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Introduction

Z. Kuramochi gave in his paper [4] a very interesting theorem, which
can be stated as follows.

Theorem of Kuramochi. Let R be a hyperbolic Riemann surface of
the class O_{HB} (resp. O_{HD}). Then, for any compact subset K of R such that
R–K is connected, R-K as an open Riemann surface belongs to the class
O_{AB} (resp. O_{AD}).

The theorem was proved by using the existence of points of positive
harmonic measure on Martin or Kuramochi boundary. It is known that
the existence of points of positive harmonic measure on the Martin or the
Kuramochi boundary is equivalent to the existence of those points on the
Wiener or the Royden boundary. Then there were questions whether there
exists a hyperbolic Riemann surface, which has no boundary points with
positive harmonic measure on the Royden or the Wiener boundary and has
yet the same property as stated in the theorem of Kuramochi. To these
questions N. Toda and K. Matsumoto [17] and K. Matsumoto [11] gave
answers in the positive and proved that R\in O_{A^{0_{X}}}\cap U_{S} implies R-K\in O_{AX}

(X=B or D) for every compact subset K of R with connected complement.
In this paper we shall deal with a problem similar to the above by

considering the class O_{AN} and capacities instead of harmonic measures on
the Royden boundary. The main pourpose of this paper is to show a
theorem similar to the above: R\in O_{0\backslash f},\cap U_{N} implies R-K\in O_{AN} for any
compact subset K of R with connected complement.

1. Capacity on the Royden boundary (cf. [14, 15])

Let R be a hyperbolic Riemann surface For a subset A of R, we
denote by \partial A the (relative) boundary of A in R. We call a closed or open
subset A of R is regular if \partial A is non-empty and consists of at most a
countable number of analytic arcs clustering nowhere in R. We fix a
closed disk K_{0} in R once for all and let R_{0}=R-K_{0} .
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We denote by \Delta_{N} (resp. \Delta_{D} ) the Kuramochi boundary (resp. the Royden
boundary) of R. Let \tilde{C} (resp. C) be the Kuramochi capacity on \Delta_{N} (resp.
the capacity on \Delta_{D}) (cf. [14, 15]). Let \mu be the harmonic measure on \Delta_{N} .
We set \Delta_{S}=\{b\in\Delta_{N} ; \overline{C}(\{b\})>0\} and \Delta_{S}^{D}=\{\xi\in\Delta_{D} ; C(\{\xi\})>0\} . Furthemore let
\Delta_{SS}=\{b\in\Delta_{N} ; \mu(\{b\})>0\} . Then \Delta_{SS}\subset\Delta_{S}\subset\Delta_{1} . A point in \Delta_{S}-\Delta_{SS} (resp. \Delta_{SS})
is called a singular point of first kind (resp. a singular point of second kind)
by Z. Kuramochi [5]. We denote by U_{HN} (resp. U_{HD}) the class of all Rie-
mann surfaces such that \Delta_{S}\neq\emptyset (resp. \Delta_{SS}\neq\emptyset). The harmonic boundary of
R_{D}^{*} is denoted by \Gamma_{D}([2]) .

Lemma. If U is an open subset of R_{D}^{*} with U\cap\Gamma_{D}\neq\emptyset, then there is
a regular region G on R such that G\subset U\cap R and G\not\in SO_{HD}^{1)} .

PROOF. There is an open subset U_{1} of R_{D}^{*} such that U_{1}\subset U, U_{1}\cap\Gamma_{D}\neq\emptyset

and U_{1}\cap R is a regular open set in R, Since U_{1}\cap\Gamma_{D}\neq\emptyset, we can find a
compact subset K of U_{1}\cap\Gamma_{D} with C(K)>0 . By the aid of Lemma 7 in
[15], we see that there exists a bounded continuous Dirichlet function f on
R such that 0\leqq f\leqq 1 , f_{-},\neq 0, f=0 on R-U_{1}\cap R and f is harmonic in each
component of U_{1}\cap R . Then there is a component G of U_{1}\cap R with f>0
on G. Since the restriction of f to G belongs to HBD(G) and =0 on \partial G

(\subset\partial(U_{1}\cap R)) we see that G\not\in SOhd .
Let G be a regular region on R. Set Q=\{f|G;f\in BCD(R)\}^{2)} . Then

it can be seen that there is a topological mapping of \overline{G}^{D} onto the Q-
compactification G_{Q}^{*} (cf. [2]) whose restriction to G is the identity. Thus
we may identify \overline{G}^{D} with G_{Q}^{*} . Since Q\subset BCD(G), G_{Q}^{*} is a quotient space
of the Royden compactification G_{D}^{*} of G. Hence there exists a canonical
mapping^{3)}\eta of G_{D}^{*} onto \overline{G}^{D}. We set b_{G}=(\overline{G}^{D}-\overline{\partial G}^{D})\cap\Delta_{D} . Then it is known
([2, 13]) that \eta is a homeomorphism of G\cup\eta^{-1}(b_{G}) onto G\cup b_{G} .

By the aid of the proof of the Proposition 1 in [16] and Lemma 7 in
[15], we can prove

PROPOSITION 1. Let K be a compact subset of b_{G} . Then C(K)=0 if
and only if C^{G}(\eta^{-1}(K))=0, where C^{G} is the capacity on G_{D}^{*}-G with respect
to a fifixed closed disk in G.

COROLLARY. If (\overline{G}^{D}-\overline{\partial G}^{D})\cap\Delta_{S}^{D}\neq\emptyset, then G\in U_{HN} .
According to M. Nakai [12], we say that a Riemann surface R is said

to be almost fifinite genus if there exists a finite or infinite countably sequence
\{A_{n}\} of relatively compact annuli in R such that
1) See p. 107 in [2] for the definition of SO_{HD} .
2) f|G means the restriction of f to G.
3) Cf. [14].
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(\alpha) \overline{A}_{n}\cap\overline{A}_{m}=\emptyset (n\neq m) ,

(\beta) R- \bigcup_{n=1}^{\infty}\overline{A}_{n} is a planar subregion of R,

(\gamma) \sum_{n=1}^{\infty}1/\log mod A_{n}<\infty .

By an annulus on a Riemann surface R we mean a region which is con-
formally equivalent to a doubly connected plane region.

PROPOSITION 2 ([8]). Any Riemann surface of almost fifinite genus does
not belong to U_{HN} .

2. \bm{AN} -functions

Let f be an analytic function on R with values in a complex plane C.
Let a’ be any number in C. We denote by G_{r} the covering surface gen-
erated by f over \{|w-a’|<r\}(r>0) . Let A(r) be the area of G_{r} . If

A(r)
\varliminf\overline{2}<\infty , then a’ is called an ordinary point with respect to f in the

rarrow 0 r
sense of A. Beurling [1] (cf. [7]).

DEFINITION 1. A function f in AD(R) is said to be an ANfunction
if either it is a constant function or it is not a constant function and any
complex number in C is an ordinary point with respect to f.

We denote by AN=AN(R) the family of all AN-iunctions on R. By
definition, we have AN(R)\subset AD(R). Thus for the corresponding null
classes, we have O_{AD}\subset O_{AN} .

The following properties are easy to see:
(i) If G is a region on R and f is a function in AN(R)9 then the

restriction f|G of f to G belongs to AN(G).
(ii) If f\in AD(R) is finitely sheeted4), then it belongs to AN{R).

3. Functions with Iversen’s property

Consider a noncompact bordered Riemann surface (R, \alpha) with compact
border \alpha which may be empty.

DEFINITION 2 (cf. [13]). A function in the class M(R\cup\alpha) of (single-
valued) meromorphic functions on R\cup\alpha is said to have Iversen’s property
with respect to the ideal boundary \beta in the sense of Ker\’ekj\’artO-Stoilow of
R if the following conditions are satisfied:

4) We say that f is finitely sheeted if it is finitely sheeted as a mapping of R into C,
cf. [16\rfloor .
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(a) f is not constant,
(b) for an arbitrary disk U on \{|w|\leqq\infty\} with f(\alpha)\cap U=\emptyset and f(R)\cap

U\neq\emptyset, and for every component V of f^{-1}(U) , the set U-f(V) is totally
disconnected in U, i.e. , U–f(V) does not contain nondegenerate continua.

Let R’ be a subregion of R such that (R’, \alpha’) , \alpha’=\partial R’ , is a noncompact
bordered surface with compact border \alpha’ , and the ideal boundary \beta’ of R’

is a subset of \beta . For f\in M(R\cup\alpha) , we denote by f’ the restriction of f to
R’\cup\alpha’,\cdot i.e. , f’\in M(R’\cup\alpha’) .

DEFINITION 3 (cf. [13]). V^{\gamma}e shall say that f\in M(R\cup\alpha) has the locali-
zable Iversen property with respect to \beta if the following is true:

(c) Not only does f have Iversen property with respect to \beta but f’
as well has this property with respect to \beta’ for every R’.

Let (R, \alpha) be a non-compact bordered Riemann surface with ideal bound-
ary \beta in the sense of Ker\’ekj\’art\’o-Stoilow. Let f be a function in M(R\cup\alpha) .
Let p be a point of \beta and \{G_{n}\}_{n=1}^{\infty} be a determining sequence of p. Since
\bigcap_{n=1}^{\infty}\overline{f(G_{n})} (in R\cup\beta) does not depend on the choice of such a sequence, we

denote it by C_{R}(f,p) . The set C_{R}(f,p) is called the cluster set of f at p.
THEOREM 1 (cf. [13]). Tff\in M(R\cup\alpha) has the localizable Iversen prop-

erty, then either the cluster set C_{R}(f,p) off at a Ker\’ekj\’art\mbox{\boldmath $\delta$}-Stoilow’s ideal
boundary point p consists of a single point or C_{R}(f,p)=\{|w|\leqq\infty\} .

4. \bm{A}\bm{N}-function on \bm{O}_{\bm{A}^{\bm{0}_{\bm{N}}}}-surfaces

We consider the family SO_{AD} (resp. SO_{AN}) of bordered Riemann surfaces
(R, \gamma) with boundary \gamma such that every AD-function (resp. AN-function)
of R with Re f=0 on \gamma reduces to a constant. We denote by O_{A^{0}D} (resp.
O_{0\nwarrow 1},) the class of all open Riemann surfaces, any subregion of which belongs
to the class SO_{AD} (resp. SO_{AN}). The class O_{A^{0}D} was introduced by T. Kuroda
[9]. By definition, we see that O_{A^{0}D}\subset O_{A^{0}N} .

Let R be a Riemann surface in the class O_{A^{0}N} . Consider a non-compact
subregion (G, \alpha) of R with compact border \alpha and non-empty Ker\’ekj\’art6-
Sto.ilow’s ideal boundary \beta=\beta(G) . We allow the case R=G and \beta=\emptyset .

By modifying the proof of Theorem VI, 2 B, in [12], we shall prove

THEOREM 2. Let R\in O_{A^{0}N} . Then every function f in AN(G\cup \mbox{\boldmath $\alpha$}),
G\cup\alpha\subset R, has the localizable Iversen property.

PROOF. Since G is arbitrary, it suffices to prove that f\in AN(G\cup\alpha) has
Iversen property. For this purpose take a disk U in C with f(\alpha)\cap U=\emptyset
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and f(G)\cap U=\emptyset and choose a component V of f^{-1}(U) . We must show
that U–f(V) is totally disconnected.

First we shall show that f(V) is dense in U. If this were not the
case, then we could find two concentric disks W_{1} and W_{2} such that U-
f(V)\supset W_{1}\supset\overline{W}_{2}\supset W_{2} . We assume that U=\{|w-w_{0}|<r\}(\not\in>0) . Set \tilde{g}(w)

= \frac{(w-w_{0})}{r}-r/(w-w_{0}) for w\in U-\overline{W}_{2} . Then \tilde{g}\in AN(U-\overline{W}_{2}) and Re \tilde{g}=0

on \partial U. Let q=\tilde{q\backslash }|(U-\overline{W}_{1}) and consider h=g\circ f on V\cup\partial V. Since g is
finitely sheeted, it can be seen that h\in AN(V\cup\partial V) and Re h=0 on \partial V.
Therefore (V, \partial V)\not\in SO_{AN} which contradicts R\in O_{A^{0}N} .

Next suppose U–f(V) contains a proper continuum K. Then we can
choose a disk U_{1} with \overline{U}_{1}\subset U such that U_{1}-K consists of at least two
components. Thus there exists a component V_{1} of f^{-1}(U_{1}) contained in V.
Clearly f(V_{1}) belongs to a component of U_{1}-K and hence f(V_{1}) cannot be
dense in U_{1} . This is a contradiction.

THEOREM 3 (cf. [13]). Let R\in O_{A^{0}N} . Then every f\in AN(G\cup\alpha) , G\cup\alpha

\subset R , is bounded continuous on the relative Kerekjdrt\’o-Stoilow compactififica-
tion G_{KS,\alpha}^{*} of (G, \alpha) .

PROOF. By a discussion similar to that in the proof of Theorem VI,
2C, in [13], we can prove the theorem.

4. The classes U_{N}\cap O_{A^{0}N} and U_{HN}

Let p be a point of \beta=\beta(R) and \{G_{n}\}_{n=1}^{\infty} be a determining sequence of
p. If \lim_{narrow\infty}1_{G_{n}U\partial G_{n}}>0 (resp. \lim_{narrow\infty}1_{\overline{G_{n}\cup\partial G}_{n}}>0)^{5)} , then we say that p is of posi-

tive harmonic measure (resp. of positive capacity). For the above \{G_{n}\}_{n=1}^{\infty},

let A(p)= \bigcap_{n=1}\overline{G_{n}\cup\partial G}_{n}^{N} (the closures are taken in R_{N}^{*}). It is easy to see that
p is of positive harmonic measure (resp. of positive capacity) if and only
if \mu(A(p))>0 (resp. \overline{C}(A(p))>0).

DEFINITION 4. We denote by U_{S} (resp. U_{N}) the class of all hyperbolic
Riemann surfaces such that there exists a point p in \beta(R) with positive
harmonic measure (resp. positive capacity).

By definition, we have U_{S}\subset U_{N} .
THEOREM 4. Suppose R\in U_{N}\cap O_{A^{0}N} and K be an arbitrary compact

set in R with connected complement. Then R-K belongs to O_{AN} .
PROOF. Take a regular subregion R_{0}\subset R such that R_{0}\supset K and R-\overline{R}_{0}

is connected. Theorem 3 shows that AN(R-R_{0})\subset ABD(R-R_{0}) and every

5) See p. 43 and p. 164 in [2].
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f\in AN(R-R_{0}) can be continuously extended over R_{KS,\alpha}^{*} , \alpha=\partial R_{0} . We must
prove that f is a constant. Suppose the contrary is true. Since R\in U_{N},
there is a point p in \beta with positive capacity. We denote by A(p) the set of
all points of \Delta_{N} lying over p. Then \tilde{C}(A(p))>0 and \tilde{C}(A(p)\cap\Delta_{1})>0 since
\overline{C}(\Delta_{0})=0 . By Theorem 3, we see that \lim_{zarrow p}f(z) exists. We denote by a’

the limit. Since \lim_{zarrow b}f(z)=\lim f(z)=a’ for all b\in A(p) , we see that A(p)\cap

\Delta_{1}\subset\{b\in\Delta_{1} ; f^{\vee}(b)=a’\}^{6)} . It follows form Theorem 9 in [7] that 0\leqq\overline{C}(A(p)

\cap\Delta_{1})\leqq\overline{C}(b\in\Delta_{1} ; f^{\vee}(b)=a’\})=0 . This is a contradiction.

THEOREM 5. U_{N}\cap O_{A^{0}A^{-}}\subset|\supset U_{HN} .
PROOF. Remove a closed disk K from an R’\in O_{HD}-O_{G} . Then R=R’

-K\in U_{HN}\subset U_{HN} but R\not\in O_{A^{0}N}, and therefore U_{HN}\not\subset U_{N}\cap O_{A^{0}N} . Next we *
shall show that there exists an R\in U_{N}\cap O_{A^{0}N}-U_{HN}, i.e.

U_{N}\cap O_{A^{0}N}\not\subset U_{HN} .

Let R be the Riemann surface constructed by K. Matsumoto in [11]. He
showed that R\in U_{S}\cap O_{A^{0}D}-U_{HD}(\subset U_{N}\cap O_{A^{0}N}-U_{HD}) . Since R is almost finite
genus, it follows from Proposition 2 that R does not belong to U_{HN} . Thus
R\in U_{N}\cap O_{A^{0}N}-U_{HN} .

5. Some classification theorems

THEOREM 6. O_{A^{0}N}<O_{AN} .
PROOF. First we shall prove O_{A^{0}N}\subset O_{AN} . Let R\in O_{A^{0}N} . Suppose there

is a non-constant function f in AN(R). Let z_{0} be a fixed point in R. Let
G be a component of {z\in R ; Re f(z)>{\rm Re} f(z_{0})}. Then f-Re f(z_{0}) is non-
constant and belongs to AN(G). Since Re (f-Re f(z_{0}) ) =0 on \partial G, we see
that G\not\in SO_{AN} and R\not\in O_{A^{0}N} . This is a contradiction. Thus we have O_{A^{0}N}

\subset O_{AN} . Secondly we shall prove that there exists a Riemann surface be-
longing to O_{AN}-O_{A^{0}N} . Let R’\in O_{FD}-O_{G} and K be a closed disk in R’.
Then R=R’-K\in O_{AD}-O_{A^{0}N}\subset O_{AN}-O_{A^{0_{N}}} .

COROLLARY. O_{AD}-O_{A^{0}N}\neq\emptyset .
DEFINITION 4 (cf. [3]). We denote by O_{HD}^{\infty} (resp. O_{HN}^{\infty}) the family of

all hyperbolic Riemann surfaces R such that the closure of \Delta_{SS}^{D} (resp. \Delta_{S}^{D})
in R_{D}^{*} equals \Gamma_{D} .

By definition, we see that O_{HD}^{\infty}\subset O_{HN}^{\infty}\subset U_{HN} .
THEOREM 7. If a Riemann surface R belongs to O_{HN}^{\infty}, then any regular

6) Cf. [16].
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subregion of R belongs to SO_{HD}\cup U_{HN} .
PROOF. Let G be any subregion of R. Then (\overline{G}^{D}-\overline{\partial G}^{D})\cap\Gamma_{D}=\emptyset or

\neq\emptyset . In the first case we see that GeSOHD. Next suppose (\overline{G}^{D}-\overline{\partial G}^{D})_{1\gamma}\Gamma_{D}\neq\emptyset .
Since \overline{G}^{D}-\overline{\partial G}^{D} is open in R_{D}^{*} (Satz 9. 9 in [2]), by assumption, we have
that (\overline{G}^{D}-\overline{\partial G}^{D})\cap\Delta_{S}^{D}\neq\emptyset . Thus G\in U_{HN} by the Corollary to Proposition 1.

COROLLARY. Let R\in O_{HN}^{\infty} and G be any subregion of R. If G\not\in SO_{HD},
then G\in O_{AN} .

THEOREM 8. O_{HN}^{\infty}<O_{A^{0}N} .
PROOF. Let R\in O_{HN}^{\infty} . Let G be any regular subregion of R. Then

it follows from Theorem 7 that G\in SO_{HD}\cup U_{HN}\subset SO_{AN} . Thus R\in O_{A^{0}N} . It
is known (cf. [13]) that there exists a hyperbolic plane region R such that
R\in O_{A^{0}D}(\subset O_{A^{0}N}) . Then it follows from Theorem 12, c), in [5] that R\in

O_{A^{0}N}-O_{HN}^{\infty} .
c_{oROLLARY} . O_{A^{0}N}-O_{HN}^{\infty}\neq\emptyset .

6. A covering property of analytic functions

The definition of a mapping of type Bl is due to M. Heins [3]. Let
\phi be an analytic mapping of a hyperbolic Riemann surface R into another
R’. For a mapping \phi of type Bl, K. Matsumoto [10] proved that \emptyset is of
type Bl if and only if each component of \phi^{-1}(G’) belongs to SO_{HB}^{7)} for
any relatively compact regular subregion G’ of R’ (cf. [2]).

By a modification of the proof of Theorem 8 in [10], we shall prove.

THEOREM 9. Let R\in O_{HN}^{\infty} and f be a non-constant analytic function
on R. Let U be any open disk in \{|w|<\infty\} and V be a component of
f^{-1}(U) . If f|V\in AN(V) , then f|V is of type Bl. Hence V covers each
point of U the same number of times except for at most a closed set of
capacity zero and f|V is fifinitely sheeted.

PROOF. Suppose f|V is not of type Bl. Then there exist an open
disk in U with \overline{U}_{0}\subset U and a component V_{0} of (f|V)^{-1}(U_{0}) such that V_{0}\subset V

and V_{0}\not\in SO_{HB} in V. Let s be a continuous superharmonic function on U
such that s=0 on \partial U_{0}, s=1 on U_{0} and s is harmonic in U-U_{0} . On the
other hand, since V_{0}\not\in SO_{HB} in V, there is a non-constant function u in
HB(V_{0}) such that u=0 in \partial V_{0} and 0\leqq u\leqq 1 . We set u^{*}(z)=u(z) for z\in V_{0}

and =0 for z\in V-V_{0} . Then u^{*} is subharmonic in V and u^{*}\leqq s\circ f in V.
Let s\circ f=h+p be the Riesz decomposition of s\circ f in V, where h is the

7) See p. 31 in [2] for the definition of SO_{HB} .
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harmonic part of s\circ f. Since ||s \circ f||_{U}^{2}\leqq\max_{U}|grads|^{2}||f||_{V}^{2}<\infty , it follows from
the Dirichlet principle that heHBD(V). Since h=0 on \partial V and u^{*} is non-
constant, h is non-constant. Thus V\not\in SO_{HD} . Hence it follows from the
Corollary to Theorem 7 that V\in O_{AN} . This is a contradiction.

Department of Mathematics
Hokkaido University
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