Product-projective changes of affine connections

in a locally product space
By Shigeyoshi FujiMmura

Holomorphically projective changes of affine connections in an almost
complex space have been studied by S. Ishihara, T. Otsuki, S. Tachibana,
Y. Tashiro and others (cf. Chapter XII of [5]). Problems analogous to this
arise in an almost product space, and S. Tachibana ([2]) and S. Yamaguchi
(3], [4]) have studied infinitesimal product-projective transformations of a
locally decomposable Riemannian space.

We shall devote this paper to study product-projective changes of affine
connections in a locally product space.

The author wishes to express here his sincere thanks to Professor
Yoshie Katsurada for her kindly guidance and encouragement.

§1. Locally product spaces and affine connections

Let M, be an n-dimensional locally product space such that M, is a
locally product space M,x M, of p- and g-dimensional spaces M, and M,
(p+g=n). Then, M, is covered by such a system of coordinate neigh-
bourhoods {(U, =*)} that in any intersection of two coordinate neighbour-

hoods (U, %) and (U’,2") we have
(1.1) 2 =x(z*) and x*=x"(x)
with

|0,2| 0 and |d.z"

#0,

where 0,=0/0z", the indices a, B, 7, 6, ¢ run over the range 1,2,---,p, the
indices &, 4, #, v, ® run over the range p+1,---,p+q (=n) and the Latin
indices run over the range 1,2,:--,7. Such a coordinate system will be
called a separating coordinate system of M,,.
If we define ¢? by
" D3 O)
L.2) =0 _p

in each separating coordinate neighbourhood, ¢ is a tensor field on M,
and satisfies
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(1.3) ¢40l = Dy,
where D! is a Kronecker’s delta.

Conversely, consider an n-dimensional space M, which admits a tensor
field @7 (£ D}) satisfying (1. 2) for a certain system of coordinate neighbour-
hoods of M, then, this system is a separating coordinate system, there-
fore, M, is a locally product space. Such a tensor field ¢! is called a
locally product structure tensor field. From now on, we shall assume that
the space is a locally product space.

Now suppose that there is given an affine connection I'?; on a space
M, with a locally product structure tensor field ¢?. In order that ¢ is
covariantly constant with respect to I'y;, it is necessary and sufficient that
locally subspaces M, and M, of M,=M,x M, are parallel in M, with re-
spect to I'};, that is, an arbitrary contravariant vector tangent to M, (resp.
M,), displaced parallelly in any direction, is still tangent to M, (resp. M,)
(cf. Chapter X of [5]). And it is equivalent to

(1. 4) =T4=It=1%=1%=I%=0.

Such a symmetric affine connection will be called a ¢-connection in what
follows.

§ 2. ¢-planar curves

We now consider the curve z*=x"(¢) in a space M, with an affine
connection [I'}; satisfying the ordinary differential equations

d’x®  pq, dx’ dx? _ (#) dx" dx’
dt

2.1) e dr dt dt

+g(2) 4t

where f(t) and g(¢) are certain functions of #, and we will call this curve
a ¢-planar curve. From the theory of ordinary differential equations, it
follows that there exists uniquely a ¢-planar curve through an arbitrary
point Q of M, such that the curve has an arbitrary tangent vector at Q
as the vector tangent to the curve at Q.

We see directly from (2. 1) that, for a ¢-connection I'};,, a curve 2*=
x"(f) is a ¢-planar curve if and only if the 2-plane determined by two
vector fields dr*/dt and ¢dx’/dt is parallel along the curve itself. And for
a ¢-connection I'y; on M,=M,x M,, since I'; and I';, can be regarded as
the connections on M, and M,, respectively, then, we see that a curve
x*=2x"(t) is a ¢-planar curve if and only if the curve 2*=2"(f) is a geodesic
in M, and the curve x*=x*(¢) is a geodesic in M,.



Product-projective changes of affine connections in a locally product space 145

§ 3. Product-projective changes of affine connections

We consider the conditions for two affine connections to have all ¢-
planar curves in common. Such connections will be called to be P-projec-
tively related to each other.

THEOREM 1. Two symmetric affine connections I'}; and T'}; are P-
projectively related to each other if and only if
(3.1) o= 1"“+2U(¢D y+ 2V b

holds for certain vector fields U, and V,.
In (3.1), parentheses mean taking a symmetric part with respect to
indices in a parenthesis, for example,

Ty = (This+ Tign+ Ting+ Ting+ Trn+ Trza)3 1.

ProoF When I'}; is given by (3.1), it is obvious that I'}; and T} are
P-projectively related to each other. Conversely, we suppose that I'?, and
I'?, have all ¢-planar curves in common. Then, from the following equations

d’z" » dx’ dxf » Ax
W"'Fu dcr dr 5 ) +9(2)¢: 7
and
A’z | =, dxt dx? s, dxt | .. . dX
Ex A A Hgr-or,
dr Y dt  dt AU dt t90 dt

we have for any point and any vector field W*
(3.2) g WIWI = fA*W* 4+ g*gl W

where f* and ¢* depend on both the point and W*, and S4=I%—T7%.
Multiplying W* to (3.2) and taking the skew-symmetric part Wlth respect
to indices A and k, we have

(3.3) Sk D"J we W’ W= g*¢["D"] W” w?

where brackets mean taklng a skew -symmetric part Wlth respect to indices
in a bracket, for example,

Trnn = (Tw—Tu)2!.

If g* vanishes identically, from the symmetric part of (3.3) with respect to
indices 7,7 and /, we have

(3. 4) SDH =0 .

Contracting (3.4) by D, we can obtain
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(3. 5) Sfj = 2S,/i(z %/(n+ 1) .

Therefore, it follows that I'%, and I'%; are projectively related to each other,
that is, U,=S%/(n+1) and V,=0. If g¢* does not vanish, eliminating g*
from (3. 3), we have

(3.6) (Sy:DFgE DR — g DASI DY W WIW! WP W =0

Taking a symmetric part of (3.6) with respect to indices i, 7, /, b and d,
we get

(3.7) St D¢y D} — ¢:DrSieD5; =
Contracting (3.7) by D.D!¢), we have
(3. 8) —(n*+2n—n"—2)S}

= 2{ Skt + #Sta—(n+ 1) Ska) Distly
+2{g5S gl + 1t Ska—(n+1)Ska} DiuDY
+2{261 Skt — Sk} — 27 {25k — Shidt] -

Therefore, we have

( = 2{St,D5 + 1855} | (n+ 7+ 2),
Sﬁm“(SZx+¢’;LS§u) ﬂ/(n+77)’
(3.9) S, =3855=0,

St = (St,—¢2Si,)Di/(n—#), and
S, = 2{Sh.D5— 91Si.Di} [ (n—71 +2).
On the other hand, putting

S, = U, D%+ U*,;D} + V, ¢+ V¥,07

we have from (3.9)
Uy + Vo= Uk + V¥, = (She+ 90Sh) [ (n+ 71+ 2),
U+ V,=U*+ V¥ = (S5 +¢!S%) [ (n+7),
U,—V,=U*—V*=(St,—¢rSi)/(n—7), and
U.—V,=U*—V* =(Sh—¢:S) | (n—7+2).
Hence, we can obtain

U, = U*, = (2p+1)A,— Al | (29+1)B.+ B
P(P'*' 1) 8q(g+1)

and
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v, = 2p+1)A,— A,  (2¢9+1)B,+ B
8p(p+1) 8q(g+1)

where n=p+q, i=p—q, Ay,=5h+¢35/, and B, =Si,—855%x.

Vi=

CoROLLARY 1. In order that two symmetric affine connections are P-
projectively related to each other, it is necessary and sufficient that the fol-
lowing quantities II}; corresponding to these connections coincide:

my=1%— E?;Ef +_3;§Ezzi§;: ,1_72)) %Dl + G el
2% (n*+2n+2—n%
(n* —7)(n + 2) — #%)
4a(n+1)
(P—n*)((n+ 27—
2 (n*+2n+n )
(n*—a")(n+2)—#%)

{Tk o0 + T Dh))

{F Dl + S50 }

+ {I't:90d5 + o1 imP G

THEOREM 2. Let I'?; be a ¢-connection and I':; a symmetric affine
connection to be P-projectively related to I't;. In order for I'}; to be a ¢-
connection, it is necessary and sufficient that U,=¢3V, in (3.1).

- ProoF. When we denote by ¥ and ¥ the operators of covariant differ-
entiation with respect to I'?; and I'%;, respectively, we have

(3.10) Vit =V ;0! +(Digt—Digy) (U, — Vo).

If U,=¢5V;, it follows from (3. 10) that I'?; is a ¢-connection. Conversely,
if 7,62 and ¥4} vanish, we have

(ngf—aD})(U;—;Vs) =0
by virtue of (3.10). Since the matrix (n¢]—#Dj)is regular, we can obtain
Uh=¢71;;Vi-

COROLLARY 2. Let I'%; be a ¢-connection and I'}; a symmetric affine
connection to be P-projectively related to I'?;. In order for I'}; to be a ¢-
connection, it is necessary and sufficient that, in (3. 1),

U,=AS,+BSi,¢] and V,=BSi,+AS;;$]

where A=n+2)/(n+2¢—#?), B=—#[(n+2f—#*) and S};=1"}—

Proor. If I'%, is a ¢-connection, it follows from [Theorem 2 that
V,=¢3U;. Therefore, from (3.1), we have
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j U,=V,=8/n+#%#+2) and

11
3. 1) | U==V.=SL/(n—5+2).
When we put
(3.12) U, = AS},+ BSt61 ,

from (3.11) and (3. 12), we get
A= (n+2)/<(n'+2)2— ;‘12) and B= —ﬁ/((n+2)2—;‘12).

Conversely, for such U, and V,, it is obvious that I'% is a ¢-connection.

COROLLARY 3. In order that two ¢-connections are P-projectively related
to each other, it is necessary and sufficient that the following quantities I},
corresponding to these connections coincide:

2n+2
b=Tt——20%2) e Dy D)

(n+2P—n
.
+ @TZ;?;?Z {Tkad5 +ThadtDyy)}

§ 4. The product-projective curvature tensor field

Let I'?; and T'?, be ¢-connections to be P-projectively related to each
other, B%,, and B%,, the curvature tensor fields of I'?; and I'};, respectively,
and, B,, and B,, the Ricci tensor fields of I'?; and T}, respectively. Then,
we get the relations

(4. 1) %ax = B i+ 2D} P g1 + 262 Poagply + 2Py Dy + 264 Py
and
(4- 2) BM = Elzi +PM_(" + I)PM_ ﬁfblszjz + 2¢1jz¢fp(j/c)

Where P;w:f; Uk_U),,Ug_Vth.

LEMMA 1. For g-connections I'}; and T}, to be P-projectfvely related
to each other, P, in (4.1) and (4.2) satisfies

(4. 3) (n+mfP—4) (n—7p—4) P,
= 71(4 -_ 7'12 + TZZ) TM + 2 (4 - 712_ 7&2) {T[.M] + ¢i¢{;cT(jk)}
+ (447" — W) T s+ 40 (G T sy + 61T s} »

where T,l; =B,;—B,,.

Proor. From (4. 2), we have
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FPop=(n+n)Tp+2Tp)[(4—(n+7)p),
P=—T./(n+7+2),
P,=—T./(n—%+2), and

P, =(n—n)Tu+2T,)|(4—(n—0)).

(4. 4)

On the other hand, when we put

PM = ATM + BTM + ¢£(CTﬁ + DTM)
+@UET, )+ FT)+ 108 (GTy+ HT,),

calculating P, P.., P and P,, and comparing to (4. 4), we get
A =(n+7—1)/2(4d—(n+5f) +(n—7—1)/2(4—(n—7P),
B=G=H=1/2(4=(n+#Y) +1/2(4—(n—#f),
C=(n+ﬁ——1)/2(4—(n+ﬁ)2>—(n—ﬁ——l)/2(4—(n—ﬁ)2), and
D=E=F=1/2(4—(n+#f) —1/2(4—(n—#}).

Therefore, we can obtain (4. 3).

THEOREM 3. Let I'}; and I'?; be ¢-connections to be P-projectively re-
lated to each other. Then, the tensor fields defined by

(4. 5) Pisx = Byx+2Qur;Diy+ 207Qu1 1931 + 2D} Qpi jy + 267 Qur 4651

are equal to each other for such connections, where Q,; is defined by

(4.6) (n+5f—4) ((n—7f—4) Qu
= n{d—n"+#") By, +2(4—n"—#") { Bryny + $i¢ Biw}
+5(4+n'— ) $1 By + 4nit ($1Brip + ${Bas} -
We call such a tensor field P%,, the product-projective curvature tensor

field, briefly, P— P curvature tensor field. The proof of follows
from (4.1) and Lemma 1.

If a tensor field 7}, satisfies ¢i¢§‘TM# T, we say that T3, is pure.

LemmMmA 2. Let Fé‘; and I'?; be ¢-connéctions to be P-projectively related
to each other. The following conditions are equivalent to each other:

i) Bu— B, is symmetric and pure.
ii) U, and V, in (3.1) are gradient vector fields.

ProOF. From (4.3) and the definition of P,; in (4.1), we have
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Prniy = BT 9 +(n+2) Traa} | ((n +2F— 7‘12) ,
Pipty = {(n+2) Tyadply+ 7T} | ((n + 2 — ;‘72> )
Py = E[z Uw, and Pyél= V[anJ )

where T,,=B,;—B,;. By means of these equations, we have
T[m = Tj[nﬁ] =0.
Therefore, the proof is completed.

CorROLLARY 4. Let I'?; and T'}; be ¢-connections to be P-projectively
related to each other. If U, and V, in (3. 1) are gradient vector fields, i.e.,
Byi— By is symmetric and pure, the P-P curvature tensor field has the fol-
lowing form:

Y3 7 2 _ 2
(4.7) Py =By + (7—92?)5—)—7_12 {Biix Dl + ¢LBiid’)
27 s .
— m {Bips9% + 9By Dy} -

The proof of this corollary is followed from and

2. And (4.7) coincides with the product-projective curvature tensor field

of [2]

§5. A _P-projectively flat connection.

The ¢-connection which is P-projectively related to a flat connection
will be called the P-projectively flat connection. Now let I'}; be a P-
projectively flat connection. Then, since B%;. and B,; of a flat connection

I’} vanish, it follows from that P%,, vanishes and
(5.1) 0="r,P%;
=V.Bi;—V ;B +V,Qii—V;Qi+2V;Qrin
+ 260 {P (» Quys— W (2 Qo) -

Therefore, we have

(5.2) 7 Bag—V 3 Buy + 27 Qup—V 5 Qur) + 4V e Quuay =0,
(5. 3) Vi Bag=VsBot— 4V (0 Q. =0,
(5. 4) ViBee—F By =VyB.e—V.B;=0,
(5. 5) ViBa—VeBa+ 4V :Qun. =0, and
(5. 6) V,Ba—VB,,+2(V,Qu—V;Qu)+ 4V, Q=0
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On the other hand, from (4. 6), we have
[ Ba=2Qu—(n+7)Qu,
B,.=—mn+n+2)Q,,,
B.,=—n—7+2)Q., and
Btl =2Q1,—-(n—77))Q,3 .

Since I'}; is a ¢-connection, from (1.4) and (5.7), we get

(5.7)

(5. 8) ViBap =2V, Qpe—(n+ 1)V 5 Qup

(5.9) VaBeu=—(n+0+2)V,Q..,

(5. 10) VoBoe=—(n—un+2)V,Q.., and
(5.11) ViBa=2V,Q,,—(n—a)V,Q.;.
Substituting (5. 8) in (5. 2), we have

(5.12) VeQus—V5Qra+V:Qpa—V o Qo +V5Qur—V,Qup

=(n+7a—4)V,Qu—V3Qur)/ 2.
Permuting the ordered indices {a, 8, 7} by{B, 7, a} and {7, a, B8} of (5.12),
and adding them to (5.12), we can obtain
(5. 13) VrQaﬂ_VﬁQar = 0

for p and ¢ greater than 2. Next, substituting (5. 8) and (5.9) in (5. 3), we
have

(5. 14) 2. Qp—VaQs) =+ 7). Qus—V5Qus) -

Exchanging indices @ and 8 in (5. 14), and addihg it to (5. 14), we can obtain
(5. 15) VeQap—V Q0 =0.

From (5. 4), (5.9) and (5. 10), we have

(5.16) V1Qu—V.Qu =V Q.a—V.Qip=0.

By means of calculations similar to (5.13) and (5. 15), we have

(5.17) VeQii=V Qi =V,Qu—V:Q., =0

for p and g greater than 2. Therefore, from (5. 13), (5. 15), (5. 16) and (5.17),
we get

 TueoreM 4. If I'}; is a P-projectively flat connection, for p and q
greater than 2,

(5. 18) ViQu—V:iQu;=0.
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CoRrROLLARY 5. Let M, be a locally product space of M, and M, ad-
mitting a symmetric affine connection, and p and q greater than 2. If M,
is P-projectively flat, then

VJB;”; ViBj—O

It is obvious that (Theorem 4| and this corollary are the generalization
of Theorem 9 of [2]

THEOREM 5. A ¢-connection I'}; is a P-projectively flat connection if
and only if the P-P curvature tensor field of I'%; vanishes, where p and q
are greater than 2.

Proor. If I'%, is a P-projectively flat connection, it follows from The-
orem 3 that P%;, vanishes. Conversely, suppose that P%;, vanishes. Now,
let us consider the integrability of

(5.19) ViUp=U,Us+ iU U — Qs

where Q,; is given by (4.6). From (4.5), we have

(5.20)  —UBu = 2QusUns+ 26iQus91Un + 2U.Que s+ 265 UnQur 851 -
On the other hand, covariantly derivating (5.19), we have

(5. 21) Virl nUs = QursUsy + $1Qu s Un + UiQpesn

+9f§z Uth[.7¢k]—V/chj+Vj Qm .
Therefore, it follows from (5. 20) and (5. 21) that the condition of integrability
of (5.19) is
(5. 22) VJQM;—V,;Q;”:O.
Since we have already obtained (5. 22) from (5. 13), (5. 15), (5. 16) and (5. 17),
it follows that there exists a vector field U, satisfying (5.19). Now, putting
I'Y, =TI+ 2D}U, + 26405 Uy,

from (4.2) and (5. 19), we have

(5. 23) B, = Bu— Qi+ (n+1)Qus+ 761Q 1 — 2638 Q iy -
Using (5.7), we have that B,, vanishes. Therefore, from it

follows that B?;, vanishes, that is, I'?; is a flat connection.

It is well known that a necessary and sufficient condition for a sym-
metric affine connection I'?; on a general space M, to be projectively flat
is that the curvature tensor field is given by

Bhu/c = {DZ (nBM + B.M) - D; (nBik + Blci)} /(”2 - 1) - Df (lec - B“)/(n + 1)
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for n greater than 2 (cf. Chapter III of [1]).

THEOREM 6. Let M, be a locally product space of M, and M, ad-
mitting a symmetric affine connection, and p and q greater than 2. M, is
P-projectively flat if and only if M, and M, are projectively flat.

PrROOF. When M, is P-projectively flat, M, and M, are projectively
flat, because P%, and P*,, are regarded as the projective curvature tensor
fields of M, and M,, respectively. Conversely, when we denote projectively
flat connections of M, and M, by ,I'§ and ,I;,, respectively, it follows that
there exist vector fields A, and B, satisfying

' =2D%A,) and I, =2D;B,. .
Now, putting
U.=A4,/2, U=B]J]2, V,=A.)2, V.=—B,]2
=%, I',=:0%, and I't=I%=IYy=I5=0,
then,
I'yy=2DyU»+2¢4V, and V,=¢iU;.
Therefore, it follows that I'?; is a P-projectively flat connection on M,.
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