and p and q greater than 2. If M_n is P-projectively flat, then $$\nabla_{j}B_{hi}-\nabla_{i}B_{hj}=0$$. It is obvious that Theorem 4 and this corollary are the generalization of Theorem 9 of [2]. THEOREM 5. A ϕ -connection Γ_{ij}^h is a P-projectively flat connection if and only if the P-P curvature tensor field of Γ_{ij}^h vanishes, where p and q are greater than 2. PROOF. If Γ_{ij}^h is a P-projectively flat connection, it follows from Theorem 3 that P_{ijk}^h vanishes. Conversely, suppose that P_{ijk}^h vanishes. Now, let us consider the integrability of $$(5.19) V_i U_h = U_h U_i + \phi_h^j U_j \phi_i^k U_k - Q_{hi}$$ where Q_{hi} is given by (4.6). From (4.5), we have $$(5.20) -U_h B^h_{ijk} = 2Q_{i[j}U_{k]} + 2\phi^l_i Q_{i[j}\phi^h_{k]}U_h + 2U_i Q_{[kj]} + 2\phi^h_i U_h Q_{i[j}\phi^l_{k]}.$$ On the other hand, covariantly derivating (5.19), we have Therefore, it follows from (5. 20) and (5. 21) that the condition of integrability of (5. 19) is $$(5.22) V_{j}Q_{hi} - V_{i}Q_{hj} = 0.$$ Since we have already obtained (5. 22) from (5. 13), (5. 15), (5. 16) and (5. 17), it follows that there exists a vector field U_{λ} satisfying (5. 19). Now, putting $$\overline{m{\Gamma}}_{ij}^{\hbar} = \Gamma_{ij}^{\hbar} + 2D_{(i}^{\hbar}U_{j)} + 2\phi_{(i}^{\hbar}\phi_{j)}^{\hbar}U_{k}$$, from (4.2) and (5.19), we have (5.23) $$\bar{B}_{hi} = B_{hi} - Q_{ih} + (n+1)Q_{hi} + \bar{n}\phi_h^j Q_{ji} - 2\phi_h^j \phi_i^k Q_{(jk)}.$$ Using (5.7), we have that \bar{B}_{hi} vanishes. Therefore, from Theorem 3, it follows that \bar{B}^h_{ijk} vanishes, that is, $\bar{\Gamma}^h_{ij}$ is a flat connection. It is well known that a necessary and sufficient condition for a symmetric affine connection Γ_{ij}^h on a general space M_n to be projectively flat is that the curvature tensor field is given by $$B^{h}_{ijk} = \left\{ D^{h}_{k}(nB_{ij} + B_{ji}) - D^{h}_{j}(nB_{ik} + B_{ki}) \right\} / (n^{2} - 1) - D^{h}_{i}(B_{jk} - B_{kj}) / (n + 1)$$ for n greater than 2 (cf. Chapter III of [1]). THEOREM 6. Let M_n be a locally product space of M_p and M_q admitting a symmetric affine connection, and p and q greater than 2. M_n is P-projectively flat if and only if M_p and M_q are projectively flat. PROOF. When M_n is P-projectively flat, M_p and M_q are projectively flat, because $P^{\alpha}_{\beta p\delta}$ and $P^{\epsilon}_{\lambda\mu\nu}$ are regarded as the projective curvature tensor fields of M_p and M_q , respectively. Conversely, when we denote projectively flat connections of M_p and M_q by ${}_1\Gamma^{\alpha}_{\beta r}$ and ${}_2\Gamma^{\epsilon}_{\lambda\mu}$, respectively, it follows that there exist vector fields A_{α} and B_{ϵ} satisfying $$_{1}\Gamma_{\beta r}^{\alpha}=2D_{(\beta}^{\alpha}A_{r)}$$ and $_{2}\Gamma_{\lambda \mu}^{\epsilon}=2D_{(\lambda}^{\epsilon}B_{\mu)}$. Now, putting $$\begin{split} &U_{\alpha}=A_{\alpha}/2\,,\quad U_{\epsilon}=B_{\epsilon}/2\,,\quad V_{\alpha}=A_{\alpha}/2\,,\quad V_{\epsilon}=-B_{\epsilon}/2\\ &\Gamma^{\alpha}_{\beta\gamma}={}_{1}\Gamma^{\alpha}_{\beta\gamma},\quad \Gamma^{\epsilon}_{\lambda\mu}={}_{2}\Gamma^{\epsilon}_{\lambda\mu},\quad \text{and}\quad \Gamma^{\hbar}_{\alpha\varsigma}=\Gamma^{\hbar}_{\epsilon\alpha}=\Gamma^{\epsilon}_{\alpha\beta}=\Gamma^{\alpha}_{\epsilon\lambda}=0\,, \end{split}$$ then, $$\Gamma_{ij}^h = 2D_{(i}^h U_{j)} + 2\phi_{(i}^h V_{j)}$$ and $V_h = \phi_h^i U_i$. Therefore, it follows that Γ_{ij}^h is a P-projectively flat connection on M_n . Department of Mathematics, Ritsumeikan University. #### References - [1] L. P. EISENHART: Non-Riemannian geometry, Amer. Math. Soc., New York, 1927. - [2] S. TACHIBANA: Some theorems on locally product Riemannian manifolds, Tô-hoku Math. J., 12 (1960), 281-292. - [3] S. YAMAGUCHI: On some transformations in locally product Riemannian spaces, Tensor, N. S., 18 (1967), 227-238. - [4] S. YAMAGUCHI: On a product-conformal Killing tensor in locally product Riemannian spaces, Tensor, N. S., 21 (1970), 75-82. - [5] K. YANO; Differential Geometry on Complex and Almost Complex Spaces, Pergamon Press, 1965. (Received June 15, 1973)