
Quasi-invariant measures on linear topological spaces

By Yasuji TAKAHASHI

\S 1. Introduction

In [1], DaO-Xing has shown that the following:

THEOREM Let H be a separable Hilbert space, and let \mathfrak{F} be the totality

of weak Borel sets in H. Let \Phi be a linear subspace of H, and suppose
that \Phi itself is a complete \sigma Hilbert space with respect to the sequmce of
inner products (\varphi, \psi)_{n}, n=1,2,3, \cdots

where (\varphi, \varphi)_{1}\leqq(\varphi, \varphi)_{2}\leqq\cdots

Also, suppose that the inclusion mapping T from \Phi into H is continuous.
For each n, let \Phi_{n} denote the completion of \Phi with respect to the inner
product (\varphi, \psi)_{n} . Then, the following conditions are equivalent.

(1) There exists a \Phi-quasi-invariant fifinite measure {non-trivial) \mu on
(H, \mathfrak{F}) .

(2) There exists n such that the inclusion mapping T can be extended
to a Hilbert-Schmidt operator from \Phi_{n} into H.

In the DaO-Xing’s original Theorem, it is necessary that \mu is regular.
In this paper, we shall show that this assumption can be taken off, fur-
thermore this theorem can be extended to complete \sigma-normed spaces.

Throughout this paper (except for \S 2. 1^{o} . and \S 5.), we shall assume
that linear spaces are with real coefficients.

\S 2. Basic definitions and well known results

1\circ . p-absolutely summing operators (1\leqq p<\infty)

Let E and F be Banach spaces.

DEFINITION 2. 1. 1. Let \{x_{n}\} be a sequence from a Banach space E.
\{x_{n}\} is called scalarly l_{p} if for each continuous linear functional x^{*}\in E^{*},

we have the inequality

\sum_{n=1}^{\infty}|x^{*}(x_{n})|^{p}<\infty

{ x_{n}\rangle is called absolutely l_{p} if \sum_{n=1}^{\infty}||x_{n}||^{p}<\infty .

DEFINITION 2. 1. 2. A linear operator T from E into F is called p-
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absolutely summing if for each \{x_{n}\}\subset E which is scalarly l_{p}, \{T(x_{n})\}\subset F is
absolutely l_{p} .

We shall say “absolutely summing” instead of “1-absolutely summing”-
PROPOSITION 2. 1. 1. (c.f. [2])

A linear operator T from E into F is p-absolutely summing iff there
is a constant C such that for every fifinite set in Ex_{1} , x_{2}, \cdots , x_{n}, the following

\sum_{k=1}^{n}||T(x_{k})||^{p}\leqq C\sup_{||x^{*}||\leq 1}(\sum_{k=1}^{n}|x^{*}(x_{k})|^{p})

holds.
PROPOSITION 2. 1. 2. (c.f. [3])

Let a linear operator T from E into F be p-absolutely summing. If
1\leqq p\leqq q<\infty , then T is q-absolutely summing.

PROPOSITION 2. 1. 3. (c.f. [3])

A linear operator T from E into F is p-absolutely summing iff there
is a probability measure \mu on the compact set K^{*}= the w^{*}-closure of the
set of all extreme points of the unit ball of E^{*} , and a constant C such that

||T(x)|| \leqq C(\int_{F^{*}}|x^{*}(x)|^{p}d\mu(x^{*}))^{\frac{1}{p}} , for x\in E .

COROLLARY 2. 1. 1. (c.f. [3])

Let T be a 2-absolutely summing operator. Then there is a probability
measure \mu on K^{*} and an operator S : L_{2}(\mu)arrow F such that

(a) S is a continuous linear operator.
(b) T=S\circ J\circ I, where I : Earrow C(K^{*}) is the canonical isometry xarrow x(x^{*})

and J : C(K^{*})- L_{2}(\mu) is the identity operator.

PROPOSITION 2. 1. 4. (c.f. [3])

Let K be a compact Hausdorff space and \mu be a probability measure
on K. Then the identity operator I : C(K)arrow L_{p}(\mu) is p-absolutely summing.

PROPOSITION 2. 1. 5. (c.f. [3], [4])
Let H_{1}\swarrow and H_{2} be Hilbert spaces and let T be a linear operator from

H_{1} into H_{2} . Then the fallowings are equvalent.
(a) T is p-absolutely summing.
(b) T is a Hilbert-Schmidt operator.
By Corollary 2.1.1. Proposition 2.1.4. and Proposition 2.1.5., we have

the following Proposition.
PROPOSITION 2.1.6. (c.f. [3])
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Let H be a Hilbert space and E be a Banach space. Then the follow-
ings are equivalent.

(a) T is 2-absolutely summing.
(b) There exists a Hilbert space H_{1} such that

HH_{1}E\vec{U}\vec{V}

T=V\circ U where U is a Hilbert-Schmidt operator and V is a continuous
linear operator.

EXAMPLE 1. identity operator I : l_{1}arrow l_{2} is absolutely summing.
EXAMPLE 2. identity operator I : l_{2}arrow l_{\infty} is not p-absolutely summing,

for 1\leqq p<\infty .
REMARK. Generally, p-absolutely summing operator is not necessarily

compact. (c.f. Ex. 1.)
But a p-absolutely summing operator T from a Hilbert space H into

a^{-} Banach space E is compact.

2\circ . Cylinder sets and Cylinder measures
In this subsection, we describe certain \sigma-algebras which will often be

used in the ensuing discussion, and examine the relations between them.
DEFINITION 2. 2. 1. Let E be a real linear topological space and E^{*} be

a adjoint space of E. If A is a Borel set in real n-dimensional space R_{n},
and x_{1} , x_{2}, \cdots , x_{n}\in E, the set

\{x^{*}|(x^{*}(x_{1}), \cdots, x^{*}(x_{n}))\in A, x^{*}\in E^{*}\}

will be called the Borel cylinder with base A corresponding to x_{1} , \cdots , x_{n} .
If the elemmts x_{1} , \cdots , x_{n} generate the linear subspace M of E, thm we also
call the above set a Borel cylinder corresponding to M, or a Borel M-cylinder.

The totality of Borel cylinders corresponding to a fifixed M form a
\sigma-algebra, which we denote by S(M), and the totality of all Borel cylinders
forms an algebra S. Let \mathfrak{J} denote the smallest \sigma-algebra containing S ; we
call the elemmts of \mathfrak{F} weak Borel sets.

Similarly, let \mathfrak{F} be the smallest \sigma-algebra of subsets of E which contains
all sets of the form

\{x|x^{*}(x)<a\}-\infty<a<\infty , x^{*}\in E^{*} .
The elemmts of \mathfrak{F} will be called weak Borel sets.

The following lemma shows that the weak Borel sets constitute a
sufficiently wide class of sets.
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Lemma 2. 2. 1. (c.f. [6])

If E is a separable \sigma-normed space, then every open {or clased) subset
of E is a weak Borel set.

LEMMA 2. 2. 2. (c.f. [6])

Let E be a separable \sigma-normed space, with the norm sequmce \{||x_{n}||\} .
Then, S_{-n}(R)=\{||x^{*}||_{-n}\leqq R\} is a weak Borel set in E^{*}.

By this lemma, we can conclude that E_{n}^{*} is a weak Borel set in E^{*} .
DEFINITION 2. 2. 2. Let E be a linear topological space, and let S be

the algebra of all Borel cylinders in E^{*} . Suppose that P is a set function
on S having the following property: if M is any fifinite dimensional linear
subspace of E, and S(M) is the \sigma-algebra of Borel cylinders corresponding
to M, then the restriction of P to S(M) is a probability measure. Then
we call P a cylinder measure on E^{*} . Clearly, any cylinder measure P also
h_{\vee}as the following properties :

(1) 0\leqq P(Z)\leqq 1 for all Z\in S

(2) P(E^{*})=1

(3) P is fifinitely additive.
However, P is not, in general, a-additive.
But if it happens that P is \sigma-additive, then, using well-known technique,

we can extend P to a probability measure on the \sigma algebra \mathfrak{F} generated
by S.

Next, we shall show the continuity of cylinder measures.

DEFINITION 2. 2. 3. Let E be a linear topological space, and let P be
a cylinder measure on E^{*}. Suppose that, given any positive number \epsilon,
there exists a neighborhood V of zero in E such that

P(\{x^{*}||x^{*}(x)|>1 , x^{*}\in E^{*}\})<\epsilon

xvhenever x\in V. Then we say that P is continuous.
Lemma 2. 2. 3. (c.f. [1], [5])

Let E be a linear topological space and let P be a cylinder measure on
E^{*}. Thm the function

L(x)= \int_{E^{*}}e^{ix^{*}(x)}dP(x^{*})

is continuous iff P is continuous.
Lemma 2. 2. 4. (c.f. [1], [5])

Let E be a linear topological space and L(x) be a continuous positive
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definite function on E [with L(0)=1]. Then, there is a unique continuous
cylinder measure P on (E^{*}, S) , such that

L(x)= \int_{E^{*}}e^{ix^{*}(x)}dP(x^{*}) for x\in E\tau

REMARK. In Lemma 2.2.4., if E is a nuclear space, then P is a pr0-

bability measure on (E^{*}, \mathfrak{F}) .
If E is a \sigma-Hilbert space and L(x) is continuous relative to the nuclear

topology, then also P is a probability measure.
(For details, c.f. [1], [5], [6], [7])

3\circ . The existence of quasi-invariant measures
DEFINITION 2. 3. 1. Let E -be a linear space, F be a linear subspace of

E, and let \mathfrak{B} be a \sigma-algebra in E, which is invariant under translations.
A measure \mu on (E, \mathfrak{V}) is called F-quasi-invariant if

\mu(B)=0 implies \mu(B+x)=0 for every x\in F, B\in \mathfrak{B} .
DEFINITION 2. 3. 2. Let E be a linear topological space, E^{*} be a adjoint

space of E, let ||x||_{H} be a continuous Hilbertian norm on E.
It is easily sem that the following L(x) is continuous positive-defifinite

function on E.
L(x)=e^{-} \frac{||x||^{2}}{2}

The corresponding measure on E^{*} (by Lemma 2.2.4.) is called a Gaussian
measure. (mean zero, variance 1)

PROPOSITION 2. 3. 1. (c.f. [5[, [8])
Let E be a nuclear space, and ||x||_{H} be a continuous Hilbertian norm

on E. Then, the corresponding Gaussian measure \mu_{H} on E^{*} is \sigma-additive
and E-quasi-invariant.

(E\subset H\cong H^{*}\subset E^{*})

PROPOSITION 2. 3. 2. (c.f. [1], [5], [8])
Let H, G be separable Hilbert spaces such that G is a linear subspace

of H and the natural imbedding (Garrow H) is a Hilbert-Schmidt operator.
Let \mathfrak{F} be the \sigma-algebra of weak Borel sets in H. Then, there exists

a (Gaussian) probability measure \mu on (H, \mathfrak{F}) which is G-quasi-invariant.

4\circ . Dao-Xing’s inequality
In this subsection, we shall show the most important lemma for our

purpose.
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LEMMA 2. 4. 1. (DaO-Xing’s inequality) (c.f. [1], [9])

Let E be a linear topological space, F a linear subspace of E, and let
\mathfrak{B} be a \sigma-algebra in E which is invariant under translations and contains
all cylinder sets.

Let \mathfrak{T} be the topology on F such that (F, \mathfrak{T}) is a linear topological space
of the second category, satisfying the fifirst axiom of countability, and suppose
that \mathfrak{T} is stronger than the topology on F induced by E.

If there exists a F-quasi-invariant measure \mu on (E, \mathfrak{B}) , then there exists
a neighborhood V of zero in (F, \mathfrak{T}) and positive number C, such that

\sup_{x\in V}|x^{*}(x)|\leqq C\int_{E}|x^{*}(x)|d\mu(x) for every x^{*}\in E^{*}

REMARK. In original DaO-Xing’s inequality, it was necessary that \mu

was locally finite and regular. But in [9], these assumptions were omitted.

\S 3. Main theorems and other results

In this section, we shall prove the following main theorems.
Throughout this section, we assume that linear topological spaces are

with real coefficients.
THEOREM A. Let H be a separable Hilbert space, with the inner prO-

duct (x, y), and let \mathfrak{F} be the totality of weak Borel sets in H.
Let E be a linear subspace of H, and suppoe that E itself is a complete

\sigma-normed space with respect to the sequmce of norms ||x||_{n}n=1,2 , \cdots , where
||x||_{1}\leqq||x_{2}||\leqq\cdots

Also, suppose that the inclusion mapping Tfrom E into H is continuous.
For each n, let E_{n} denote the completion of E with respect to the norm
||x||_{n} . Then the following conditions are equivalent.

(1) There exists a E-quasi-invariant fifinite measure {non-trivial) \mu on
(H, \mathfrak{F}) .

(2) There exists n such that the adjoint operator T^{*}from H^{*} into E_{n}^{*}

is absolutely summing.
(3) There exists a separable Hilbert space H_{1} such that

E\subset H_{1}\subset HJK

T=K\circ J where injection map J is continuous and K is a Hilbert-Schmidt
operator respectively.

THEOREM B. Let 1\leqq p\leqq 2 , let \{a_{n}\} be a sequence of positive numbers,
and let l^{p}(a_{n}) denote the totality of real number sequences \xi=\{\xi_{n}\} which
satisfy the condition
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|| \xi||=(\sum_{n=1}^{\infty}a_{n}|\xi_{n}|^{p})^{\frac{1}{p}}<\infty

l^{p}(a_{n}) forms a Banach space with respect to the usual coordinatewise linear
operations and the norm ||\xi|| . In particular, we write l^{p} instead of l^{p}(1) .
Let \mathfrak{F} be the \sigma-algebra in l^{p}(a_{n}) generated by the totality of Borel cylinders

\{\xi|(\xi_{1}, \xi_{2^{ }},\cdots, \xi_{n})\in B\}

(where B represents an arbitrary Borel sets in n-dimensional space).
Let \Phi be a linear subspace of l^{p}(a_{n}) , and suppose that \Phi itself is a

complete \sigma-Hilbert space with respect to the sequence of inner products
(\varphi, \psi)_{n}, n=1,2, \cdots where (\varphi, \varphi)_{1}\leqq(\varphi, \varphi)_{2}\leqq\cdots

Also, suppose that the inclusion mapping T from \Phi into l^{p}(a_{n}) is con-
tinuous. For each n, let \Phi_{n} denote the completion of \Phi with respect to the
inner product (\varphi, \psi)_{n} . Then the following conditions are equivalent.

(2) There exists a \Phi-quasi-invariant fifinite measure (non-trivial) on
(l^{p}(a_{n}), \mathfrak{F}) .

(2) There exists n_{0} such that the adjoint operator T^{*}from l^{p}(a_{n})^{*} into
\Phi_{n_{0}}^{*} is absolutely summing.

(3) There exists separable Hilbert spaces H_{1} and H_{2} such that

\Phi\subset H_{1}\subset H_{2}\subset l^{p}(a_{n})IJK

T=K\circ J\circ I where injection map I and K are continuous, J is a Hilbert-
Schmidt operator.

In order to prove these two theorems, the following proposition is
necessary.

PROPOSITION 3. 1. Let F be a Banach space, E be a linear subspace
of F, and suppose that E itself is a complete \sigma-normed space. Also, suppose
that the inclusion mapping T from E into F is continuous.

Then, the existence of a E-quasi-invariant fifinite measure (non-trivial)
\mu on (F, \mathfrak{F}) implies that, there exists n_{0} such that

(1) T^{*} is absolutely summing (T^{*} : F^{*}arrow E_{n_{0}}^{*})

(2) T^{*} is compact (T^{*} : F^{*}arrow E_{n_{0}}^{*})

PROOF. (1): We may assume that \mu satisfies the condition

\int_{F}||x||d\mu(x)<\infty

for otherwise, we can replace \mu by the equivalent measure
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\mu_{1}(A)=\int_{A}e^{-|x||}d\mu(x) A\in \mathfrak{F}

which certainly satisfies this condition.
Now, by DaO-Xing’s inequality, there exists a positive number C_{1} and

n_{0} such that

||T^{*}(x^{*})||_{E_{n_{0}}}* \leqq C_{1}\int_{F}|x^{*}(x)|d\mu(x) x^{*}\in F^{*} (*)

Let \{x_{n}^{*}\}\subset F^{*} be scalarly l_{1} , then we may assume that

\sum_{n=1}^{\infty}|x_{n}^{*}(x)|<\infty x\in F

Putting

p(x)= \sum_{n=1}^{\infty}|x_{n}^{*}(x)| x\in F ,

obviously p(x) is a lower semicontinuous seminorm on F.
Since F is a Banach space, using Gelfand’s theorem, p(x) is continuous.

Therefore, there exists a positive number C_{2} such that
p(x)\leqq C_{2}||x|| x\in F

Using (*), we get

\sum_{n=I}^{\infty}||T^{*}(x_{n}^{*})||_{E_{n_{0}}^{*}}\leqq C_{1}\int\sum_{n=1}^{\infty}|x_{n}^{*}(x)|d\mu(x)=C_{1}\int p(x)d\mu(x)

\leqq C_{1}C_{2}\int||x||d\mu(x)<\infty

Q. E. D.
that is the assertion.

(2): Let \{x_{n}^{*}\}\subset F^{*} be a sequence which converges weakly to zero.
Using (*) and Fatou’s lemma, we have

\varlimsup_{narrow\infty}||T^{*}(x_{n}^{*})||_{E_{n_{0}}}*\leqq\varlimsup_{narrow\infty}\int_{F}|x_{n}^{*}(x)|d\mu(x)

= \int\varlimsup_{Fnarrow\infty}|x_{n}^{*}(x)|d\mu(x)=0 .

Namely, \{T^{*}(x_{n}^{*})\} converges strongly to zero in E_{n_{0}}^{*} . Therefore, z^{\tau}* is
compact.

Q. E. D.
EXAMPLE. Identity operator I : l^{1}arrow l^{\infty} is absolutely summing, but it

is not compact. Therefore, there is not a l^{1}-quasi-invariant finite measure
on (l_{-,\prime}^{\infty}, \mathfrak{F}) .
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COROLLARY 3. 1. Let E be a Banach space, \mathfrak{B} be a \sigma-algebra in E
which is invariant under translations and contains all cylinder sets.

Then, the following conditions are equivalent.
(1) There exists a E-quasi-invariant fifinite measure {non-trivial) on

(E, \mathfrak{V}).
(2) E is fifinite dimensional.
PROOF of THEOREM A.
(1)\Rightarrow(2) : Using Proposition 3. 1., it is obvious.
(2)\Rightarrow(3) : By assumption, there exists n such that the adjoint operator

T^{*} from H^{*} into E_{n}^{*} is absolutely summing.
Using Proposition 2.1.2. and Proposition 2.3.1., there exists a Hilbert

space G such that
H^{*}GE_{n}^{*}\vec{U}\vec{V}

T^{*}=V\circ U where U is a Hilbert-Schmidt operator and V is a continuous
linear operator respectively.

Here, we may assume that G is separable and U(H^{*}) is dense in G.
For otherwise, we could replace G by \overline{U(H^{*})} (closure of U(H^{*}) in G, which
certainly satisfies this condition.

Considering the adjoint operator of T^{*}=V\circ U, we get T^{**}=U^{*}\circ V^{*}

E_{n}^{*}G^{*}H\vec{V^{*}}\vec{U^{*}}

Since U(H^{*}) is dense in G, U^{*} is a injection. Also, since T=T_{|E}^{**} ,
it is easily seen that we have the assetion.

(3)\Rightarrow(1) : Using Proposition 2.3.2., it is obvious.
PROOF of THEOREM B.
(1)_{-}\Rightarrow(2) : Using Proposition 3. 1., it is obvious.
(2)\Rightarrow(3) : We shall define

\varphi(\xi)=(a^{\frac{1}{np}}\xi_{n}) for \xi=(\xi_{n})\in l^{p}(a_{n})1

Then, \varphi(\xi) is a linear isometry from l^{p}(a_{n}) onto l^{p} . Therefore, we may
assume that a_{n}=1n=1,2, \cdots ,

By assumption, there exists n_{0} such that the adjoint operator T^{*} from
(l^{p})^{*} into \Phi_{n_{0}}^{*} is absolutely summing. Therefore, by Propos

p-absolutely summing. Let \{e_{n}^{*}\} be a sequence from (l^{p})^{*} , \{

ition 2.1.2., it is

where e_{n}^{*}=(\delta_{nk})_{k}

\delta_{nk}=\{\begin{array}{ll}1if k=n0if k\neq n\end{array}) then it is easily seen that \{e_{n}^{*}\} is scalarly l_{p}, therefore we

get
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\sum_{n=1}^{\infty}||T^{*}(e_{n}^{*})||_{o_{n_{0}}}^{p}*<\infty .

Next, we shall show that a linear operator T from \Phi_{n_{0}} into l^{p} is p-
absolutely summing.

Let \{x_{k}\}\subset\Phi_{n_{0}} be scalarly l_{p}, namely

\sum_{k=1}^{\infty}|\langle x_{k}, x^{*}\rangle|^{p}<\infty x^{*}\in\Phi_{n_{0}}^{*} ,

then, it is easily seen that the following inequality holds

\sup_{||x^{*}||\leqq 1}\sum_{k=1}^{\infty}|\langle x_{k}, x^{*}\rangle|^{p}<\infty .

Then,

\sum_{k=1}^{\infty}||T(x_{k})||^{p}=\sum_{k=1}^{\infty}\sum_{n=1}^{\infty}|\langle T(x_{k}), e_{n}^{*}\rangle|^{p}=\sum_{k=1}^{\infty}\sum_{n=1}^{\infty}|\langle x_{k}, T^{*}(e_{n}^{*})\rangle|^{p}

\leqq(\sup_{||x^{*}||\leqq 1}\sum_{k=1}^{\infty}|\langle x_{k}, x^{*}\rangle|^{p})\sum_{n=1}^{\infty}||T^{*}(e_{n}^{*})||_{0_{n_{0}}}^{p}*<\infty

Thus, Ti{?} p-absolutely summing, and also T is 2-absolutely summing.
By similar discussions for Theorem A, we have the assertion.

(3)\Rightarrow(1) : Using Proposition 2. 3. 2., it is obvious.
Q. E. D.

REMARK (1): Theorem A and Theorem B is the generalization of the
DaO-Xing’s theorem for complete \sigma-normed spaces and l^{p}(a_{n}) spaces and
also, in Proposition 3. 1., if E is a complete \sigma-Hilbert space and F is a
separable Hilbert space, using Proposition 2. 1. 5., we get the DaO-Xing’s
theorem.

REMARK (2): In Proposition 3. 1., Theorem A and Theorem B, if a
quasi-invariant measure \mu is \sigma-finite, then these results are valid.

Next, we shall show the relations between nuclear spaces and quasi-
invariant measures.

Lemma 3.1. (c. f. [3])

Let E, F and G be Banach spaces respectively, and T(Earrow F), S(Farrow G)

be absolutely summing operators respectively.
Then, S\circ T(Earrow G) is nuclear.
PROPOSITION 3.2. Let E= \bigcap_{n=1}E_{n} be a complete \sigma-normed space. Then

the following conditions are equivalent.
(1) For any n, there exists a E-quasi-invariant fifinite measure \mu_{n} on

(E_{n}, \mathfrak{B}_{n}).
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(2) E is a nuclear space.
PROOF.
(1)\Rightarrow(2) : Using Proposition 3.1., for any m, there exists n such that

T^{*} (adjoint operator of the natural injection T) is an absolutely summing
operator from E_{m}^{*} into E_{n}^{*} . Furthermore, for n, there exists s such that
T^{*} is an absolutely summing operator from E_{n}^{*} into E_{s}^{*} . Using Proposition
2.1.2., Corollary 2.1.1., Proposition 2.1.4. and Proposition 2.1.5., it is easily
seen that the natural injection T from E_{s} into E_{m} is absolutely summing.

Similarly, there exists t such that the natural injection T from E_{t} into
E_{s} is absolutely summing.

Using Lemma 3.1., we have the assertion.
(2)\Rightarrow(1) : Since E is nuclear, hence E is a nuclear \sigma-Hilbert space.

\infty

Thus, we get E= \bigcap_{n=1}E_{n}=\bigcap_{n=1}\Phi_{n} (where \Phi_{n} is a separable Hilbert space).

For any n, there exists s and t such that

\Phi_{t}\Phi_{s}E_{n}\vec{T}\vec{S}

(where natural injection T is a Hilbert-Schmidt operator and S is a con-
tinuous linear operator respectively.)

Using the similar technique for the proof of Theorem A, we have the
assertion.

Q. E. D.

PROPOSITION 3. 3. Let E be a separable \sigma-normed space, and \mathfrak{F} be the
totality of weak Borel sets in E^{*} . Then the following conditions are
equivalent.

(1) For any n, there exists a E_{n}^{*} -quasi-invariant fifinite measure \mu_{n} on
(E^{*}, \mathfrak{F}).

(2) E is a nuclear space.
PROOF.
(1)\Rightarrow(2) : Since E_{s}^{*}\in \mathfrak{F}_{?} (see Lemma 2.2.2.), the sequence of sets E_{s}^{*}

is monotonic increasing, and E^{*}= \bigcup_{s=1}E_{s}^{*}. , there exists s such that \mu_{n}(E_{s}^{*})>0

[with s\geqq n]. Restricting \mathfrak{F} and \mu_{n} to E_{s}^{*} , we obtain a E_{n}^{\star}.-quasi-invariant
finite measure \mu_{n} on (E_{s}^{*}, \mathfrak{J}_{|E_{s}}*) .

Using Proposition 3.1., natural map (E_{s}^{**}arrow E_{n}^{**}) is absolutely summing.
Furthermore there exists t such that natural map (E_{t}^{**}arrow E_{s}^{**}) is absolutely
summing. Using the same method for the proof of Proposition 3. 2., we
have the assertion.

(2)\Rightarrow(1) : By the similar discussions for the proof of Proposition 3.2.,
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we have the assertion.
Q. E. D.

EXAMPLE. L= \bigcap_{n=I}l^{p}(a_{m,n})1\leqq p<\infty , 0<a_{m,n}\leqq a_{m,n+1}<\infty

(m, n=1,2,3, \cdots)

L is a complete \sigma-normed space with respect to the following norms

|| \xi||_{n}=(\sum_{m=1}^{\infty}a_{m,n}|\xi_{m}|^{p})^{\frac{1}{p}} for any \xi=(\xi_{m})\in L.

Then, the following conditions are equivalent.
(1) For any n, there exists a L-quasi-invariant fifinite measure \mu_{n} on

(l^{p}(a_{m,n}), \mathfrak{B}_{n}) .
(2) L is nuclear.
(3) For any n, there exists s such that

\sum_{m=1}^{\infty}\frac{a_{m,n}}{a_{m,s}}<\infty

PROOF.
(1)^{\bigwedge_{-}}-\neg(2) : By Proposition 3.2., it is obvious.
(1)\Rightarrow(3) : By Proposition 3.1., there exists s such that the adjoint

operator (l^{p}(a_{m,n}))^{*}arrow(l^{p}(a_{m,s}))^{*} is absolutely summing. By easy calculations,
we have the assertion.

(3)\Rightarrow(2) : It is easily seen that if for any n, there exists s such that

\sum_{m=1}^{\infty}(\frac{a_{m,n}}{a_{m,s}})^{\frac{1}{p}}<\infty ,

then, L is nuclear.
But by assumption, we obtain the followings;

there exists t, u, \cdots such that

\sum_{m=1}^{\infty}\frac{a_{m,s}}{a_{m,t}}<\infty , \sum_{m=1}^{\infty}\frac{a_{m,t}}{a_{m,u}}<\infty\ldots

Using H\"older’s inequality, we have the assertion.
Q. E. D.

Finally, we shall show the relations between Bochner’s theorem and
quasi-invariant measures.

PROPOSITION 3. 4. (c.f. [7])

Let \Phi be a separable \sigma-Hilbert space, with the inner products (\varphi_{1}, \varphi_{2})_{n}^{l},
and let \Psi be a linear subspace of \Phi, and suppese that \Psi itself is a complete
separable \sigma-Hilbert space with respect to the inner products (\psi_{1}, \psi_{2})_{n}^{\’}. . Also,
suppose that the inclusion mapping T from \Psi into \Phi is continuous. For
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each n, let \Phi_{n}, (\Psi_{n}) denote the completion of \Phi, (\Psi) with respect to the inner
products (\varphi_{1}, \varphi_{2})_{n}^{\Phi}, ((\psi_{1}, \psi_{2})_{n}^{l}) respectively. Then, the following conditions are
equivdmt.

(1) T is a Hilbert-Schmidt operator from \Psi into \Phi in \sigma-Hilbert spaces.
Namely, for any m, there exists n such that T is a Hilbert-Schmidt operator
from \Psi_{n} into \Phi_{m} .

(2) For any n, there exists a \Psi-quasi-invariant fifinite measure \mu_{n} on
(\Phi_{n}, \mathfrak{B}_{n}) .

(3) For any continuous cylinder set measure \mu in \Phi^{*} , the cylinder set
measure T^{*}\mu in \Psi^{*} induced by T and \mu is a-Mitive.

(4) Let \mu_{n} be the Gaussian measure, defifined in \Phi^{*} by (\varphi_{1}, \varphi_{2})_{n}^{\Phi}, thm
for any n, the measure T^{*}\mu_{n} in \Psi^{*} induced by T and \mu_{n} is a-additive.

(5) For any positive defifinite continuous function L(\varphi) on \Phi with L(0)=1,
there exists a unique probability measure \mu on (\Psi^{*}, \mathfrak{F}) such that

L( \psi)=\int_{\Psi^{*}}e^{iP(\psi)}d(F)

PROOF.
(1)\Rightarrow(2) : For any n, there exists s such that T is a Hilbert-Schmidt

operator from \Psi_{s} into \Phi_{n} .
Using the similar method for the proof of Theorem A, there exists

a separable Hilbert space H such that

\Psi\subset H\subsetneq\Phi_{n}\vec{S}U

T=U\circ S where the injection map S is a continuous linear operatar and U
is a Hilbert-Schmidt operator respectively.

Using Proposition 2.2.3., we have the assertion.
(2)\Rightarrow(1) : Using Proposition 3.1. and Proposition 3.1.5., it is obvious.
Finally, by [7], (1), (3) and (4) are equivalent, and by Lemma 2. 2. 3.

and Lemma 2.2.4., (3) and (5) are equivalent. Thus we have the conclusion.
Q. E. D.

REMARK (1) In the above Proposition, \sigma-algebra \mathfrak{B}_{n}(\mathfrak{F}) are weak Borel
sets in \Phi_{n}(\Psi^{*}) respectively.

REMARK (2) In the above Proposition, let \Phi and \Psi be separable Hilbert
spaces, then the DaO-Xing’s results is that (1), (3) and (4) are equivalent.

\S 4. Further discussions for l^{p}(a_{n}) and L^{p}(X, \mu)

Throughout this section, we assume that linear spaces are with real
coefficients.
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1\circ . Let 1\leqq q<\infty , let \{b_{m,n}\} be a double sequence of positive numbers
with

b_{m,n}\leqq b_{m+1,n} m, n=1,2, \cdots

and let \bigcap_{m=1}l^{q}(b_{m,n}) denote the totality of real number sequences \xi=(\xi_{n}) which

satisfies the condition
|| \xi||_{m}=(\sum_{n=1}^{\infty}b_{m,n}|\xi_{n}|^{q})^{\frac{1}{q}}<\infty m=1,2, \cdots

then, \bigcap_{m=1}^{\infty}l^{q}(b_{m,n}) forms a complete \sigma-normed space with respect to the usual
coordinatewise linear operations and norms ||\xi||_{m} . Let l^{p}(a_{n}) and \mathfrak{F} be the
same notations of Theorem B.

Then, we have the followings.

PROPOSITION 4. 1. 1. Let \bigcap_{m=1}l^{q}(b_{m,n}) be a linear subspace of l^{p}(a_{n}) and

let the injection map T : \bigcap_{m=1}l^{q}(b_{m,n})
- l^{p}(a_{n}) be continuous. If we also as-

same that 1\leqq p\leqq 2,1\leqq q\leqq 2\infty’ then the following conditions are equivdmt.

(1) There exists a \bigcap_{m=1}l^{q}(b_{m,n})-quasi-invariant fifinite measure on (l^{p}(a_{n}), \mathfrak{F}) .
(2) There exists m_{0} such that the adjoint operator T^{*}: l^{p}(a_{n})^{*}arrow l^{q}(b_{m_{0},n})^{*}

is absolutely summing.
(3) There exists m_{0} such that the adjoint operator T^{*}: l^{p}(a_{n})^{*}arrow l^{q}(b_{m_{0},n})^{*}

is p absolutely summing.
(4) There exists m_{0} such that

\sum_{n=1}^{\infty}a_{n}/b_{n}^{\frac{p}{m_{0}q}},<\infty .

(5) There exist separable Milbert space H_{1} and H_{2} such that

\bigcap_{m=1}l^{q}(b_{m,n})\subset H_{1}\subseteq H_{2}\subset l^{p}(a_{n})\vec{I}J\vec{K}

T=K\circ J\circ I where injection map I and K are continuous, and J is a Hilbert-
Schmidt operator.

PROOF. Using Proposition 2. 1.2., Proposition 2.3.2. and Proposition
3. 1., (1)\Rightarrow(2)\Rightarrow(3) and (5)\Rightarrow(1) are obvious.

(4)\Rightarrow(5) : We assume that there exists m_{0} such that

\sum_{n=1}^{\infty}a_{n}/b_{n}^{\frac{p}{m_{0}^{q}}},<\infty ,

then we have
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l^{q}\subset l^{2}\subset l^{2}(a_{n}/b_{0}^{\frac{p}{m^{q}}},)n\subset l^{p}(a_{n}/b_{0}^{\frac{p}{m^{q}}},)\vec{I}\vec{J}\vec{K}n

where natural injections I and K are continuous, and J is a Hilbert-Schmidt
operator.

Next, we shall consider \varphi(\xi)=(b_{n}^{\frac{1}{m_{0}q}},\xi_{n}) for \xi=(\xi_{n})\in l^{p}(a_{n}), then it is clear
that l_{p}(a_{n}) and l^{p}(a_{n}/b_{n}^{\frac{p)}{m_{0}q}},) are linearly isometric by \varphi(\xi) . Thus we have

\bigcap_{m=1}l^{q}(b_{m,n})\subset l^{q}(b_{m_{0},n})=\varphi^{-1}(l^{q})

\subset\varphi^{-1}(l^{2})\subset\varphi^{-1}(l^{2}(a_{n}/b_{n}^{\frac{p}{m_{0}^{q}}},))

\subset\varphi^{-1}(l^{p}(a_{n}/b_{n}^{\frac{p}{m_{0}q}},))=l^{p}(a_{n}) .

Putting H_{1}=\varphi^{-1}(l^{2}) , H_{2}=\varphi^{-1}(l^{2}\{a_{n}\overline{/b}_{n}^{\frac{p}{m_{0}^{q}}},)
r\cdot m

), we have the assertion.
Finally, for (3)\Rightarrow(4) , we shall prove more general case in \S 4. 2^{o} .

Proposition 4. 2. 1..
Q. E. D.

REMARK. If 1\leqq p<\infty , 1\leqq q\leqq 2 , then we can show that (1), (2), (3)
and (4) are equivalent, and (5)\Rightarrow(1) is valid, however, (4)\Rightarrow(5) is not valid.
Furthermore, if 1\leqq p<\infty , 1\leqq q<\infty , then, (1)\Rightarrow(2)\Rightarrow(3)\Rightarrow(4) are valid,
however, (4)\Rightarrow(1) is not valid. (c.f . Proposition 4. 1. 2. Proposition 4. 1. 3.)

PROPOSITION 4. 1. 2. Let 2\leqq p<\infty , 1<q<\infty , and l^{q}\subset l^{p}(a_{n}),
[with \sum_{n=1}^{\infty}a_{n}<\infty] . If there exists a l^{q}-quasi-invariant fifinite measure \mu on
(l^{p}(a_{n}), \mathfrak{F}) .

Then, we have

\sum_{n=1}^{\infty}a^{\frac{g^{*}}{n2}}<\infty ( \frac{1}{q}+\frac{1}{q^{*}}=1)

PROOF. Since l^{p}(a_{n})\subset l^{2}(a_{n}) , by assumption, we can easily show that
there exists l^{q}-quasi-invariant finite measure \mu on (l^{2}(a_{n}), \mathfrak{F}) .

Then, by Theorem A, injection map (l^{q}arrow l^{2}(a_{n})) is a Hilbert-Schmidt
operator, theorefore it is q^{*}-absolutely summing.

From this, we have easily the assertion.
Q. E. D.

PROPOSITION 4. 1. 3. Let 1\leqq p<\infty , 1<q<\infty , and l^{q}\subset l^{p}(a_{n}), where
the injection map is continuous. If the injection map is a Hilbert-Schmidt
operator, thm we have
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\sum_{n=1}^{\infty}a^{\frac{q^{*}}{np}}<\infty .

PROOF is easy.
2\circ . Throughout this subsection, let X be a set and \mathfrak{B} be a \sigma-algebra

in X, and let \mu and \nu be non-trivial positive measure on (X, \mathfrak{B}) .
PROPOSITION 4. 2. 1. Let L^{q}(X, \nu)\subset L^{p}(X, \mu)(1\leqq p<\infty, 1\leqq q<\infty) be

usual Banach spaces and let the injection map T (L^{q}(X, \nu)-L^{p}(X, \mu)) be
continuous. Let \mathfrak{B}_{p} be a \sigma-dgebra in L^{p}(X, \mu) which is invariant under
translations and contains all cylinder sets.

Thm, the following implications (1)\Rightarrow(2)\Rightarrow(3)\Rightarrow(4) holds.
(1) There exists a L^{q}(X,\nu)-quasi-invariant fifinite measure on (L^{p}(X,\mu),\mathfrak{B}_{p}) .
(2) The adjoint operator T^{*}: L^{p}(X, \mu)^{*}arrow L^{q}(X, \nu)^{*} is absolutely sum-

ming.
(3) The adjoint operator T^{*}: L^{p}(X, \mu)^{*}arrow L^{q}(X, \nu)^{*} is p absolutely sum-

ming.
(4) For any \{X_{n}\}\subset X which is measurable and paimise disjoint with

0<\mu(X_{n})<\infty , 0<\nu(X_{n})<\infty ,
we have

\sum_{n=1}^{\infty}\frac{\mu(X_{n})}{\nu(X_{n})^{\frac{p}{q}}}<\infty

PROOF. The implicatios (1)\Rightarrow(2)\Rightarrow(3) are valid by Proposition 3. 1.
and Proposition 2. 1. 2..

(3)\Rightarrow(4) : We shall define

f_{n}(x)=\{
\mu(X_{n})^{\frac{1}{p}}- 1 for x\in X_{7l}

0 for x\in X_{n}^{c}
’

then \{f_{n}\}\subset L^{p}(X, \mu)^{*} is scalarly l_{p} by the following (*) .
(*) If p=1, then for any g\in L^{\infty}(X, \mu)^{*} , there exist complex sequence

\{\alpha_{n}\} such that |\alpha_{n}|=1 , |\langle f_{n}, g\rangle|=\alpha_{n}\langle f_{n}, g\rangle .
Therefore, for any positive integer N, we have

\sum_{n=1}^{N}|\langle f_{n}, g\rangle|=\langle\sum_{n=1}^{N}\alpha_{n}f_{n}, g\rangle

\leqq||\sum_{n=1}^{N}\alpha_{n}f_{n}||_{L_{\infty}}||g||_{L_{\infty}^{*}}\leqq||g||_{L_{\infty}^{*}} .

Thus, we have the assertion.
If p>1 , then for any g\in L^{p}(X, \mu) , we have
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| \langle f_{n}, g\rangle|=|\int_{x_{n}}f_{n}(x)g(x)d\mu(x)|

\leqq[\int_{X_{ll}}|f_{n}(x)|^{p^{*}}d\mu(x)]^{\frac{1}{p^{*}}}[\int_{x_{n}}|g(x)|^{p}d\mu(x)]^{\frac{1}{p}}

=[ \int_{x_{n}}|g(x)|^{p}d\mu(x)]^{\frac{1}{p}}

From this, we have

\sum_{n=1}^{\infty}|\langle f_{n}, g\rangle|^{p}\leqq\sum_{n=1}^{\infty}\int_{x_{n}}|g(x)|^{p}d\mu(x)

\leqq\int_{X}|g(x)|^{p}d\mu(x)<\infty

That is the assertion.
Next, by assumption, the adjoint operator T^{*}: L^{p}(X, \mu)^{*} - L^{q}(x, \nu)^{*} is

p-absolutely summing, namely

\sum_{n=1}^{\infty}||T^{*}(f_{n})||_{L(^{q})^{*}}^{p}<\infty

On the other hand,

||T^{*}(f_{n})||_{(L^{q})^{*}}= \sup_{|^{1}g|I_{Lq\leq 1}}|\langle T^{*}(f_{n}), g\rangle|

= \sup_{|^{1}g||_{L}q\leq 1}|\langle f_{n}, T(g)\rangle|=\sup_{||g||_{L}q\leqq 1}|\int f_{n}gd\mu|

\geqq\mu(X_{n})\mu(X_{n})^{\frac{1}{p}-1}[\frac{1}{\nu(X_{n})}]^{\frac{1}{q}}=\frac{\mu(X_{n})\frac{1}{p}}{\nu(X_{n})^{\frac{1}{q}}} .

Thus, we have

\sum_{n=1}^{\infty}\frac{\mu(X_{n})}{\nu(X_{n})\frac{p}{q}}\leqq\sum_{n=1}^{\infty}||T^{*}(f_{n})||_{(L^{q})^{*<\infty}}^{p}

That is the conclusion.
Q. E. D.

Let (X, \mathfrak{B}, \mu) be a measure space. The \mu measurable set E of positive
measure is called an atom whenever for any \mu-measurable subset E_{1} of E
we have either \mu(E_{1})=0 or \mu(E-E_{1})=0 .

If (X, \mathfrak{B}, \mu) be a \sigma-finite measure space, then we may show that X=
X_{1}+X_{2} uniquely, where neither X_{1} nor any of its measurable subsets is an
atom, and X_{2} is a union of an at most countable number of atoms of finite
measure. When this, we shall say X_{1} non atomic part of \mu .
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THEOREM 4. 2. 1. Let (X, \mathfrak{B}, \mu) be a non-trivial fifinite measure space,
and let \mathfrak{B}_{p} be a \sigma-algebra in L^{p}(X, \mu) which is invariant under translations
and contains all cylinder sets. If 1\leqq p\leqq q\leqq 2, then the following condition
are equivalent.

(1) There exists a L^{q}(X, \mu)-quasi-invariant fifinite measure (non-trivial
on (L^{p}(X, \mu) , \mathfrak{B}_{p}) .

(2) The adjoint operator (L^{p}(X, \mu)^{*}arrow L^{q}(X, \mu)^{*}) is absolutely summing.
(3) The adjoint operator (L^{p}(X, \mu)^{*}arrow L^{q}(X, \mu)^{*}) is p absolutely summing.
(4) For any \{X_{n}\}\subset X which is measurablt and pairwise disjoint, we

have \sum_{n=1}^{\infty}\mu(X_{n})^{1-}\frac{p}{q}<\infty .

PROOF. The implications (1)_{-}\Rightarrow(2)\Rightarrow(3)\Rightarrow(4) are valid by Proposition
3. 1., Proposition 2. 1.2. and Proposition 4.2. 1..

(4)\Rightarrow(1) : Suppose that the condition (4), then it is easily seen that
the non-atomic part of \mu has zero measure.

Since \mu(X)<\infty , \mu is concentrated on at most countable sets.
In this case, using Proposition 4.1.1., we have the assertion.

Q. E. D.
REMARK. If 1\leqq p\leqq q<\infty , the implications (1)\Rightarrow(2)\Rightarrow(3)\Rightarrow(4) are

valid. However, (4)_{-}^{-}\Rightarrow(1) is not valid.

COROLLARY 4. 2. 1. Let 1\leqq p\leqq q<\infty , and let (X, \mathfrak{B}, \mu) be a fifinite
measure space. If the non-atomic part of \mu has a positive measure, then
there exist no L^{q}(X, \mu)-quasi-invariant fifinite measure on (L^{p}(X, \mu), \mathfrak{B}_{p}) .

EXAMPLE. Let \mu be a Lebesgue measure on ([a, b], \mathfrak{B}), and let 1\leqq p\leqq

q<\infty . Then there exist no L^{q}(X, \mu)-quasi-invariant fifinite measure on
(L^{p}(X, \mu), \mathfrak{B}_{p}) .

PROPOSITION 4. 2. 2. Let (X, \mathfrak{B}, \mu) be a \sigma finite measure space, and \mathfrak{B}_{p}

be a \sigma-algebra in L^{p}(X, \mu) which is invariant under translations and con-
tains all cylinder sets. If the non-atomic part of \mu has a positive measure,
then there exist no L^{p}(X, \mu)\cap L^{q}(X, \mu)-quasi-invariant fifinite measure on
(L^{p}(X, \mu), \mathfrak{B}_{p}) , for any 1\leqq p\leqq\infty , 1\leqq q\leqq\infty .

PROOF. Let X_{1} be a non-atomic part of \mu.
Case 1. 0<\mu(X_{1})<\infty .
Assume the contrary, then it is easily seen that there exists L^{p}(X_{1}, \mu)\cap

L^{q}(X_{1}, \mu)-quasi-invariant finite measure on (L^{p}(X_{1}, \mu), \mathfrak{B}_{p}^{1}) , but by Corollary
4.2. 1., it is a contradiction.

Case 2. \mu(X_{1})=\infty .
Then, there exists \{X^{(n)}\}\subset X_{1} which is measurable and pairwise disjoint
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with
\mu(X^{(n)})=1 n=1,2, \cdots

We shall define

f_{n}(x)=\{
1 for x\in X^{(n)}

0 for x\in X^{(n)c} (complement of X^{(n)}).

Then, we have \{f_{n}\}\subset L^{p}(X, \mu)\cap L^{q}(X, \mu) .
Since L^{p}(X, \mu)\cap L^{q}(X, \mu) is a Banach space with the norm ||f||=||f||_{p}

+||f||_{q} for feLp{X,\mu) \cap L^{q}(X, \mu), and natural injection (L^{p}(X, \mu)\cap L^{q}(X, \mu)-

L^{p}(X, \mu)) is continuous, if we assume the contrary, by Proposition 3. 1.,
natural injection (L^{p}(X, \mu)\cap L^{q}(X, \mu)arrow L^{p}(X, \mu)) must be compact.

However, \{f_{n}\} is bounded in L^{p}(X, \mu)\cap L^{q}(X, \mu) and

||f_{n}-f_{m}||_{p}=\{

2^{\frac{1}{p}} for 1\leqq p<\infty

1 for p=\infty
for any n\neq m ,

therefore, any subsequence of \{f_{n}\} is not convergent in L^{p}(X, \mu) .
That is a contradiction.

Q. E. D.
REMARK. In the above Proposition, we may take the following condi-

tion (*) instead of the above condition.
(*) There exist positive number C_{1} , C_{2} and \{X_{n}\}\subset X which is measurable

and pairwise disjoint such that
C_{1}\leqq\mu(X_{n})\leqq C_{2} n=1,2, \cdots

EXAMPLE. Let \mu be a Lebesgue measure on (R^{N}, \mathfrak{B}) , then there exist
no L^{p}(R^{N}, \mu)\cap L^{q}(R^{N}, \mu)-quasi-invariant fifinite measure on (L^{p}(R^{N}, \mu), \mathfrak{B}_{p}) , for
1\leqq p\leqq\infty , 1\leqq q\leqq\infty .

\S 5. Appendix

Let H_{1} and H_{2} be Hilbert spaces. The class of all Hilbert-Schmidt
operators from H_{1} into H_{2} (resp. of all absolutely p-summing operators)
will be denote by \mathfrak{S}_{2}(H_{1}, H_{2}) (resp. \Pi_{p} (H_{1} , H_{2})).

Then, using a quasi-invariant measure, we shall give another proof of
the following Pietsch’s Theorem.

THEOREM. \mathfrak{S}_{2}(H_{1}, H_{2})=\Pi_{p}(H_{1}, H_{2}) for 1\leqq p\leqq 2 .
First, we shall prove the following Lemma.
Lemma 5.1. (c. f. [3])

Let E_{1} and E_{2} be normed sprees. If 1\leqq p\leqq q<\infty , then .\cdot. .\cdot..=
. -.:=\sim .
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\Pi_{p}(E_{1}, E_{2})\subset\Pi_{q}(E_{1}, E_{2}) .

PROOF. We may assume that 1\leqq p<q<\infty .
If T\in\Pi_{p}(E_{1}, E_{2}) , then for each \{x_{n}\}\subset E_{1} which is scalarly l_{q} , and for

each \langle \lambda_{n}\}\in l_{q_{\ell}/q-p} and x^{*}\in E_{1}^{*} (dual of E_{1}), we have

\sum_{n=1}^{\infty}|\langle|\lambda_{n}|^{\frac{1}{1}}’ x_{n}, x^{*}\rangle|^{p}=\sum_{n=1}^{\infty}|\lambda_{n}||\langle x_{r}., x^{*}\rangle|^{p}

\leqq(_{n=1}\sum^{\infty}|\lambda_{n}|q/q-p)^{q-p_{d}’q}(\sum_{n=1}^{\infty}|\langle x_{n}, x^{*}\rangle|^{q)^{\frac{p}{q}}<\infty} .

Namely, { |\lambda_{n}|^{\frac{1}{p}}x_{n}\rangle\subset E_{1} is scalarly l_{p} , therefore we have

\sum_{n=1}^{\infty}||T(|\lambda_{n}|^{\frac{J}{p}}x_{n})||^{p}=\sum_{n=1}^{\infty}|\lambda_{n}|||T(x_{n})||^{p}<\infty

Thus, we have

\{||T(x_{n})||^{p}\}\in l_{q/p} (dual of l_{q/q- p}).

From this, we have easily the conclusion.
Q. E. D.

LEMMA 5. 2. \mathfrak{S}_{2}(H_{1}, H_{2})\subset\Pi_{1}(H_{1}, H_{2})

PROOF.
Case 1. Let H_{1} and H_{2} be separable Hilbert spaces with real coefficients.
If T\in \mathfrak{S}_{2}(H_{1}, H_{2}), then we have the following decomposition:

H_{1}arrow\overline{T(H_{1})}arrow H_{2}T_{1}I
T=I\circ T_{1}

where \overline{T(H_{1})} is the closure of T(H_{1}) in H_{2}, T_{1}(=T) is the Hilbert-Schmidt
operator from H_{1} into \overline{T(H_{1})} and I is the identity map from \overline{T(H_{1})} into H_{2} .

Since the image of H_{1} by T_{1} is dense in \overline{T(H_{1}}), T_{1}^{*} (adjoint operator
of T_{1}) is a injection map from \overline{T(H_{1}})^{*} (dual of \overline{T(H_{1}}) ) into H_{1}^{*} and also
a Hilbert-Schmidt operator.

Then, we may consider that \overline{T(H_{1})}^{*} is a linear subspace of H_{1}^{*} and
natural injection is a Hilbert-Schmidt operator.

Therefore, by Proposition 2. 3. 2., there exists a \overline{T(H_{1})}^{*}-quasi-invariant
Gaussian measure \mu on (H_{1}^{*}, \mathfrak{F}) .

Hence, by Proposition 3.1., T_{1}^{**} (adjoint operator of T_{1}^{*} ) is a absolutely
summing operator from H_{1} into \overline{T(H_{1})} .

From this and T_{1}^{**}=T_{1} , we have easily the conclusion.
Case 2. Let H_{1} and H_{2} be separable Hilbert spaces with complex

coefficients.
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Since H_{1} and H_{2} are isomorphic to l^{2} (usual Hilbert space with com-
plex coefficient), we may assume that H_{1}=H_{2}=l^{2}.

For any \xi=(\xi_{n})\in l^{2}, we shall denote (Re. \xi_{n}) [resp. (Im. (\xi_{n})] by Re. \xi

[resp. Im. \xi], then it is easily seen that Re. \xi\in l_{R}^{2} (usual Hilbert space with
real coefficient) and Im. \xi\in l_{R}^{2} .

Let \{x_{n}\}\subset l^{2} be scalarly l_{1} , then by the following (*), \{Re. x_{n}\}\subset l_{R}^{2} and
\{Im. x_{n}\}\subset l_{R}^{2} are scalarly l_{1} respectively.

(*) By assumptions, for any x=(\zeta_{k})\in l_{R}^{2}

we have

\sum_{n=1}^{\infty}|\langle x_{n}, x\rangle|<\infty

Let Re. x_{n}=(\xi_{k}^{(n)}) and Im. x_{n}=(\eta_{k}^{(n)}), then

\sum_{n=1}^{\infty}|\sum_{k=1}^{\infty}\xi_{k}^{(n)}\zeta_{k}+i\sum_{k=1}^{\infty}\eta_{k}^{(n)}\zeta_{k}|<\infty ,

hence we have

\sum_{n=1}^{\infty}|\sum_{k=1}^{\infty}\xi_{k}^{(n)}\zeta_{k}|<\infty’. \sum_{n=1}^{\infty}|\sum_{k=1}^{\infty}\eta_{k}^{(n)}\zeta_{k}|<\infty

Namely,

\sum_{n=1}^{\infty}|\langle Re. x_{n}, x\rangle|<\infty , \sum_{n=1}^{\infty}|\langle Im. x_{n}, x\rangle|<\infty .
Now, let T\in \mathfrak{S}_{2}(H_{1}, H_{2}) , since

T(x_{n})=T(Re. x_{n})+iT(Im. x_{n})

=Re. T(Re. x_{n})+iIm . T(Re. x_{n})+Re. iT(Im. x_{n}) +iIm. iT(Im. x_{n}),

it is sufficient to show that:

\sum_{n=1}^{\infty}||Re. T(Re. x_{n})||<\infty , \sum_{n=1}^{\infty}||Im . T(Re. x_{n})||<\infty ,

n-1 \sum_{-}^{\infty}||Re. iT(Im. x_{n})||<\infty ,, \sum_{n=1}^{\infty}||Im . iT(Im. x_{n}) ||<\infty t

Let J be a continuous linear mapping from l^{2} into l_{R}^{2} such that J(x)=Re. x
for any x\in l^{2}, then J\circ T is a Hilbert-Schmidt ope\grave{r}ator from l_{R}^{2} into l_{R}^{2} .

Using Case 1., J\circ T is a absolutely summing operator from l_{R}^{2} into l_{R}^{2},
and therefore we have

\sum_{n=1}^{\infty}||Re. T(Re. x_{n})||<\infty t
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By similar arguments, we have the assertion.
Finally, we shall prove the general case.
Let T\in \mathfrak{S}_{2}(H_{1}, H_{2}) , for any \{x_{n}\}\subset H_{1} which is scalarly l_{1} , we shall denote

a closed linear subspace of H_{1} generated by \{x_{n}\} by M_{1} and denote the
closure of T(M_{1}) in H_{2} by M_{2}, then T is a Hilbert-Schmidt operator from
M_{1} into M_{2} , and \{x_{n}\}\subset M_{1} is scalarly l_{1} , and therefore using Case 2., we have

\sum_{n=1}^{\infty}||T(x_{n})||<\infty

That is the assertion.
Q. E. D.

PROOF of THEOREM. By Lemma 5.1. and Lemma 5.2., we have
\mathfrak{S}_{2}(H_{1}, H_{2})\subset\Pi_{p}(H_{1}, H_{2}) , \Pi_{p}(H_{1}, H_{2})\subset\Pi_{2}(H_{1}, H_{2})

for 1\leqq p\leqq 2 .
Therefore, it is sufficient to show that \Pi_{2}(H_{1}, H_{2})\subset \mathfrak{S}_{2}(H_{1}, H_{2}) .

If T\in\Pi_{2}(H_{1}, H_{2}), for any orthonormal sequence \{e_{n}\}\subset H_{1} , since \{e_{n}\}\subset H_{1}

is scalarly l_{2}, we have

\sum_{n=1}^{\infty}||T(e_{n})||^{2}<\infty(

Namely, T is a Hilbert-Schmidt operator from H_{1} into H_{2} .
Q. E. D.
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