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Introduction

Given two matrices A and B and a polynomial P( \xi, \eta)=\sum_{f,k}c_{fk}\xi^{f}\cdot\eta^{k}

( c_{fk} complex numbers) in \xi and \eta, a polynomial operator P(A\otimes I, I\otimes B)=

\sum c_{fk}A^{f}\otimes B^{k} is defined where I is the identity matrix. St\’ephanos proved
f,k
(see [13]) that the set of the eigenvalues of P(A\otimes I, I\otimes B) coincides with
the set of the complex numbers \sum_{f,k}c_{fk}\alpha^{f}\beta^{k} with \alpha eigenvalue of A and \beta

eigenvalue of B.
The aim of the present paper is to extend this result and to prove the

spectral mapping theorem for tensor products of densely defined closed linear
operators in complex Banach spaces. We develop an operational calculus
defined for holomorphic functions of several variables in a neighbourhood
of the product of the extended spectra of those operators, which may be
considered roughly as the tensor product of the operational calculi defined
for holomorphic functions of one variable developed by I. Gelfand, Dunford
and Taylor ([15], [3], [20], [8]). Brown and Pearcy [2] have proved for
bounded operators A and B on a Hilbert space and P(\xi, \eta)=\xi\cdot\eta that the spec-
trum of the tensor product A\otimes B is the set of the products of the spectra
of A and B. Ichinose [9] has extended it for some unbounded operators
A and B in Banach spaces. The result of St\’ephanos for several bounded
operators in Banach spaces has also been obtained by Schechter [19]. Our
results include those of Brown and Pearcy, Schechter and partly Ichin
The spectral mapping theorem enables us, in particular, to find the resolvent
of a polynomial operator defined for tensor products of closed operators,
from the knowledge of the spectra of those operators.

Section 1 deals with the basic notions about linear operators, their
maximal extensions and their spectra, and tensor products of spaces and
operators.

* This research was supported in part by the DAAD at University of Frankfurt.
T This paper was primarily received by the editors of the Scripta Mathematica September

1970, accepted by them and transferred to this Hokkaido Mathematical Journal, since
that journal does not seem to be able to publish it immediately.



Operational calculus for tensor products of linear operators in Banach spaces 307

In Section 2, we develop an operational calculus for tensor products of
Banach algebras with unit elements. Generalized tensor products are defined
by the use of the Cauchy integral for functions holomorphic in a neigh-
bourhood of the product of the spectra of Banach algebra elements. We
prove the spectral mapping theorem first for tensor products of operator
algebras and then for tensor products of general Banach algebras, by con-
sidering a left regular representation of a Banach algebra to some operator
algebra.

In Section 3, we extend the previous results and present an operational
calculus for tensor products of closed operators in a similar way to that of
Taylor [20]. For polynomials of several varia..bles” we define polynomial
operators with closable operators and prove their closability and the spectral
mapping theorem for polynomials continuous at the product of the extended
spectra. In particular, our results give a precise knowledge of the spectrum
of the tensor product A C\cross B of two densely defined closable operators in
.Banach. \cdot

sp_{\backslash }aces .
In Section 4, we give an application to the initial value problem of

a partial differential equation.
The author would like to express his hearty thanks to Professor

Gottfried K\"othe for his constant encouragement and to Professor G.
Trautmann, Dr. N. Adasch and Mr. G. Biebinger for many valuable
discussions.

1. Basic notions

1. 1. Linear operators
We shall recall the definitions and properties of the spectrum and its

parts of a linear operator in a normed linear space (see e.g. [3], [11], [9]).
Let X be a complex normed linear space. For a linear operator T :

D[T]\subset Xarrow X with domain D[T] and range R[T] both in X, we define
the (resp. exten&d) resolvent set \rho(T) (resp. \rho_{e}(T)) and the (resp. extended)
spectrum \sigma(T) (resp. \sigma_{e}(T) ) of T which are subsets of the complex plane
C (resp. the extended complex plane C^{*}=C\cup\{\infty\} ). \rho(T) is the set of all
\lambda\in C for which T-\lambda I has a densely defined bounded inverse in X, where
I is the identity operator in X. \sigma(T) is the complement in C of \rho(T), and
closed in C. \rho_{e}(T) is defined as \rho(T)\cup\{\infty\} if T is densely defined and
bounded in X, and otherwise, we set \rho_{e}(T)=\rho(T) . \sigma_{e}(T) is the complement
in C^{*} of \rho_{e}(T), and a non-empty compact subset of C^{*} considered as the
Riemann sphere.
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The approximate point spectrum \pi(T) of T is the set of all \lambda\in C for
which there exists a sequence { x_{\nu}\rangle_{\nu=1}^{\infty} in D[T] with ||x_{\nu}||=1 , \nu=1,2 , \cdots ,

such that ||(T-\lambda I)x_{\nu}||arrow 0 as \nuarrow\infty . J The point spectrum P_{\sigma}(T) of T is
a subset of \pi(T), and clearly \backslash X(T)\subset\sigma(T)_{\backslash } The boundary of \sigma(T) is shown
to be a subset of the boundary of \pi(T), so that the set \gamma(T)=\sigma(T)\backslash \pi(T)

is open in O.
The compression spectmm \Gamma(T) of T is the set of all \lambda\in C for which

the range of T-\lambda I is not dense in X. Clearly I’(T)\subset\sigma(T) .
We refer now to the spectra of linear extensions of T.

LEMMA 1. 1. Let X and T be as above. If X is a subspace of another
cmplex normed linear space Y and^{\backslash }T_{1} : D[T_{1}]\subset Yarrow Y is a linear operator
with T_{1}x=Tx in D[T]\subset D[T_{1}] , then we have

\pi(T)=\pi(T|Y)\subset\pi(T_{1}) ,

there \pi(T) and \pi(T|Y) denote the approximate point spectra of T considered
respectively as an operator in X with domain D[T] , as one in Y with the
same dmain D[T] .

We denote the graph of T by G(T) and its closure in X\cross X by \overline{G(T)} .
An extension T of T is called maximal if T satisfies \overline{G(\mathcal{T})}=\overline{G(T}) and if

T has no proper extension \check{T} such that \overline{G(\check{T})}=\overline{G(T)} . Every linear opeartor

T has in virtue of Zorn’s lemma a maximal extension T in X. The domain
D[\tilde{T}] of \mathcal{T} is the projection H_{T} of \overline{G(T)}\subset X\cross X into the first X. All
maximal extensions of T have the same domain D[T] . T is maximal iff
D[T]=H_{T}. The closure, the smallest closed extension, of a closable operator

T. in particular, the continuous extension of a bounded operator T to the
closure of D[T] , is a unique maximal extension of T, so that we shall
employ the same notation \mathcal{T} for the closure of a closable operator T (cf. [11]).

It is shown ([9]) that under extensions of a linear operator T the spectra

and their parts may change, but under maximal extensions the spectrum,

approximate point spectrum and compression spectrum remain the same as
those of T, i.e. \sigma(T)=\sigma(7^{i}), \pi(T)=\pi(\tilde{T}), \Gamma(T)=\Gamma(\tau) .

If T is a densely defined linear operator in X, so that the adjoint T’

of T is well-defined in the dual space X’ of X, then we have
PROPOSITION1.2.
1) \rho(T)=\rho(T’) , \sigma(T)=\sigma(T’) .
2) \gamma(T)=\sigma(T)\backslash \pi(T)\subset\Gamma(T)=P_{d}(T’)\subset\pi(T’) .
3) \gamma(T’)=\sigma(T’)\backslash \pi(T’)\subset\pi(T) .

1. 2. Tensor products
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We formulate some basic results on tensor products, following Grothen-
dieck [5], [6], Schatten [18] and Ruston [17]. For the facts on topological
linear spaces used here, see K\"othe [10].

For j=1,2, \cdots , n, let X_{f} be a complex Banach space, X_{f}’ be its (topol0-
gical) dual space and X_{1}\otimes X_{2}\otimes\cdots\otimes X_{n} be the algebraic tensor product of
X_{1} , X_{2}, \cdots , X_{n} .

A norm \alpha or ||\cdot||_{\alpha} on X_{1}\otimes\cdots\otimes X_{n} is called a crossnorm if
\alpha(x_{1}\otimes x_{2}\otimes\cdots\otimes x_{n})=||x_{1}\otimes x_{2}\otimes\cdots\otimes x_{n}||_{\alpha}=||x_{1}||\cdot||x_{2}||\cdots||x_{n}||

for (X_{1}, X_{2}^{ }, \cdots, X_{n})\in\prod_{f=1}^{n}X_{f} . A norm \alpha or ||\cdot||_{\alpha} on X_{1}\otimes\cdots\otimes X_{n} is said to be
reasonable if \alpha is a crossnorm on X_{1}\otimes\cdots\otimes X_{n} and the dual norm \alpha’ induced
by the dual space of X_{1}\otimes\cdot\alpha..\otimes X_{n} equipped with \alpha is also a crossnorm on
X_{1}’\otimes\cdots\otimes X_{n}’ .

We define the norms \epsilon , \pi as follows:
\epsilon(u)=||u|| . = sup \{|\langle u, x_{1}’\otimes\cdots\otimes x_{n}’\rangle| ; x_{f}’\in X_{f}’, ||x_{f}’|[\leq 1,1\leq j\leq n\} ,

\pi(u)=||u||_{\pi}=\sup\{|\langle u,v\rangle| ; v\in B(X_{1^{ }},\cdots, X_{n}), ||v||\leq 1\},\cdot

for u\in X_{1}\otimes\cdots\otimes X_{n} . B(X_{1^{ }},\cdots, X_{n}) is the space of all continuous multilinear
forms on \prod_{f=1}^{n}X_{f} which is a Banach space with the usual norm. The norm
\pi is also equivalent to

\pi(u)=\inf\{\sum_{k}||x_{1}^{(k)}||\cdot||x_{2}^{(k)}||(\ldots, ||x_{n}^{(k)}|| ; u= \sum_{k}.x_{1}^{(k)}\otimes\cdots\otimes x_{n}^{(k)}\}

Every crossnorm \alpha\geq\epsilon on X_{1}\otimes\cdots\otimes X_{n} is reasonable. The norm \pi is
the greatest reasonable norm and the norm \epsilon the smallest reasonable norm
on X_{1}\otimes\cdots\otimes X_{n} . Therefore every norm \alpha with \epsilon\leq\alpha\leq\pi is reasonable.

The dual norm \alpha’ of a reasonable norm \alpha is also a reasonable norm
’\sim

on X_{1}’\otimes\cdots\otimes X_{n}’ . Given a crossnorm or a reasonable norm \alpha, X_{1}\otimes_{\alpha}\cdots\otimes X_{n}

denotes the completion of X_{1}\otimes\cdots\otimes X_{n} with respect to the norm \alpha and
X_{1}’ \otimes\cdot\cdot,\cdot\otimes X_{n}\bigwedge_{\alpha}\sim the completion of X_{1}’\otimes\cdots\otimes X_{n}’ with respect to the dual norm
\alpha’ (when \alpha is reasonable) which is identified with a closed subspace of the
Banach space (X_{1} \otimes\cdots\otimes X_{n})’=(X_{1}\otimes\bigwedge_{\alpha\alpha}\cdots\otimes X_{n})’ .

We define tensor products of linear operators as follows. Let A_{f} :
D[A_{f}]\subset X_{f}-X_{f}, j=1,2, \cdots,n , be linear operators. The mapping (x_{1},x_{2^{ }},\cdots, x_{n})

-\gg Ax_{1}\otimes\cdots\otimes Ax_{n} is multilinear of D[A_{1}]\cross\cdots\cross D[A_{n}] into X_{1}\otimes\cdots\otimes X_{n} ;
the corresponding linear mapping of D[A_{1}]\otimes\cdots\otimes D[A_{n}] into X_{1}\otimes\cdots\otimes X_{n}

is denoted by A_{1}\otimes\cdots\otimes A_{n} and called the tensor product of A_{1} , \cdots , A_{n} .
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A_{1}\otimes\cdots\otimes A_{n} is a linear operator in X_{1}\otimes\cdots\otimes X_{n} with domain D[A_{1}\otimes\cdots\otimes A_{n}]

=D[A_{1}]\otimes\cdots\otimes D[A_{n}] , and will often be considered as an operator in the
completed tensor product X_{1} \otimes\cdots\otimes X_{n}\bigwedge_{\alpha} for a reasonable norm \alpha with the
same demain. We can consider a maximal extension of A_{1}\otimes\cdots\otimes A_{n} in
X_{1} \otimes\cdots\otimes X_{n}-\bigwedge_{\alpha}, which is denoted by A_{1}^{\cdot}\otimes_{\alpha}\cdots\otimes A_{n}\wedge .

For j=1,2, \cdots , n, L(X_{f}) denotes the Banach algebra of all continuous
linear operators of X_{f} into itself. A crossnorm or a reasonable norm \alpha on
X_{1}\otimes\cdots\otimes X_{n} is said to be uniform, if for any (A_{1^{ }}, \cdots, A_{n})\in\prod_{f=1}^{n}L(X_{f}) we
have

sup \{||(A_{1}\otimes\cdots\otimes A_{n})u||_{\alpha} ; u\in X_{1}\otimes\cdots\otimes X_{n} , ||u||_{\alpha}\leq 1\}

=||A_{1}||\cdot||A_{2}||\cdots||A_{n}||

If \alpha is a uniform reasonable norm on X_{1}\otimes\cdots\otimes X_{n}, so is the dual norm
\alpha’ on X_{1}’\otimes\cdots\otimes X_{n}’ . The greatest and smallest reasonable norms \pi and \epsilon

are uniform.
A reasonable norm \alpha\geq\epsilon on X_{1}\otimes\cdots\otimes X_{n} is said to be faithful if the

natural linear mapping j^{\alpha}. of X_{1} \otimes\cdots\otimes X_{n}\bigwedge_{\alpha} into X_{1}\otimes\cdots\otimes X_{n}\vee\sim\epsilon

’ obtained by

extending the identity mapping : X_{1}\otimes_{\alpha}\cdots\otimes X_{n}arrow X_{1}\otimes\cdot:\cdot\otimes X_{n}\subset X_{1}\otimes_{*}\cdots\otimes X_{n}’\wedge

by continuity to the entire space X_{1} \otimes\cdots\otimes X_{n}\bigwedge_{\alpha} is one-t0-0ne ([4], [14]). In
case \alpha=\pi, this yields the “probl\‘eme de biunivocit\’e’’ ([5]).

For locally convex topological linear spaces X_{f} , 1\leq j\leq n , we can define
also a tensor product topology on X_{1}\otimes\cdots\otimes X_{n} compatible with the structure
of the tensor product X_{1}\otimes\cdots\otimes X_{n}([5]) .

Finally we refer to the space \mathscr{Q}(K) of the germs of functions holomor-
phic in a neighbourhood of a compact subset K of the Riemann sphere C^{*} .

For an open neighbourhood U of K, let \mathscr{Q}(U) be the linear space of
the holomorphic functions on U equipped with the topology of compact
convergence. \mathscr{Q}(U) is a nuclear (\^i-space and a commutative topological
algebra. \mathscr{Q}(K) is defined as the topological inductive limit of the spaces
\mathscr{Q}(U) when U runs in the directed family of the open neighbourhoods U
of K in C^{*} . \mathscr{Q}(K) is a complete barrelled (DF)-space (see [5]).

PROPOSITION 1. 3. Let U_{f}(resp. K_{f}) , j=1,2, \cdots , n, be open [resp. com-
pact) subsets of the Rimann sphere C^{*} . Then it holds

\mathscr{Q}(\prod_{f=1}^{n}U_{f})=\mathscr{Q}(U_{1})\otimes^{\backslash }\mathscr{Q}’(U_{2})\wedge\otimes\cdots\otimes \mathscr{Q}\wedge(U_{n})

=\mathscr{Q}(U_{1})\otimes\cdots\otimes \mathscr{Q}(U_{n})\wedge
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\mathscr{Q}(\prod_{f=1}^{n}K_{f})=\mathscr{Q}(K_{1})\backslash \hat{\cap}x_{J}\mathscr{Q}(K_{2})\wedge..\wedge\otimes\cdot\otimes \mathscr{Q}(K_{n})

=rO(K_{1})\otimes\cdots\otimes \mathscr{Q}(K_{n})\wedge ,

where the tensor products are completed with respect to the projective tensor
product topology \mathfrak{T}_{x} which amounts in this case to the topology \mathfrak{T} . of unifom
convergence on the sets M_{1}’\otimes M_{2}’\otimes\cdots\otimes M_{n}’ with M_{f}’ equicontinuous subset of
X_{f}’, for j=1,2, \cdots , n.

Proof. We note only some facts. The topologies \mathfrak{T}_{\pi} and \mathfrak{T}. have the
associative character. If both X and Y are (\^i)-spaces or barrelled (DF)-
spaces, the inductive tensor product topology \mathfrak{T}_{t} on X\otimes Y coincides with
the topologies \mathfrak{T}_{\pi} and \mathfrak{T}_{\epsilon} . The second relation follows from the first by
the properties of the inductive limit of the inductive tensor products ([5]
Chap I. \S 3. N^{o}1 . Prop. 14. p. 76).

2. Operational calculus for Banach
algebra elements

2. 1. Tensor products of Banach algebras
For j=1,2, \cdots , n, let \mathfrak{B}_{f} be a complex Banach algebra with unit element

e_{f}, and \alpha\geq\epsilon\overline{b}e a crossnorm on \mathfrak{B}_{1}\otimes\cdots\otimes \mathfrak{B}_{n} compatible with multiplication,
i.e. a crossnorm satisfying \alpha(u\cdot v)\leq\alpha(u)\cdot\alpha(v) for u, v\in \mathfrak{B}_{1}\otimes\cdots\otimes \mathfrak{B}_{n} . Then
the completion \mathfrak{B}_{1}\otimes\cdots\otimes \mathfrak{B}_{n}\bigwedge_{\alpha} of \mathfrak{B}_{1}\otimes\cdots\otimes \mathfrak{B}_{n} with respect to \alpha turns a com-
plex Banach algebra with unit element e_{1}\otimes\cdots\otimes e_{n} . The norm \pi is known
to be compatible with multiplication ([4]).

Given a=(a_{1^{ }},\cdots, a_{n})\in f=111\mathfrak{B}_{f}n , the spectra \sigma(a_{f}) of a_{f} are compact subsets

of C. We shall develop an operational calculus of the germs in \mathscr{Q}(\prod_{f=1}^{n}\sigma(a_{f}))

for the tensor product a_{1}\otimes\cdots\otimes a_{n}, which has some analogy with that due
to Waelbroeck ([21], [1]).

By a morphism of a complex algebra into another one, we mean a
mapping between them which transforms sums to sums, products to products
and products by a complex number \lambda to products by \lambda .

\Theta_{f}( . ; a_{f}) denotes the continuous morphism of the algebra \mathscr{Q}(\sigma(a_{f})) into
the Banach algebra \mathfrak{B}_{f} which was first investigated by I. Gelfand: if f(\zeta_{f})

is a holomorphic function in a neighbourhood U_{f} of \sigma(a_{f}) and \tilde{f} is the
germ of f in \mathscr{Q}(\sigma(a_{f})), we have

\Theta_{f}(\tilde{f} ^{;} a_{f})=f(a_{f})=(2\pi i)^{-1}\int_{r_{f}}f(\zeta_{f})(\zeta_{ff}e-a_{f})^{-1}d\zeta_{f} ,



312 T. Ichinose

where the contour \Gamma_{f} consists of a finite number of rectifiable, positively
oriented Jordan curves lying in U_{f}\backslash \sigma(a_{f}) (cf. [3], [8], [15]).

THEOREM 2. 1. Let \alpha\geq\epsilon be a crossnom on \mathfrak{B}_{1}\otimes\cdots\otimes \mathfrak{B}_{n} compatible

with multiplication. Given a=(a_{1^{ }}, \cdots, a_{n})\in\prod_{f=1}^{n}\mathfrak{B}_{f}, there exists a unique con-

tinuous morphism \Theta(\cdot-., a) of the algebra \mathscr{Q}(\prod_{f=1}^{n}\sigma(a_{f})) into the Banach alge-

bra \mathfrak{B}_{1}\otimes\cdots\otimes \mathfrak{B}_{n}\bigwedge_{\alpha} which transforms the germ of the function 1 to e_{1}\otimes\cdots\otimes e_{n}

and the gem of the function (\zeta_{1^{ }},\cdots, \zeta_{n})- \zeta_{f} to e_{1}\otimes\cdots\otimes e_{f-1}\otimes a_{f}\otimes e_{f+1}\otimes\cdots\otimes e_{n},

for j=1,2, \cdots , n.
If f(\zeta_{1^{ }},\cdots, \zeta_{n}) is a rational function or a polynomial holomorphic in

a neighbourhood of \prod_{f=1}^{n}\sigma(a_{f}), then we have

\Theta(\tilde{f};a)=f(a_{1}\otimes\cdots\otimes e_{n^{ }},\cdots, e_{1}\otimes\cdots\otimes a_{n}) ,

where \tilde{f} dmotes the germ off in the neighbourhood of \prod_{f=1}^{n}\sigma(a_{f}) .

Proof. Let U_{f} be a bounded open neighbourhood of \sigma(a_{f}), for j=1,2,
\ldots , n, and choose a contour \Gamma_{f} in U_{f}\backslash \sigma(a_{f}) consisting of a finite number
of rectifiable, positively oriented Jordan curves.

For f \in \mathscr{Q}(\prod_{f=1}^{n}U_{f})=\mathscr{Q}(U_{1})\otimes\cdots\otimes \mathscr{Q}(U_{n})\wedge, the integral

(2 \pi i)^{-n}\int_{\Gamma_{1}}\cdots\int_{\Gamma_{n}}f(\zeta_{1^{ }},\cdots, \zeta_{n})(\zeta_{1}e_{1}-a_{1})^{-1}\otimes\cdots\otimes(\zeta_{n}e_{n}-a_{n})^{-1}d\zeta_{1}d\zeta_{2}\cdots d\zeta_{n}

defines an element in the Banach algebra \mathfrak{B}_{1}\otimes\cdots\otimes \mathfrak{B}_{n}\bigwedge_{\alpha} , and does not depend
upon the choice of \Gamma_{f}, j=1,2, \cdots , n, but only upon the germ \tilde{f} of f in the

neighbourhood of \prod_{f=1}^{n}\sigma(a_{f}) . By this integral we define \Theta(\tilde{f};a) . Theorem

2.1 follows from the properties of \Theta_{f}( . ; a_{f}) using Proposition 1.3. The
uniqueness follows from the fact that the rational functions are dense in
\mathscr{Q}(U_{f}) . \Theta(\cdot ; a) is exactly the continuous extension of \Theta_{1}(\cdot ; a_{1})\otimes\cdots\otimes\Theta_{n}(. ; a_{n})

to \mathscr{Q}(\prod_{f=1}^{n}\sigma(a_{f}))=\mathscr{Q}(\sigma(a_{1}))^{\wedge}\otimes\cdots\otimes \mathscr{Q}(\sigma(a_{n})) .

2. 2. Tensor products of bounded operators

Applying our result in \S 2.1 to the operator algebras, we shall prove
the spectral mapping theorem.

Thoughout, for j=1,2, \cdots , n, let L(X_{f}) be the complex Banach algebra
of the continuous linear operators on X_{f} . L(X_{1})\otimes\cdots\otimes L(X_{n}) is considered
in the natural way as a complex algebra. The following lemma and theorem
are due to Gil de Lamadrid [4] for n=2.
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LEMMA 2. 2. Let \alpha be a uniform reasonable norm on X_{1}\otimes\cdots\otimes X_{n} .
Thm there exists a canonical injective morphism of the dgebra
L(X_{1})\otimes\cdots’\otimes L(X_{n}) into the algebra L(X_{1} \otimes\cdots\otimes X_{n})\bigwedge_{\alpha} .

Proof. We assign to each A_{1}\otimes\cdots\otimes A_{n} of the algebra L(X_{1})\otimes\cdots\otimes L(X_{n})

a linear operator on X_{1}\otimes\cdots\otimes X_{n} : u= \sum_{k=1}^{m}x_{1}^{(k)}\otimes\cdots\otimes x_{n}^{(\dot{k})}-(A_{1}\otimes\cdots\otimes A_{n})u

= \sum_{k=1}^{m}A_{1}x_{1}^{(k)}\otimes*\cdot\cdot\otimes A_{n}x_{n}^{(k)} , which is bounded by the uniformness of the norm
\alpha . This bounded linear operator can be extended continuously to the entire
space X_{1}\otimes_{\alpha}\cdots\otimes X_{n}’\wedge ; the continuous extension A_{1} \otimes\cdots\otimes A_{n}\bigwedge_{\alpha} is an element of
L(X_{1}\otimes\cdot\alpha^{\tau}.\otimes>X_{n}f)\wedge . Since all the A_{1}\otimes\cdots\otimes A_{n} generate the algebra L(X_{1})\otimes\cdots

\otimes L(X_{n}), this mapping can be extended by linearity to the entire algebra
L(X_{1})\otimes\cdots\otimes L(X_{n}) ; we have only to check that the representation

,1

A = \sum_{k\approx 1}^{m}A_{1}^{(k)}\otimes\cdots\otimes A_{n}^{(k)}

of an element A \in L(X_{1}^{*})\otimes\cdots\otimes L(X_{n}) defines the zero operator in
L(X_{1}\otimes_{\alpha}\cdots\otimes X_{n})’\wedge iff A=0. *.\cdot

In fact, suppose A = \sum_{k=1}^{m}A_{1}^{(\})}\otimes\cdots\otimes A_{n}^{(k)} defines the zero operator in

L(X_{1}^{\cdot}\otimes_{\alpha}\cdots\otimes X_{n})\wedge . Then for all (X_{1}^{ }, \cdots, X_{n})\in\prod_{f=1}^{n}X_{f}, (x_{1^{ }}’, \cdots, x_{n}’)\in\prod_{f=1}^{n}X_{\acute{f}}, we have

\sum_{k=1}^{m}\langle A_{1}^{(k)}x_{1}, x_{1}^{1}\rangle\langle A_{2}^{(k)}x_{2}, x_{2}’\rangle\cdots\langle A_{n}^{(k)}x_{n}, x_{n}’\rangle=0 .

For each pair (x_{f}, x_{f}’)\in X_{f}\cross X_{f}’, j=1,2, \cdots , n, define a continuous linear form
\mu_{J}’ on the Banach space L(X_{f}) by \langle A_{f}’, \mu_{J}\rangle=\langle A_{f}x_{f}, x_{f}’\rangle , A_{f}\in L(X_{f}) .

Then the above relation is equivalent to

\sum_{k=1}^{m}\langle A_{1}^{(k)}, \mu_{1}\rangle’\langle A_{2}^{(k)}, \mu_{2}\rangle’\cdots\langle A_{n}^{(k)}, \mu_{n}\rangle’=0 .

The set of the continuous linear forms \mu_{J}’ with (x_{f}, x_{f}’)\in X_{f}\cross X_{f}’, is total
over L(X_{f}), for j=1,2, \cdots , n, so that its linear hull is dense in the dual
space L(X_{f})’ with respect to the weak topology defined by the dual pair
\langle L(X_{f})’, L(X_{f})\rangle , for j=1,2, \cdots , n .

If follows by the separate weak continuity that

\sum_{k=1}^{m}\langle A_{1}^{(k)}\otimes A5^{k)}\otimes\cdots\otimes A_{n}^{(k)}, \mu\rangle’=0 ,

for all \mu’\in L(X_{1})’\otimes\cdots\otimes L(X_{n})’ . Since \langle L(X_{1})\otimes\cdots\otimes L(X_{n}), L(X)’\otimes\cdots\otimes L(X_{n})’\rangle
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is a dual pair, we have \sum_{k=1}^{m}A_{1}^{(k)}\otimes\cdots\otimes A_{n}^{(k)}=0 . It is easily verified that the
products of elements in L(X_{1})\otimes\cdots\otimes L(X_{n}) go into the compositions of the
corresponding operators in L(X_{1} \otimes\cdots\otimes X_{n})\bigwedge_{\alpha} . Q. E. D.

From Lemma 2.2, we see that if \alpha is a uniform reasonable norm on
X_{1}\otimes\cdots\otimes X_{n}, an operator norm can be induced on L(X_{1})\otimes\cdots\otimes L(X_{n}) as

a subspace of L(X_{1} \otimes\cdots\otimes X_{n})\bigwedge_{\alpha}, denoted by \overline{a} . Since \alpha’ is also uniform rea-

sonable with \alpha on X_{1}’\otimes\cdots\otimes X_{n}’, L(X_{1}’\otimes_{\alpha}\cdot\cdot,\cdot\otimes X_{n}’)\wedge induces on its subspace
L(X_{1}’)\otimes\cdots\otimes L(X_{n}’) an operator norm \overline{\alpha’} .

THEOREM 2. 3. If \alpha is a uniform reasonable norm on X_{1}\otimes\cdots\otimes X_{n}, then
\overline{\alpha} is a crossnorm on L(X_{1})\otimes\cdots\otimes L(X_{n}) compatible with multiplication.

\wedge

Therefore the cmpletion L(X_{1})\otimes,\cdot.\overline{a}.\otimes L(X_{n}) with respect to \overline{\alpha} is a Banach
algebra. The same is tme for \alpha .

In virtue of Theorem 2. 3, we observe that the same assertion for
A=(\backslash \cdot A_{1^{ }},\cdots, A_{n})\in \mathbb{I}^{n}L(X_{f}) as in Theorem 2. 1 is true for \mathfrak{B}_{f} replaced by

f=1
L(X_{f}) and a_{f} by A_{f}, j=1,2, \cdots , n . We denote the continuous morphism

of 6 ( \prod_{f=1}^{n}\sigma(A_{f})) into L(X_{1})\otimes\cdots\otimes L(\overline{\alpha}X_{n})’\sim by \Theta(\cdot ; A) .
We are now in a position to state the spectral mapping theorem for

tensor products of bounded linear operators. For j=1,2, \cdots , n, I_{f} denotes
the identity operator in X_{f} . For an element a of a Banach algebra \mathfrak{B} with
unit element, \sigma_{\mathfrak{B}}(a) denotes the spectrum of a with respect to \mathfrak{B} .

THEOREM 2. 4. Let be a unifom reasonable nom on X_{1}\otimes\cdots\otimes X_{n},

and A=(A_{1^{ }}, \cdots, A_{n})\in\prod_{f=1}^{n}L(X_{f}) . For \tilde{f}\in \mathscr{Q}(\prod_{f=1}^{n}\sigma(A_{f})), we have

\sigma_{L(x_{1}\otimes_{a}\cdot\otimes x_{n})}^{\wedge}..(\Theta(\tilde{f};A))=f(\sigma(A_{1}), \cdots , \sigma(A_{n})) .

Proof. If \lambda\leq f(\sigma(A_{1}), \cdots, \sigma(A_{n})), then (f(\zeta_{1^{ }},\cdots, \zeta_{n})-\lambda)^{-1} exists and is

holomorphic in a neighbourhood of \prod_{f=1}^{n}\sigma(A_{f}) . Therefore from Theorem 2. 1

for \mathfrak{B}_{f}=L(X_{f}), 1\leq j\leq n, we have
\Theta(\tilde{f}_{\lambda} _{;} _{A)\cdot\Theta(\tilde{f_{\lambda}^{-1}}} _{;} _{A)=\Theta(\tilde{f_{\lambda}^{-1}} }, f_{\lambda}=f-\lambda ,

=I
where I means the unit element I_{1}\otimes\cdots\otimes I_{n} of the algebra L(X_{1}) \otimes\cdots\otimes(X_{n})\bigwedge_{\overline{\alpha}},

which will also denote the identity operator I_{1} \otimes\cdots\otimes I_{n}\bigwedge_{\alpha} in L(X_{1}\otimes_{\alpha}\cdots\otimes X_{n})\wedge .
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Since \Theta(\tilde{f}_{\lambda}; _{A})=\Theta(\tilde{f};A)-\lambda I, the above identity shows that \Theta(\tilde{f},\cdot A)-\lambda I\wedge

has a bounded inverse \Theta(f_{\lambda}^{\tilde{-1}}

. ; A) in L(X_{1})\otimes_{\alpha}\cdots\otimes L(X_{n})\wedge\subset L(X_{1}\otimes_{\alpha}\cdots\otimes X_{n}) .
Thus \lambda\leq\sigma_{L(x_{1}\otimes_{\alpha}\cdot\otimes x_{n})}^{\wedge}..(\Theta(\tilde{f};A)) .

We show now the inclusion

f(\sigma(A_{1}), \cdots , \sigma(A_{n}))\subset\sigma_{L(x_{1}\otimes_{\alpha}\cdot\otimes x_{n})(\Theta(\tilde{f};}^{\wedge}..A))

We may assume f\not\equiv constant .
Let ( \alpha_{1^{ }},\cdots, \alpha_{n})\in\prod_{f=1}^{n}\sigma(A_{f}) . Then there exist \tilde{g}_{f}\in \mathscr{Q}(_{f}I^{n_{1}}\underline{\underline{I}}\sigma(A_{f})), 1\leq j\leq n,

(see [7]) such that
f(\zeta_{1^{ }},\cdots, \zeta_{n})-f(\alpha_{1^{ }},\cdots, \alpha_{n})

=(\zeta_{1}-\alpha_{1})g_{1}(\zeta_{1^{ }},\cdots, \zeta_{n})+\cdots+(\zeta_{n}-\alpha_{n})g_{n}(\zeta_{1^{ }},\cdots, \zeta_{n}) ,

where f and g_{f} are representatives of \tilde{f},\tilde{g}_{f}, respectively, in some common
bounded open neighbourhood \prod_{f=1}^{n}V_{f} of j_{=1}\Pi^{n}\sigma(A_{f}) .

From Theorem 2. 1 we have

[\Theta(\tilde{f};A)-f(\alpha_{1}, \cdots, \alpha_{n})(I_{1}\otimes\cdots\otimes I_{n})](x_{1}\otimes\cdots\otimes x_{n})

=\Theta(\tilde{g}_{1} ; A)\{(A_{1}-\alpha_{1}I_{1})x_{1}\otimes\cdots\otimes x_{n}\}+\cdots

...+\Theta(\overline{g}_{n} ; A)\{x_{1}\otimes\cdots\otimes(A_{n}-\alpha_{n}I_{n})x_{n}\} :

for (x_{1^{ }}, \cdots, x_{n})\in\prod_{f=1}^{n}X_{f} .
The proof is divided into three cases. We shall often use Proposition

1.2. For simplicity we assume n=3.
(1) Case : (\alpha_{1}, \alpha_{2}, \alpha_{3})\in\Pi\pi(A_{f})3 . For j=1,2,3, there exists a sequence

f=1
\^of unit vectors \{x_{f}^{(\nu)}\}_{\nu=1}^{\infty}\subset X_{f} such that (A_{f}-\alpha_{f}I_{f})x_{f}^{(\nu)}arrow 0 as \nuarrow\infty .

Since \alpha is a reasonable norm on X_{1}\otimes X_{2}\otimes X_{3},

[\Theta(\tilde{f};A)-f(\alpha_{1}, \alpha_{2}, \alpha_{3})(I_{1}\otimes I_{2}\otimes I_{3})](x_{1}^{(\nu)}\otimes x_{2}^{(\nu)}\otimes x_{3}^{(v)})

converges to zero in the norm \alpha as \nuarrow\infty and
||x_{1}^{(\nu)}\otimes x_{2}^{(\nu)}\otimes x_{3}^{(\nu)}||_{\alpha}=||x_{1}^{(\nu)}||\cdot||x_{2}^{(\nu)}||\cdot||x_{3}^{(\nu)}||=1

It follows that f(\alpha_{1},\alpha_{2},\alpha_{3})\in\pi(\Theta(\tilde{f};A))\subset\sigma(\Theta(\tilde{f};A)).
(2) Case: (\alpha_{1},\alpha_{2},\alpha_{3})\in\Pi\gamma(A_{f})3 . This implies (\alpha_{1},\alpha_{2},\alpha_{3})\in\Pi P_{\sigma}(A_{f}’)\subset\Pi\pi(A_{f}’)33

f=1 j=1 j=1

in virtue of Proposition 1. 2. Since a’ is also a reason.able norm on.
X_{1}’\otimes\dot{X}_{2}’\otimes X_{3}’, we obtain in a similar way to (1)
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f(\alpha_{1}, \alpha_{2}, \alpha_{3})\in P_{\sigma}(\Theta(\tilde{f};A’))\subset\pi(\Theta(\tilde{f};A’)) ,

where \Theta( . ; A’), A’=(A_{1}’, A_{2}’, A_{3}’), is the continuous morphism of \mathscr{Q}(\prod_{f=1}^{3}\sigma(A_{f}’))

into L(X_{1}’)\otimes L_{\frac{\hat(}{\alpha}}X_{2}’,)\otimes L(X_{s}’.) . The restriction of \Theta(\tilde{f};A’) considered as an
\vee--

operator on X_{1}’\otimes X_{2}’,\otimes X_{3}’\alpha to the dense subspace X_{1}’\otimes X_{2}’,\otimes X_{3}’\alpha is given with

the relations \sigma(A_{f})=\sigma(A_{f}’), j=1,2,3, by
\Theta(\tilde{f};A’)(x_{1}’\otimes x_{2}’\otimes x_{3}’)

=(2 \pi i)^{-3}\int_{\Gamma_{1}}\int_{\Gamma_{*}}\int_{\Gamma_{3}}f(\zeta_{1}, \zeta_{2}, \zeta_{3})R(\zeta_{1};^{A_{1}’)x_{1}’\otimes R(\zeta_{2} ^{;} ^{A_{2}’)x_{2}’}}

\otimes R ( \zeta_{3}; A3’) x_{\acute{\theta}}d\zeta_{1}d\zeta_{2}d\zeta_{3} ,

=(2 \pi i)^{-3}\int_{\Gamma_{1}}\int_{\Gamma_{2}}\int_{\Gamma_{3}}f(\zeta_{1},\zeta_{2},\zeta_{3})R(\zeta_{1} ^{;} ^{A_{1})’x_{1}’\otimes R(C_{2} ^{;} ^{A_{2})’x_{2}’}}

\otimes R ( \zeta_{3} ; A3)’ x_{3}’d\zeta_{1}d\zeta_{2}d\zeta_{3} ,

where R(\zeta_{f} ; A_{f})=(\zeta_{f}I_{f}-A_{f})^{-1}\in L(X_{f}), R(\zeta_{f} ; A_{f}’)=(\zeta_{f}I_{\acute{f}}-A_{f}’)^{-1}\in L(X_{f}’), 1\leq j

\leq 3, and for j=1,2,3, each contour \Gamma_{f} consists of a finite number of recti-
fiable, positively oriented Jordan curves lying in V_{f}\backslash \sigma(A_{f}) .

The densely defined bounded operator R(\zeta_{1} ; A_{1})’\otimes R(\zeta_{2} ; A_{2})’\otimes R ( \zeta_{3} ; A3)’

in X_{1}’\hat{\otimes X_{2}’,\otimes}X_{3}’\alpha can be considered also as an operator in the Banach space

(X_{1}\hat{\otimes X_{2}\otimes}X_{3})’=(X_{1}\otimes X_{2}\otimes X_{3})’\alpha\alpha with the same domain X_{1}’\otimes X_{2}’,\otimes X_{3}’\alpha . The ad-
joint of the densely defined bounded operator R(\zeta_{1} ; A_{1})\otimes R(\zeta_{2} ; A_{2})\otimes R(\zeta_{3} ; A_{3})

in X_{1}^{\cdot}\hat{\otimes X_{2}\otimes}X_{3} is a bounded operator on (X_{1}\hat{\otimes X_{2}\otimes}X_{3})’=(X_{1}\otimes X_{2}\otimes X_{3})’ which
\alpha \alpha \alpha

is clearly an extension of the operator R(\zeta_{1} ; A_{1})’\otimes R(\zeta_{2} ; A_{3})’\otimes R(\zeta_{3} ; A_{3})’ .
Thus we see that the adjoint operator \Theta(\tilde{f};A)’ on (X_{1}\hat{\otimes X_{2}\otimes}X_{3})’\alpha of

\Theta(\tilde{f};A) is an extension of \Theta(\tilde{f};A’) . In virtue of Lemma 1.1 and PropO-
sition 1. 2 we obtain

f(\alpha_{1}, \alpha_{2}, \alpha_{3})\in\pi(\Theta(\tilde{f};A’))

\subset\pi(\Theta(.\tilde{f};A)’)

\subset\sigma(\Theta(\tilde{f};A)’)=\sigma(\Theta(\tilde{f};A))

(3) Case: (\alpha_{s_{1}}, \alpha_{s_{2}}, \alpha_{s_{s}})\in\pi(A_{s}‘)\cross\gamma(A_{s_{z}})\cross\gamma(A_{s_{3}}) or (\alpha_{s_{1}}, \alpha_{s_{2}}, \alpha_{s_{s}})\in\pi(A_{s_{1}})\cross

\pi(A_{s_{1}})\cross\gamma(A_{s_{\theta}}), where s=(\begin{array}{lll}1 2 3s_{1} s_{2} s_{3}\end{array}) is an arbitrary permutation. We shall see
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that we have only to consider the latter case, to which the former case is
reduced. Without loss of generality, we may assume that s is the identity
permutation :

(a): (\alpha_{1}, \alpha_{2}, \alpha_{3})\in\pi(A_{1})\cross\gamma(A_{2})\cross\gamma(A_{3}) or
(b): (\alpha_{1}, \alpha_{2}, \alpha_{3})\in\pi(A_{1})\cross\pi(A_{2})\cross\gamma(A_{3}) .

We need the following lemma due to Remmert-Stein on analytic sets
in a bounded domain of C^{n} ([16] 2. Satz 7, p. 288).

LEMMA 2. 5. Let G\subset C^{n}(n>1) be a bounded domain [open but not
necessarily connected) and M be an analytic set in G. Then if M is not
pure zerO-dimmsional, there exists a boundary point of G which is an
accumulation point of M.

If g(\zeta_{1^{ }},\cdots, \zeta_{n}) is holomorphic in G\subset C^{n}(n>1), then the set M(g^{\backslash })\equiv

\{\zeta=(\zeta_{1^{ }},\cdots, \zeta_{n})\in G;g(\zeta)=0\} is a principal analytic set; principal analytic sets
in C^{n} are pure (n –1)-dimensional, therefore not pure zer0-dimensional.

End of Proof of Theorem 2. 4. We assume (a). Set f_{0}(\zeta_{1}, \zeta_{2}, \zeta_{3})

=f(\zeta_{1}, \zeta_{2}, \zeta_{3})-f(\alpha_{1}, \alpha_{2}, \alpha_{3}) . \gamma(A_{2}) and \gamma(A_{3}) are bounded open subsets in C and
the boundary of \gamma(A_{f}) is contained in that of \pi(A_{f}), since the boundary of
\sigma(A_{f}) is a subset of the boundary of \pi(A_{f}) . Since \tilde{f}_{0} belongs to \mathscr{Q}(\prod_{f=1}^{3}\sigma(A_{f})),

the function g(\zeta_{2}, \zeta_{3})=f_{0}(\alpha_{1}, \zeta_{2}, \zeta_{3}) is holomorphic in an open neighbourhood
of \overline{\gamma(A_{2})}\cross\overline{\gamma(A_{3})}\subset C^{2} , where the \overline{\gamma(A_{f}}), j=2,3, are the closures of \gamma(A_{f}) which
are compact subsets of \sigma(A_{f}) . Set M(g)=\{(\zeta_{2}, \zeta_{3})\in\gamma(A_{2})\cross\gamma(A_{3});g(\zeta_{2}, \zeta_{3})=0\} .
M(g) is a prinicipal analytic set of pure one-dimension in the bounded
domain \gamma(A_{2})\cross\gamma(A_{3}). In virtue of Lemma 2.5, there exists a boundary point
(\alpha_{2}^{0}, \alpha_{3}^{0}) of the domain \gamma(A_{2})\cross\gamma(A_{3}) which is an accumulation point of M(g) :
\alpha_{2}^{0}\in\pi(A_{2}) or \alpha_{3}^{0}\in\pi (A3).

By the continuity of g up to the boundary, we obtain
g(\alpha_{2}^{0}, \alpha_{3}^{0})=f_{0}(\alpha_{1}, \alpha_{2}^{0}, \alpha_{3}^{0})=0 ,

so that
f(\alpha_{1}, \alpha_{2}, \alpha_{3})=f(\alpha_{1}, \alpha_{2}^{0}, \alpha_{3}^{0}) .

Thus, considering (\alpha_{1}, \alpha_{2}^{0}, \alpha_{3}^{0}) instead of (\alpha_{1}, \alpha_{2}, \alpha_{3}), we can reduce the case (a)
to the case that two of the numbers \alpha_{1} , \alpha_{2}, \alpha_{3} belong to the approximate
point spectra of the corresponding operators.

Thus, we have now only to consider the case (b). For the pair (\alpha_{1}, \alpha_{2})

and the approximate point spectra of the adjoints of the corresponding
operators, we shall make an argument similar to before.
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If (\alpha_{1}, \alpha_{2})\in\pi(A_{1}’)\cross\pi(A_{2}’), then (\alpha_{1}, \alpha_{2}, \alpha_{3})\in TI\pi(A_{f}’)3 by Proposition 1. 2. In
this case the required assertion follows fro^{J=1m}(2) .

Otherwise, we have (a’):(\alpha_{1}, \alpha_{2})\in\gamma(A_{1}’)\cross\gamma(A_{2}’) or (b’):(\alpha_{1}, \alpha_{2})\in\pi(A_{1}’)\cross

\gamma(A_{2}’) or (c’):(\alpha_{1}, \alpha_{2})\in\gamma(A_{1}’)\cross\pi(A_{2}’) . We show the case (a’) is reduced to
the case (b’) or (c’).

Assume (\alpha_{1}, \alpha_{2})\in\gamma(A_{1}’)\cross\gamma(A_{2}’), i.e.
(\alpha_{1}, \alpha_{2}, \alpha_{3})\in\pi(A_{1})\cross\pi(A_{2})\cross\gamma(A_{3})\cap\gamma(A_{1}’)\cross\gamma(A_{2}’)\cross C .

Set g(\zeta_{1}, \zeta_{2})=f(\zeta_{1}, \zeta_{2}, \alpha_{3})-f(\alpha_{1}, \alpha_{2}, \alpha_{3}) . Then g(\alpha_{1}, \alpha_{2})=0 . \gamma(A_{1}’) and \gamma(A_{2}’) are
bounded open subsets of C and the boundary of \gamma(A_{f}’) is contained in that
of \pi(A_{f}’) . g(\zeta_{1}, \zeta_{2}) is holomorphic in a neighbourhood of \overline{\gamma(A_{1}’)}\cross\overline{\gamma(A_{2}’}) \subset C^{2} .
The set M(g)=\langle(\zeta_{1}, \zeta_{2})\in\gamma(A_{1}’)\cross\gamma(A_{2}’);g(\zeta_{1}, \zeta_{2})=0\} is a principal analytic set
of pure one-dimension in the bounded domain \gamma(A_{1}’)\cross\gamma(A_{2}’) . In virtue of
Lemma 2.5, there exist a boundary point (\alpha_{1}^{0}, \alpha_{2}^{0}) of the domain \gamma(A_{1}’)\cross\gamma(A_{2}’)

and a sequence (\alpha_{1}^{(\nu)}, \alpha_{2}^{(\nu)})_{\nu=1}^{\infty} in M(g) converging to (\alpha_{1}^{0}, \alpha_{2}^{0}) : \alpha_{1}^{0}\in\pi(A_{1}’) or
\alpha_{2}^{0}\in\pi(A_{2}’) . By the continuity of g, we have

g(\alpha_{1}^{0}, \alpha_{2}^{0})=g(\alpha_{1}^{(\nu)}, \alpha_{2}^{(\nu)})=0 , \nu=1,2 , \cdots ,

so that under this procedure the value of f is invariant:
f(\alpha_{1}^{0}, \alpha_{2}^{0}, \alpha_{3})=f(\alpha_{1}^{(_{\nu})}, \alpha_{2}^{(\nu)}, \alpha_{3}) (\nu=1,2, \cdots)

=f(\alpha_{1}, \alpha_{2}, \alpha_{3}) .
Since (\alpha_{1}^{(\nu)}, \alpha_{2}^{(\nu)})\in\gamma(A_{1}’)\cross\gamma(A_{2}’)\subset\pi(A_{1})\cross\pi(A_{2}), \nu=1,2 , \cdots , in virtue of

Proposition 1.2 and the approximate point spectrum is closed in C, we
have, by tending \nuarrow\infty , (\alpha_{1}^{r}’, \alpha_{2}^{0})\in\pi(A_{1})\cross\pi(A_{2}) .

Thus, considering (\alpha_{1}^{0}, \alpha_{2}^{0}, \alpha_{3}) instead of (\alpha_{1}, \alpha_{2}, \alpha_{3}) , we can reduce the case
(a’) to either the case (b’) or (c’).

We may consider now the case (b’);(c’) will be treated similarly.
Thus, the remaining case to treat turns altogether

(\alpha_{1}, \alpha_{2}, \alpha_{3})\in\pi(A_{1})\cross\pi(A_{2})\cross\gamma(A_{3})\cap\pi(A_{1}’)\cross\gamma(A_{2}’)\cross C
‘

Set g(\zeta_{2}, \zeta_{3})=f(\alpha_{1}, \zeta_{2}, \zeta_{3})-f(\alpha_{1}, \alpha_{2}, \alpha_{3}) . \gamma(A_{\underline{o}}’) and \gamma(A_{3}) are bounded open in C.
Set M(g)=\{(\zeta_{2}, \zeta_{3})\in\gamma(A_{2}’)\cross\gamma(A_{3}) ; g(\zeta_{2}, \zeta_{3})=0\} . Making a similar argument
and using Lemma 2.5, we find a boundary point (\alpha_{2}^{0}, \alpha_{3}^{0}) of the bounded
domain \gamma(A_{2}’)\cross\gamma(A_{3}) which is the limit of a sequence in M(g). It follows
as before that

\alpha_{2}^{0}\in\pi(A_{2}) and \alpha_{3}^{0}\in\pi(A_{3}’)

and that
\alpha_{2}^{0}\in\pi(A_{2}’) or \alpha_{3}^{0}\in\pi(A_{3}) .
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By the continuity of g up to the boundary we have f(\alpha_{1}, \alpha_{2}^{0}, \alpha_{3}^{0})=f(\alpha_{1}, \alpha_{2}, \alpha_{3}) .
If \alpha_{2}^{0}\in\pi(A_{2}’), then ( \alpha_{1}, \alpha_{2}^{0}, \alpha_{3}^{0})\in\prod_{f=1}^{3}\pi(A_{j}’) in virtue of Proposition 1.2. The

assertion follows from (2).

If \alpha_{3}^{0}\in\pi (A3), then ( \alpha_{1}, \alpha_{3}^{0}, \alpha_{3}^{0})\in\prod_{f=1}^{3}\pi(A_{f}) . The assertion follows from (1).

Q. E. D.
REMARK 2. 6. From the proof of Theorem 2.4, we see

\sigma_{L(x_{1}\otimes_{\alpha}\cdot\otimes x_{n})(\Theta(\tilde{f};A))=\sigma_{L(X_{1})\otimes\cdots \otimes L(x_{n}),(\Theta(\tilde{f};A))\Gamma}^{\wedge}}^{\wedge}..\overline{\alpha}

=f(\sigma(A_{1}), \cdots , \sigma(A_{n}))

By the aid of Proposition 1.2 we have
COROLLARY 2. 7. Under the same assumptions as in Theorem 2. 4 we

have

f(\pi(A_{1}), \cdots , \pi(A_{n}))\subset\pi(\Theta(\tilde{f};A)) ,

f(P_{\sigma}(A_{1}), \cdots , P_{\sigma}(A_{n}))\subset P_{\sigma}(\Theta(\tilde{f};A)),\cdot

f(\Gamma(A_{1}), \cdots , \Gamma(A_{n}))=f(P_{\sigma}(A_{1}’), \cdots , P_{\sigma}(A_{n}’))

\subset P_{\sigma}(\Theta(\tilde{f};A’))

\subset P_{\sigma}(\Theta(\tilde{f};A)’)

=\Gamma(\Theta(\tilde{f};A)) .
If f=\zeta_{1}\cdot\zeta_{2}\cdot\cdots\cdot\zeta_{n}, the fact that the spectrum does not change under the

continuous extension yields ([9], cf. [2])

COROLLARY 2. 8. Let \alpha be a unifom reasonable norm on X_{1}\otimes\cdots\otimes X_{n} .
For j=1,2, \cdots , n, let A_{f} be a densely defifined bounded linear operator in X_{f} .
Then we have

\sigma(A_{1})\cdot\sigma(A_{2})\cdot\cdots\cdot\sigma(A_{n})=\sigma(A_{1}\otimes\cdots\otimes A_{n})=\sigma(A_{1}\otimes\cdots\otimes A_{n})\bigwedge_{\alpha} ,

where A_{1}\otimes\cdots\otimes A_{n} is considered as an \wedge operator in X_{1} \otimes\cdots\otimes X_{n}\bigwedge_{\alpha} and
A_{1} \otimes\cdots\otimes A_{n}\bigwedge_{\alpha} its continuous extension to X_{1}\otimes\cdot\alpha..\otimes X_{n} .

REMARK 2. 9. In Theorem 2.4, in particular, if f is a polynomial, it
may be considered as an extension of St\’ephanos’ results for A_{f} being matrices
(see [13] VII Th. 43. 8). Brown and Pearcy [2] proved Corollary 2.8 for
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bounded operators defined on the same Hilbert space. Schechter [19] proved
Theorem 2. 4 for polynomials.

2. 3. The spectral mapping theorem for tensor products of Banach algebras
On the basis of Remark 2.6, it is expected to show the validity of the

spectral mapping theorem not only for the tensor product of operator
algebras but also for the tensor product of general Banach algebras.

For a complex Banach algebra \mathfrak{B} with unit element e and a\in \mathfrak{B}, we
consider the left regular representation A corresponding to a of \mathfrak{B} into the
Banach algebra L(\mathfrak{B}) of the continuous linear operators on \mathfrak{B} considered as
a Banach space (cf. [15], [12]).

Then we have
Lemma 2. 10. \sigma_{\mathfrak{B}}(a)=\sigma_{L(\mathfrak{B})}(A) ([12]).

THEOREM 2. 11. Under the same assumptions and notations as in

Theorem 2. 1, we have for \tilde{f}\in \mathscr{Q}(fII\sigma(a_{f}))n=1

\sigma_{\mathfrak{B}_{1}\otimes_{\alpha}\cdot\otimes \mathfrak{B}_{n}}^{\wedge}..(\Theta(\tilde{f};a))=f(\sigma(a_{1}), \cdots , \sigma(a_{n}))

Proof. Clear from Lemma 2.10 and Theorem 2.4.

3. Operational calculus for tensor products
of closed operators

3. 1. The spectral mapping theorem for tensor products of closed operators
We extend our previous results in \S 2. 2 and develop an operational

calculus for tensor products of closed operators in an analogous way to that
by Taylor ([20], [3], [8]).

For j=1,2, \cdots , n, let X_{f} be a complex Banach space and A_{f} : D[A_{f}]

\subset X_{f}arrow X_{f} be a closed linear operator with domain D[A_{f}] in X_{f} with non-
empty resolvent set \rho(A_{f}) . Set A=(A_{1^{ }},\cdots, A_{n}) .

\Theta_{f}( . ; A_{f}) denotes the continuous morphism of the algebra \mathscr{Q}(\sigma_{e}(A_{f}))

into the Banach algebra L(X_{f}) which was investigated by Dunford and
Taylor: if f(\zeta_{f}) is a holomorphic function in an open neighbourhood U_{f} of
the extended spectrum \sigma_{e}(A_{f}) in C^{*} and \tilde{f} is the germ of f in \mathscr{Q}(\sigma,(A_{f})),

we have

\Theta_{f}(\tilde{f};A_{f})=f(A_{f})=f(\infty)I_{f}+(2\pi i)^{-1}\int_{r_{f}}f(\zeta_{f})R(\zeta_{f} ^{;} ^{A_{f})d\zeta_{f}} ,

where the contour \Gamma_{f} consists of a finite number of rectifiable, positively ori-
ented Jordan curves lying in U_{f}\backslash \sigma_{e}(A_{f}) . We assume f(\infty)=0, if \sigma_{e}(A_{f})=\sigma(A_{f}) .
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THEOREM 3. 1. Let \alpha be a uniform reasonable norm on X_{1}\otimes\cdots\otimes X_{n} .
Given a closed linear operator A_{f} in X_{j} with non-empty resolvent set \rho(A_{f}),

for j=1,2, \cdots , n, there exists a unique continuous morphism \Theta( . ; A) of
\mathscr{Q}(fI^{n}I\sigma_{e}(A_{f}))=1 into the Banach algebra L(X_{1})\otimes_{\overline{a}}\cdots\otimes L(X_{n})\wedge which transfoms
the germ of the function 1 to I_{1}\otimes\cdots\otimes I_{n} and the germ of the function
(\zeta_{1}, \cdots, \zeta_{n})arrow(\beta_{j}-\zeta_{f})^{-1} for some fifixed (\beta_{1^{ }},\cdots, \beta_{n})\in J- \prod_{-,1}^{n}\rho(A_{f}) to I_{1}\otimes\cdots\otimes I_{f-1}\otimes

R(\beta_{f} ; A_{f})\otimes I_{f+1}\otimes\cdots\otimes I_{n} for j=1,2, \cdots , n .
In virtue of Proposition 1.3 we see that \Theta( . ; A) is the continuous

extension of \Theta_{1}( . ; A_{1})\otimes\cdots\otimes\Theta_{n}(\cdot ; A_{n}) to the space

\mathscr{Q}(\prod_{f=1}^{n}\sigma_{e}(A_{f}))=\mathscr{Q}(\sigma_{e}(A_{1}))^{\wedge}\otimes\cdots\otimes \mathscr{Q}(\sigma_{e}(A_{n}))

Now we state the spectral mapping theorem for tensor products of
closed operators. Its proof will be reduced to Theorem 2.4 just as the
operational calculus for closed operators was reduced to that for bounded
operators, by the device of considering the resolvent of the resolvent of
A_{f} for a fixed value of the parameter in the latter resolvent.

THEOREM 3. 2. Under the same assumptions and notations as in The-
orem 3. 1 we have for \tilde{f}\in \mathscr{Q}(\prod_{f=1}^{n}\sigma_{e}(A_{f}))

\sigma_{L(x_{1}\otimes_{\alpha}\cdot\otimes x_{n})}^{\wedge}..(\Theta(\tilde{f};A))=\sigma_{L(X_{1})\otimes\cdots\otimes L(x_{n})}\wedge(\Theta(\hat{\dot{f}};A))\overline{\alpha}

=f( \sigma_{e}(A_{1}), \cdots , \sigma_{e}(A_{n})).
REMARK 3. 3. It will be shown that Corollary 2.7 is also valid under

the same assumption as in Theorem 3.2.

3. 2. Polynomial operators and their closability

There are in \mathscr{Q}(f1^{n}I\sigma_{e}(A_{f}))=1 no germs of polynomials P(\zeta_{1^{ }},\cdots,\zeta_{n}) of degree
\geq 1 in some \zeta_{f}, if \sigma_{e}(A_{f}) contains \infty , or if A\leq L(X_{f}) . For a comprehensive
operational calculus, it is important to include a theory of polynomials.

For j=1,2, \cdots , n, let X_{f} be a complex Banach space and A_{f} : D[A_{f}]

\subset X_{f}arrow X_{f} be a closable linear operator with resolvent set \rho(A_{f}) . Let

P( \zeta_{1^{ }},\cdots, \zeta_{n})=\sum_{k}a_{k}\zeta^{k}\equiv\sum a_{k_{1’}\cdots,k_{n}}\zeta_{1}^{k_{1}}\cdot\zeta_{2}^{k_{1}}\cdot\cdots\cdot\zeta_{n^{n}}^{k}k_{1},\ldots.k_{n} ’

a_{k}\in C , k=(k_{1^{ }},\cdots, k_{n}) : \zeta=(\zeta_{1^{ }},\cdots, \zeta_{n}) ,

be a polynomial of degrees m_{1} in \zeta_{1} , m_{2} in \zeta_{2} , \cdots , m_{n} in \zeta_{n} . For P, we
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define a polynormial operator P(A_{1}\otimes\cdots\otimes I_{n^{ }},\cdots, I_{1}\otimes\cdots\otimes A_{n}) in X_{1}\overline{\otimes_{\alpha}\cdot\otimes}X_{n}’\cdot\cdot-

(with a reasonable norm \alpha) with domain D[A_{1}^{m_{1}}]\otimes D[A_{2}^{m_{2}}]\otimes\cdots\otimes D[A_{n}^{m_{n}}] as

P(A_{1}\otimes\cdots\otimes I_{n^{ }},\cdots, I_{1}\otimes\cdots\otimes A_{n})

= \sum a_{kk_{n}}‘\ldots..A_{1}^{k_{1}}\otimes A_{2}^{k_{2}}\otimes\cdots\otimes A_{n^{n}}^{k}k_{1},\ldots.k_{n} .

By a property of algebraic tensor products (e.g. [9] Lemma 4.20), it is
verified that this domain coincides with \cap(D[A_{1}^{k_{1}}]\otimes D[A_{2}^{k_{2}}]\otimes\cdots\otimes D[A_{n^{n}}^{k}]) .

We denote by \Theta(P;A) a
maxima1^{kextension}a^{k}\neq 0

of P(A_{1}\otimes\cdots\otimes I_{n}, \cdots ,
\bigwedge_{-}

I_{1}\otimes\cdots\otimes A_{n}) in X_{1}\otimes\cdot\alpha..\otimes X_{n} . If the closures of the A_{J^{f}}^{\nu} coincide with (\tilde{A}_{f})^{\nu_{f}},
1\leq\nu_{f}\leq m_{f}, 1\leq j\leq n , \Theta(P;A) is also a maximal extension \Theta(P;\tilde{A}) of
P(\tilde{A}_{1}\otimes\cdots\otimes I_{n^{ }},\cdots, I_{1}\otimes\cdots\otimes\tilde{A}_{n}), where \tilde{A}_{f} denotes the closure of A_{f} for
j=1,2, \cdots , n .

Let \beta=(\beta_{1^{ }},\cdots, \beta_{n})\in\prod_{f=1}^{n}\rho(A_{f}) and \varphi_{\beta}(\zeta)=\prod_{f=1}^{n}(\zeta_{f}-\beta_{f})^{-m_{f}} . If \Theta(\varphi_{\beta}^{-1} ; A)

=(A_{1}-\beta_{1}I_{1})^{m_{1}}\otimes_{\alpha}\cdots\otimes(A_{n}-\beta_{n}I_{n})^{m_{n}}\wedge is a maximal extension of (A_{1}-\beta_{1}I_{1})^{m_{1}}\otimes\cdots

\vee\sim

\otimes(A_{n}-\beta_{n}I_{n})^{m_{l}}, in X_{1}\otimes\cdots\otimes X_{n}’\alpha

’ it has a bounded inverse and its domain
D[\Theta(\varphi_{\beta}^{-1} ; A)] is independent of the choice of \beta\in JJn

\rho(A_{f}) . In particular, if
f=1

\vee^{--}
(\tilde{A}_{1}-\beta_{1}I_{1})^{m_{1}}\otimes\cdots\otimes(\tilde{A}_{n}-\beta_{n}I_{n})^{m_{n}} is closable in X_{1}\otimes\cdots\otimes X_{n}\alpha

’ the domain of its
closure coincides with the range of the continuous extension \Theta(\tilde{\varphi}_{\beta}; A) of
(A_{1}-\beta_{1}I_{1})^{-m_{1}}\otimes\cdots\otimes(A_{n}-\beta_{n}I_{n})^{-m_{n}} to the entire space X_{1}\otimes_{\alpha}\cdots\otimes X_{n}’\wedge .

In general, the domain of \Theta(\varphi_{\beta}^{-1} ; A) is contained in the domain of
\Theta(P;A) .

We show that the closability of operators is one of the properties of
permanence for tensor products equipped with a faithful reasonable norm
(cf. [9]).

THEOREM 3. 4. Let \alpha be a faithful reasonable norm on X_{1}\otimes\cdots\otimes X_{n} .
If for j=1,2, \cdots , n, A_{f} is a closable linear operator in X_{f} with non-empty

resolvent set \rho(A_{f}), so is P(A_{1}\otimes\cdots\otimes I_{n^{ }},\cdots, I_{1}\otimes\cdots\otimes A_{n}) closable in X_{1} \otimes\cdots\otimes X_{\alpha}\bigwedge_{A} .
In particular, if all A_{f} are closed, so is P(A_{1}\otimes\cdots\otimes I_{n^{ }},\cdots, I_{1}\otimes\cdots\otimes A_{n}) closable
in X_{1} \otimes\cdots\otimes X_{n}\bigwedge_{\alpha} .

Proof. If for j=1,2, \cdots , n,\tilde{A}_{f} is the closure of A_{f}, P(\tilde{A}_{1}\otimes\cdots\otimes I_{n}, \cdots ,
I_{1}\otimes\cdots\otimes\tilde{A}_{n}) is an extension of P(A_{1}\otimes\cdots\otimes I_{n}, \cdots, I_{1}\otimes\cdots\otimes A_{n}) . So we may
assume all A_{j} closed. We shall give two proofs of Theorem 3.4, one of
which is made with the additional condition that \alpha is uniform.
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(1) Recall that, X and Y being Banach spaces, a densely defined linear
transformation of D[T]\subset Y into X is closable iff D[T’] is total over X,
or equivalently, iff D[T’] is dense in X’ with respect to the weak topology
defined by the dual pair \langle X’, X\rangle . The space X’ equipped with this weak
topology is denoted by X_{s}’ .

Set Y_{j}=\overline{D[A_{f}]} , j=1,2, \cdots , n . Y_{f} are Banach spaces. Let Y_{1}\otimes_{\alpha}\cdots\otimes Y_{n}\wedge

be the closure of Y_{1}\otimes\cdots\otimes Y_{n} in X_{1} \otimes\cdots\otimes X_{n}\bigwedge_{\alpha}, which is a Banach space.
In virtue of the Hahn-Banach theorem, we see that for j=1,2, \cdots , n and
\nu=1,2 , \cdots , A_{f}^{\nu} is a densely defined closed linear transformation of D[A_{f}^{\nu}]\subset Y

into X. The domian D[(A_{f}’)^{\nu}] is dense in (X_{f}’)_{s} .
Since the natural linear mapping j^{\alpha}. of X_{1} \otimes\cdots\otimes X_{n}\bigwedge_{a} into X_{1}\otimes\cdot.\cdot\cdot\otimes X_{n}’\wedge is

one-t0-0ne by the faithfulness of \alpha and every element of X_{1}\otimes\cdot.\cdot\cdot\otimes X_{n}\wedge is
considered to be a separately continuous multilinear form on (X_{1}’)_{s}\cross\cdots\cross(X_{n}’)_{s} ,

\wedge
the domain of the operator P(A_{1}’\otimes\cdots\otimes I_{n^{ }}’,\cdots, I_{1}’\otimes\cdots\otimes A_{n}^{t}) in (X_{1}\otimes\cdots\otimes X_{n})’a

’
\prime^{\wedge\sim}

i.e. D[(A_{1}’)^{m_{1}}]\otimes\cdots\otimes D[(A_{n}’)^{m_{n}}] , is total over X_{1}\otimes\cdot\alpha..\otimes X_{n} . P(A_{1}\otimes\cdots\otimes I_{n}, \cdots ,
I_{1}\otimes\cdots\otimes A_{n}) with domain D[A_{1}^{m_{1}}]\otimes\cdots\otimes D[A_{n}^{m_{n}}] is densely defined in

Y_{1} \otimes\cdots\otimes Y_{n}\bigwedge_{\alpha} , and so the adjoint P(A_{1}\otimes\cdots\otimes I_{n^{ }},\cdots)’ in (X_{1} \otimes\cdots\otimes X_{n})’\bigwedge_{\alpha} is well-
defined and an extension of P(A_{1}’\otimes\cdots\otimes I_{n^{ }}’,\cdots) . It follows that the domain
of P(A_{1}\otimes\cdots\otimes I_{n}, \cdots)’ is total over X_{1} \otimes\cdots\otimes X_{n}\bigwedge_{a} . Thus P(A_{1}\otimes\cdots\otimes I_{n}, \cdots ,
I_{1}\otimes\cdots\otimes A_{n}) is closable in Y_{1}-\otimes_{\alpha}\cdots\otimes Y_{n}\wedge, therefore in X_{1} \otimes\cdots\otimes X_{n}\bigwedge_{\alpha}\sim .

(2) We give now a\overline{n}other proof of Theorem 3.4, when \alpha is a uniform
faithful reasonable norm.

For ( \beta_{1^{ }},\cdots, \beta_{n})\in\prod_{f=1}^{n}\rho(A_{f}) rewrite

P(A_{1} \otimes\cdots\otimes I_{n}, \cdots, I_{1}\otimes\cdots\otimes A_{n})=\sum b_{k_{1}} , \cdot .., k_{n}(A_{1}-\beta_{1}I_{1})^{k_{1}}\otimes\cdots\otimes(A_{n}-\beta_{n}I_{n})^{k_{n}}

Let u_{\nu}\in D[A_{1}^{m_{1}}]\otimes\cdots\otimes D[A_{n}^{m_{n}}] , u_{\nu}arrow 0 and P(A_{1}\otimes\cdots\otimes I_{n^{ }},\cdots, I_{1}\otimes\cdots\otimes A_{n})u_{\nu}arrow v

in the norm \alpha as \nu- \infty . We shall show v=0. Applying the continuous
operator \Theta(\tilde{\varphi}_{\beta}; _{A}), \varphi_{\beta}(\zeta)=1^{n}I(\zeta_{f}-\beta_{f})^{-m_{f}}j_{=1}

’ which is the continuous extension

of (A_{1}-\beta_{1}I_{1})^{-m_{1}}\otimes\cdots\otimes(A_{n}-\beta_{n}I_{n})^{-m_{n}} to the entire space X_{1} \otimes\cdots\otimes X_{n}\bigwedge_{\alpha}, we have
by continuity

\Theta(\tilde{\varphi}_{\beta}; A)v

=\Theta(\tilde{\zeta_{1\beta}^{-1}} _{;} _{A)^{m_{1}}\cdot\Theta(\tilde{\zeta_{2\beta}^{-1}} },
\zeta_{f\beta}=\zeta_{f}-\beta_{f} ,

where \Theta(\tilde{\zeta_{1\beta}^{-1}} ; A), \cdots , are the continuous extensions of (A_{1}-\beta_{1}I_{1})^{-1}\otimes I_{2}\otimes\cdots

\otimes I_{n}, \cdots , to the entire space X_{1} \otimes\cdots\otimes X_{n}\bigwedge_{\alpha} .
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If \alpha=\epsilon , the operators \Theta(\zeta_{f\beta}^{\overline{-1}} ; A) are one-t0-0ne. Moreover, if \alpha is faith-
ful, they are also one-t0-0ne (see [9]). Thus v=0, which implies the
closability of P(A_{1}\otimes\cdots\otimes I_{n^{ }},\cdots, I_{1}\otimes\cdots\otimes A_{n}) .

Q. E. D.
-\vee-

When P(A_{1}\otimes\cdots\otimes I_{n}, \cdots, I_{1}\otimes\cdots\otimes A_{n}) is closable in X_{1}\otimes\cdot\alpha..\otimes X_{n}, \Theta(P;A)

is nothing but the closure of P(A_{1}\otimes\cdots\otimes I_{n^{ }},\cdots) . Its domain D[\Theta(P;A)] is
the completion of D[A_{1}^{m_{1}}]\otimes\cdots\otimes D[A_{n}^{m_{n}}] with respect to the graph norm of
F(A_{1}\otimes\cdots\otimes I_{n^{ }},\cdots) .
3. 3. The spectral mapping theorem for polynomial operators

We shall determine how the spectra of a polynomial operator P(A_{1}\otimes

\ldots\otimes I_{n}, \cdots , I_{1}\otimes\cdots\otimes A_{n}) and of its maximal extension \Theta(P;A) are related to
the spectra of the A_{1} , \cdots , A_{n} .

Given n subsets G_{f} of C, 1\leq j\leq n , we can define the set P(G_{1}, \cdots, G_{n})

in an obvious way if P(\zeta_{1^{ }},\cdots, \zeta_{n}) is a polynomial independent of those vari-
ables \zeta_{f} for which the G_{f} are empty, and otherwise we set P(G_{1^{ }},\cdots, G_{n})=\phi .

On the other hand, given n non-empty subsets G_{f} of C^{*} , 1\leq j\leq n , we
define P(G_{1^{ }},\cdots, G_{n})=P(G_{1}\backslash \{\infty\}, \cdots, G_{n}\backslash \{\infty\}) if P(\zeta_{1}, \cdots, \zeta_{n}) is independent of
those variables \zeta_{f} for which the G_{f} contain \infty , and otherwise we set
P(G_{1^{ }},\cdots, G_{n})=P(G_{1}\backslash \{\infty\}, \cdots, G_{n}\backslash \{\infty\})\cup\{\infty\} .

We show first that the set P(\sigma(A_{1}), \cdots, \sigma(A_{n})) is contained in the spectrum
of P(A_{1}\otimes\cdots\otimes I_{n^{ }},\cdots) . They do not coincide in general without any additional
conditions on polynomials P(cf. [9]).

We need

Lemma 3. 5. Let T:D[T]\subset X -arrow X be a closed linear operator in a
Banach space X with non-empty resolvent set \rho(T) . If \lambda\in\pi(T), and m is
a positive integer, there exists a sequence \{x_{\nu}\}_{\nu=1}^{\infty}\subset D[T^{m}]\tau vith||x_{\nu}||=1 such
that the sequence \{S(T)x_{\nu}\} is bounded for any polynomial S(\zeta) of degree
\leq m and such that Q(T)(T-\lambda I)x_{\nu} converges to zero as \nuarrow\infty for all
polynomials Q(\zeta) of degree \leq m-1 .

Proof. By assumption there exists a sequence \{y_{\nu}\}_{\nu=1}^{\infty}\subset D[T] , ||y_{\nu}||=1 ,
\nu=1,2 , \cdots , such that (T-\lambda I)y_{\nu} converges to zero. For \mu\in\rho(T) fixed,
(T-\mu I)^{-1}\in L(X) . Then ||(T-\mu I)^{-(m-1)}y_{p}|| is bounded away from zero. Set

x_{\nu}=||(T-\mu I)^{-(m-1)}y_{\nu}||^{-1}(T-\mu I)^{-(m-1)}y_{\nu} . \nu=1,2 , \cdots

The sequence \{x_{\nu}\} is a required one.

THEOREM 3. 6. For j=1,2, \cdots , n, let A_{f} : D[A_{f}]\subset X_{f}arrow X_{f} be a dmsdy
defifined closed linear operator in a cmplex Banach space X_{f} with non-empty
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resolvent set \rho(A_{f}) . Let \alpha be a reasonable norm on X_{1}\otimes\cdots\otimes X_{n} .
If P(\zeta_{1}, \cdots, \zeta_{n}) is a polynomial of degrees m_{1} in \zeta_{1} , \cdots , m_{n} in \zeta_{n}, then

we have for the spectra of the operator P(A_{1}\otimes\cdots\otimes I_{n}, \cdots, I_{1}\otimes\cdots\otimes A_{n}) and
its maximal extension \Theta(P;A) in X_{1} \otimes\cdots\otimes X_{n}\bigwedge_{\alpha}

P(\sigma(A_{1}), \cdots , \sigma(A_{n}))\subset\sigma(P(A_{1}\otimes\cdots\otimes I_{n}, \cdots, I_{1}\otimes\cdots\otimes A_{n}))

=\sigma(\Theta(P;A)) ,

provided that none of the \sigma(A_{1}), \cdots , \sigma(A_{n}) are empty.
Proof. The fact that the spectrum does not change under maximal

extensions yields the last equality.
We may assume P(\zeta_{1^{ }},\cdots, \zeta_{n})\not\equiv constant .
Let ( \alpha_{1}, \cdots, a_{n})\in\prod_{f=1}^{n}\sigma(A_{f}) . Then there exist polynomials P_{f}(\zeta_{1^{ }},\cdots, \zeta_{n}) of

degrees m_{\dot{t}} in \zeta_{v}, , i\neq j and \leq m_{f}-1 in \zeta_{f}, 1\leq j\leq n , such that
P(\zeta_{1^{ }},\cdots, \zeta_{n})-P(\alpha_{1^{ }},\cdots, \alpha_{n})

=(\zeta_{1}-\alpha)P_{1}(\zeta_{1^{ }},\cdots, \zeta_{n})+\cdots+(\zeta_{n}-\alpha_{n})P_{n}(\zeta_{1}, \cdots, \zeta_{n}) ,

to which corresponds by definition the operator

P(A_{1}\otimes\cdots\otimes I_{n^{ }},\cdots, I_{1}\otimes\cdots\otimes A_{n})-P(\alpha_{1^{ }},\cdots, \alpha_{n})(I_{1}\otimes\cdots\otimes I_{n})

=P_{1}(A_{1}\otimes\cdots\otimes I_{n}, \cdots, I_{1}\otimes\cdots\otimes A_{n})\{(A_{1}-\alpha_{1}I_{1})\otimes\cdots\otimes I_{n}\}+\cdots

\ldots+P_{n}(A_{1}\otimes\cdots\otimes I_{n}, \cdots, I_{1}\otimes\cdots\otimes A_{n})\{I_{1}\otimes\cdots\otimes(A_{n}-\alpha_{n}I_{n})\}

Our proof will proceed in an analogous way to that of Theorem 2.4,
by the aid of Proposition 1.2. The proof is divided into three cases. For
simplicity we assume n=3 again.

(1) Case: (\alpha_{1}, \alpha_{2}, \alpha_{3})\in\Pi\pi(A_{f})3 . In virtue of Lemma 3. 5, there exists
f=1

sequences of unit vectors \{x_{f}^{(\nu)}\}_{\nu=1}^{\infty}\subset D[A_{f}^{m_{f}}] , 1\leq j\leq 3 , such that for each j
||Q_{f}(A_{f})(A_{f}-\alpha_{f}I_{f})x_{f}^{(\nu)}||arrow 0 as \nuarrow\infty , for all polynomials Q_{f}(\zeta_{f}) of degree
\leq m_{f}-1 , and ||S_{f}(A_{f})x_{f}^{(\nu)}|| is bounded for any polynomial S_{f}(\zeta_{f}) of degree
\leq m_{f} .

By the reasonableness of \alpha, we obtain
||x_{1}^{(\nu)}\otimes x_{2}^{(\nu)}\otimes x_{3}^{(\nu)}||_{\alpha}=||x_{1}^{(\nu)}||\cdot||x_{2}^{(\nu)}||\cdot||x_{3}^{(\nu)}||=1 , \nu=1,2 , \cdots ,

and

\{P(A_{1}\otimes I_{2}\otimes I_{3}, I_{1}\otimes A_{2}\otimes I_{3}, I_{1}\otimes I_{2}\otimes A_{3})-P(\alpha_{1}, \alpha_{2}, \alpha_{3})(I_{1}\otimes I_{2}\otimes I_{3})\}(x_{1}^{(\nu)}\otimes x_{2}^{(\nu)}\otimes x_{3}^{(u)})
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converges to zero in the norm \alpha as \nuarrow\infty , since P_{f}(\zeta_{1}, \zeta_{2},\acute{\acute{\zeta}}_{3}) is of degree
\leq m_{i} in \zeta_{i} , i\neq j, and \leq m_{f}-1 in \zeta_{f} . It follows that

P(\alpha_{1}, \alpha_{2}, \alpha_{3})\in\pi(P(A_{1}\otimes I_{2}\otimes I_{3}, I_{1}\otimes A_{2}\otimes I_{3}, I_{1}\otimes I_{2}\otimes A_{3}))

\subset\sigma(P(A_{1}\otimes I_{2}\otimes I_{3}, I_{1}\otimes A_{2}\otimes I_{3}, I_{1}\otimes I_{2}\otimes A_{3}))

(2) Case : ( \alpha_{1}, \alpha_{2}, \alpha_{3})\in\prod_{f=1}^{3}\gamma(A_{f}) . This implies ( \alpha_{1}, \alpha_{2}, \alpha_{3})\in\prod_{f=1}^{3}P_{\sigma}(A_{f}’)\subset

\prod_{f=1}^{3}\pi(A_{f}’) by Proposition 1.2. The dual norm \alpha’ is reasonable on X_{1}’\otimes X_{2}’\otimes X_{3}’,

so we obtain in a similar way to (1)

P(\alpha_{1}, \alpha_{2}, \alpha_{3})\in P_{\sigma}(P(A_{1}’\otimes I_{2}’\otimes I_{3}’, I_{1}’\otimes A_{2}’\otimes I_{3}’, I_{1}’\otimes I_{2}’\otimes A_{2}’))

\subset\pi(P(A_{1}’\otimes I_{2}’\otimes I_{3}’, I_{1}’\otimes A_{2}’\otimes I_{\acute{3}}, I_{1}’\otimes I_{2}’\otimes A_{2}’))

If the A_{f} are densely defined closed in X_{f} with non-empty resolvent sets,
then the D[A_{f}^{m_{f}}] are also dense in X_{f}, 1\leq j\leq 3 , so that D[A_{1}^{m_{1}}]\otimes\cdots\otimes D[A_{n}^{m_{n}}]

,–

is dense in X_{1}\otimes X_{2}\otimes X_{3}\alpha . Then the adjoint of P(A_{1}\otimes I_{2}\otimes I_{3},I_{1}\otimes A_{2}\otimes I_{3},I_{1}\otimes I_{2}\otimes A_{3})

is well-defined in (X_{1}\otimes\hat{X_{2}\otimes}X_{3})’’\alpha . which is an extension of P(A_{1}’\otimes I_{2}’\otimes I_{3}, \cdots),

if the latter is considered as an operator in (X_{1}\hat{\otimes X_{2}\otimes}X_{3})’Q with domain
D[(A_{1}’)^{m_{1}}]\otimes D[(A_{2}’)^{m_{2}}]\otimes D[(A_{3}’)^{n\iota_{\theta}}] . In virtue of Lemma 1.1 and Proposition
1. 2, we obtain

P(\alpha_{1}, \alpha_{2}, \alpha_{3})\in\pi(P(A_{1}\otimes I_{2}\otimes I_{3}, I_{1}\otimes A_{2}\otimes I_{3}, I_{1}\otimes I_{2}\otimes A_{3})’)

\subset\sigma(P(A_{1}\otimes I_{2}\otimes I_{3}, I_{1}\otimes A_{2}\otimes I_{3}, I_{1}\otimes I_{2}\otimes A_{3})’)

=\sigma(P(A_{1}\otimes I_{2}\otimes I_{3}, I_{1}\otimes A_{2}\otimes I_{3}, I_{1}\otimes I_{2}\otimes A_{3})) .

(3) Case: (\alpha_{s_{1}}, \alpha_{s_{2}}, \alpha_{s_{3}})\in\pi(A_{s_{1}})\cross\gamma(A_{s_{2}})\cross\gamma(A_{s_{3}}) or (\alpha_{s_{1}}, \alpha_{s_{A}}, \alpha_{s_{3}})\in\pi(A_{s_{1}})\cross

\pi(A_{s_{2}})\cross\gamma(A_{s_{3}}), there s=(\begin{array}{lll}1 2 3s_{1} s_{2} s_{3}\end{array}) is an arbitrary permutation.

We shall be able to treat this case just in the same way as in the
proof (3) of Theorem 2.4, making use of the following lemma instead of
Lemma 2.5.

LEMMA 3. 7. Let G_{1} , G_{2}\subset C\neq be open sets and suppose the boundary \partial G_{1}

or \partial G_{2} has an infifinite number of points. Let P(\zeta_{1}, \zeta_{2}) be a polynomial in
\zeta_{1} , \zeta_{2} and P(\alpha_{1}, \alpha_{2})=0 for some (\alpha_{1}, \alpha_{2})\in G_{1}\cross G_{2} . Then there exist a boundary
point (\alpha_{1}^{0}, \alpha_{2}^{0}) of G_{1}\cross G_{2}\subset C^{2} and a continuous contour (\alpha_{1}(t), \alpha_{2}(t)), 0\leq t\leq 1 ,
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such that (\alpha_{1}(t), \alpha_{2}(t))\in G_{1}\cross G_{2} for 0\leq t<1 , \alpha_{1}(0)=\alpha_{1} , \alpha_{2}(0)=\alpha_{2} ; \alpha_{1}(1)=\alpha_{1}^{0},
\alpha_{2}(1)=\alpha_{2}^{0}, and such that P(\alpha_{1}(t), \alpha_{2}(t))=0 for 0\leq t\leq 1 .

Proof. Suppose \partial G_{1} has an infinite number of points. Without loss
of generality, we may assume G_{1} and G_{2} connected. Let \eta=\eta(\xi) be a root
of P(\xi, \eta)=0 with the property \eta(\alpha_{1})=\alpha_{2} . Since \eta(\xi) is defined for all \xi and
has only a finite number of poles in C’, that subset G_{1}’ of G_{1} which excludes
all these poles is an open connected set with non-empty boundary and
(\alpha_{1}, \alpha_{2})\in(G_{1}’\cap G_{1})\cross G_{2} . There exists a boundary point \alpha_{1}^{0} of G_{1}’ which is
also a boundary point of G_{1} , but which is no pole of \eta=\eta(\xi), and a con-
tinuous contour \alpha_{1}(t) , 0\leq t\leq 1 , such that \alpha_{1}(t)\in G_{1},0\leq t<1 , and \alpha_{1}(0)=\alpha_{1} ,
\alpha_{1}(1)=\alpha_{1}^{0} . Set \alpha_{2}(t)=\eta(\alpha_{1}(t)) . Then \alpha_{2}(t) is obviously continuous for 0\leq t\leq 1 .
We have by continuity P(\alpha_{1}(t), \alpha_{2}(t))=P(\alpha_{1}(t), \eta(\alpha_{1}(t)))=0,0\leq t\leq 1 . There
exists 0<t_{0}\leq 1 such that (\alpha_{1}(t), \alpha_{2}(t))\in G_{1}\cross G_{2} for 0\leq t<t_{0} , and such that
(\alpha_{1}(t_{0}), \alpha_{2}(t_{0})) is a boundary point of G_{1}\cross G_{2} . We have only to make a suitable
transformation of the parameter t.

Q. E. D.
End of Proof of Theorem 3.6. We shall give only the proof of reducing

the case (\alpha_{1}, \alpha_{2}, \alpha_{3})\in\pi(A_{1})\cross\gamma(A_{2})\cross\gamma(A_{3}) to the case (\alpha_{1}, \alpha_{2}, \alpha_{3})\in\pi(A_{1})\cross\pi(A_{2})

\cross\gamma(A_{3}) or (\alpha_{1}, \alpha_{2}, \alpha_{3})\in\pi(A_{1})\cross\gamma(A_{2})\cross\pi(A_{3}) . \gamma(A_{2}) and \gamma (A3) are open subsets
of C, the boundary of \gamma(A_{f}) is contained in that of \pi(A_{f}) and the polynomial

Q(\zeta_{2}, \zeta_{3})=P(\alpha_{1}, \zeta_{2}, \zeta_{3})-P(\alpha_{1}, \alpha_{2}, \alpha_{3})

in \zeta_{2} , \zeta_{3} satisfies the condition of Lemma 3.7. So there exist a boundary
point (\alpha_{2}^{0}, \alpha_{3}^{0}) of \gamma(A_{2})\cross\gamma(A_{3}) such that Q(\alpha_{2}^{0}, \alpha_{3}^{0})=0 and such that \alpha_{2}^{0}\in\pi(A_{2})

or \alpha_{3}^{0}\in\pi(A_{3}) . Thus, considering (\alpha_{1}, \alpha_{2}^{0}, \alpha_{3}^{0}) instead of (\alpha_{1}, \alpha_{2}, \alpha_{3}) yields the
desired reduction.

We omit the remaining proof which will proceed just in the same way
as in the proof (3) of Theorem 2.4, by the aid of Lemma 3.7 like above.

Since the approximate point spectrum and compression spectrum do
not change under maximal extensions, we have from the proof of Theorem
3.6 and Proposition 1. 2

COROLLARY 3. 8. Under the same assumptions as in Theorem 3.6, the
following relations hold

P(P_{\sigma}(A_{1}), \cdots , P4_{\backslash }A_{n}))\subset P_{\sigma}(P(A_{1}\otimes\cdots\otimes I_{r\iota}, \cdots, I_{1}\otimes\cdots\otimes A_{n}))

\subset
. P_{\sigma}(\Theta(P;A)) ;

P(\pi(A_{1}), \cdots , \pi(A_{n}))\subset\pi(P(A_{1}\otimes\cdots\otimes I_{n^{ }},\cdots, I_{1}\otimes\cdots\otimes A_{n}))=\pi(\Theta(P;A)) ;
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P(\Gamma(A_{1}), \cdots , \Gamma(A_{n}))=P(P_{\sigma}(A_{1}’), \cdots , P_{\sigma}(A_{n}’))

\subset P_{\sigma}(P(A_{1}’\otimes\cdots\otimes I_{n^{ }}’,\cdots, I_{1}’\otimes\cdots\otimes A_{n}’))

\subset P_{\sigma}(P(A_{1}\otimes\cdots\otimes I_{n^{ }},\cdots, I_{1}\otimes\cdots\otimes A_{n})’)

=\Gamma(P(A_{1}\otimes\cdots\otimes I_{n^{ }},\cdots, I_{1}\otimes\cdots\otimes A_{n}))

=\Gamma(\Theta(P;A)) .

REMARK 3. 9. Since the spectrum and the approximate point spectrum
are closed, we see further from Theorem 3.6 and Corollary 3.8 that the
closure of the set P(\sigma(A_{1}), \cdots, \sigma(A_{n})) is contained in \sigma(P(A_{1}\otimes\cdots\otimes I_{n^{ }},\cdots) and
the closure of the set P(\pi(A_{1}), \cdots, \pi(A_{n})) in \pi(P(A_{1}\otimes\cdots\otimes I_{n}, \cdots)) .

The following Lemma and Corollary are concerned with the existence
of inverse operators. We assume \alpha is a uniform reasonable norm on
X_{1}\otimes\cdots\otimes X_{n} .

Lemma 3. 10. For j=1,2, \cdots , n, let A_{f} : D[A_{f}]\subset X_{f}arrow X_{f} be a closed

linear operator with non-empty resolvent set \rho(A_{f}) . Let \tilde{f}\in \mathscr{Q}(\prod_{f=1}^{n}\sigma_{e}(A_{f}))

and F=\varphi_{\beta}^{-1}\cdot f, \varphi_{\beta}(\zeta)=\prod_{j=1}^{n}(\zeta_{f}-\beta_{f})^{-m_{f}} for a fifixed \beta=(\beta_{1^{ }},\cdots, \beta_{n})\in\prod_{f=1}^{n}\rho(A_{f}) . If
F and F^{-1} belong to \mathscr{Q}(\prod_{f=1}^{n}\sigma_{e}(A_{f})), then each maximal extension \Theta(\varphi_{\beta}^{-1} ; A)

of (A_{1}-\beta_{1}I_{1})^{m_{1}}\otimes\cdots\otimes(A_{n}-\beta_{n}I_{n})^{m_{n}}arrow\wedge in X_{1} \otimes\cdots\otimes X_{n}\bigwedge_{\alpha} determines a maximal oper-
ator I’;D[I’] \subset X_{1}\otimes\cdot\alpha..\otimes X_{n}arrow X_{1}\otimes\cdots\otimes X_{n}\bigwedge_{\alpha} with domain D[F]=D[\Theta(\varphi_{\beta}^{-1 }; _{A})]

and dense range R[B^{7}] such that

\Theta(\tilde{f}. ; A)\cdot f\acute{u}=u . u\in D[B^{v}]

Proof. The continuous extension \Theta(\tilde{\varphi}_{\beta}; A) of (A_{1}-\beta_{1}I_{1})^{-m_{1}}\otimes\cdots\otimes

\otimes(A_{n}-\beta_{n}I_{n})^{-m_{l}}
, to X_{1}\otimes_{\alpha}\cdots\otimes X_{n}\wedge may not in general be invertible (cf. Proof

(2) of Theorem 3.4). However, by the properties of maximal extensions, we
have, if \Theta(\varphi_{\beta}^{-1} ; A) is a maximal extension of (A_{1}-\beta_{1}I_{1})^{m_{1}}\otimes\cdots\otimes(A_{n}-\beta_{n}I_{n})^{m_{n}}

\wedge
in X_{1}\otimes\cdot\alpha..\otimes X_{n} ,

\Theta(\tilde{\varphi}_{\beta}; A)\cdot\Theta(\varphi_{\beta}^{-1} ; A)u=u,\cdot u\in D[\Theta(\varphi_{\beta}^{-1} ; A)]

\Theta(\varphi_{\beta}^{-1} ; A)\cdot\Theta(\tilde{\varphi}_{\beta}; A)v=v . v\in R[\Theta(\varphi_{\beta}^{-1} ; A)]

Here we note that all the maximal extensions \Theta(\varphi_{\beta}^{-1} ; A) have the same
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domain D[\Theta(\varphi_{\beta}^{-1} ; ^{A})] which is independent of \beta\in\prod_{j=1}^{n}\rho(A_{f}) , but they may
have in general different ranges R[\Theta(\varphi_{\beta}^{-1} ; A)] .

In virtue of Theorem 3.1, we obtain
\Theta(\tilde{F_{-}} ; A)\cdot\Theta(\tilde{F^{-1}} ; A)=\Theta(\tilde{F^{-1}} ; A)\cdot\Theta(\dot{F}^{\tilde{\urcorner}} ; A)=I

and
\Theta(\tilde{f};A)=\Theta(\tilde{\varphi}_{\beta}; A)\cdot\Theta(\tilde{F_{-}} ; A)=\Theta(\tilde{F};A)\cdot\Theta(\tilde{\varphi}_{\beta}; A) ,

where all the elements are considered as ones of the algebra L(X_{1})\otimes_{\alpha}\cdots\otimes L(X_{n})\wedge .
Set F=\Theta(F^{-1}- ; _{A)\cdot\Theta(\varphi_{\beta}^{-1}} ; A) . Then F is maximal, since \Theta(\varphi_{\beta}^{-1} ; A) is

’-\sim
maximal and \Theta(F^{-1}- ; A) is an automorphism of X_{1}\otimes\cdot\alpha..\otimes X_{n} . The range
R[F] of F is dense, since R[\Theta(\varphi_{\beta}^{-1} ; A)] is dense.

It is clear that for u\in D[F]=D[\Theta(\varphi_{\beta}^{-1} ; A)]

\Theta(\tilde{f};A)\cdot I\grave{u}=[\Theta(\tilde{f};A)\cdot\Theta(\tilde{F}^{-1} ; A)]\cdot\Theta(\varphi_{\beta}^{-1} ; A)u

=\Theta(\tilde{\varphi}_{\beta}; A)\cdot\Theta(\varphi_{\beta}^{-1} ; A)u

=u . Q. E. D.

COROLLARY 3. 11. Let A_{j} be as in Lemma 3.10. Suppose P(\zeta) is
a polynomial of degrees m_{f} in \tilde{\zeta}_{j} , 1\leq j\leq n , such that P(\zeta)^{-1} exists and is

holomorphic in an open neighbourhood of f=1I^{n}I\sigma_{e}(A_{j}) in C^{*n}, Then every

maximal extension \Theta(P;A) of P(A_{1}\otimes\cdots\otimes I_{n}, \cdots, I_{1}\otimes\cdots\otimes A_{n}) in X_{1} \otimes\cdots\otimes X_{n}\bigwedge_{\alpha}

has the same domain with any maximal extension \Theta(\varphi_{\beta}^{-1} ; A) of (A_{1}-\beta_{1}I_{1})^{m_{1}}\otimes

\ldots\otimes(A_{n}-\beta_{n}I_{n})^{m_{l}}, in X_{1}\otimes_{\alpha}\cdots\otimes X_{n}-\wedge and admits a densely defifined bounded
inverse.

Proof. Among maximal extensions of (A_{1}-\beta_{1}I_{1})^{m_{1}}\otimes\cdots\otimes(A_{n}-\beta_{n}I_{n})^{m_{n}} in
X_{1}\otimes\cdot\alpha..\otimes X_{n}, we take an arbitrary one and denote it by \Theta(\varphi_{\beta}^{-1} ; A) .

Since P(\zeta)^{-1} satisfies the condition of f in Lemma 3.10, I^{v}=\Theta(F^{-1}- ; A)

’\sim\sim. \Theta(\varphi_{\beta}^{1} ; A) where F=\varphi_{\beta}^{-1}\cdot P^{-1} is a maximal operator in X_{1}\otimes\cdot\alpha..\otimes X_{n} with dense
range R[F] which has a densely defined bounded inverse \Theta(\overline{P^{-1}} ; A)|R[F] .

Since we have with P( \zeta)=\sum b_{k}(\zeta-\beta)^{k},

P(A_{1}\otimes\cdots\otimes I_{n^{ }},\cdots, I_{1}\otimes\cdots\otimes A_{n})

= \{\sum b_{k}(A_{1}-\beta_{1}I_{1})^{-(m_{1}-k_{1})}\otimes\cdots\otimes(A_{n}-\beta_{n}I_{n})^{-(m_{n}-k_{n})\}}

. \{(A_{1}-\beta_{1}I_{1})^{m_{1}}\otimes\cdots\otimes(A_{n}-\beta_{n}I_{n})^{m_{n}}\}’.
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F is an extension of P(A_{1}\otimes\cdots\otimes I_{n^{ }},\cdots) . By the maximality, it follows that

F is a maximal extension of P(A_{1}\otimes\cdots\otimes I_{n^{ }},\cdots) in X_{1} \otimes\cdots\otimes X_{n}\bigwedge_{a} , which we
denote by \Theta(P;A) . Thus \Theta(P;A) has a densely defined bounded inverse
\Theta(P^{-1}- ; A)|R[F] . By the properties of maximal extensions this is true for
another maximal extension \Theta(P;A) of P(A_{1}\otimes\cdots\otimes I_{n^{ }},\cdots) .

Q. E. D.
We shall state the spectral mapping theorem for polynomial\backslash operators

continuous at the product of the extended spectra.
DEFINITION 3. 12. Given n non-empty compact subsets K_{f} of C^{*} ,

1\leq j\leq n, a polynomial P(\zeta) is said to be continuous at \prod_{f=1}^{n}K_{f} (as a mapping

of C^{*n} into C^{*} ), if for any open neighbourhood V in C^{*} of the closure of
P(K_{1^{ }},\cdots, K_{n}) there exist open neighbourhoods U_{f} is C^{*} of K_{f}, 1\leq j\leq n ,
such that P(U_{1^{ }},\cdots, U_{n}) is contained in V.

It is seen that P(\zeta) is continuous at \prod_{f=1}^{n}K_{f} iff P(\zeta) is continuous at

every point \zeta of 1IK_{f}n . Consequently, P(K_{1^{ }},\cdots, K_{n}) is compact in C^{*} or
f=1

P(K_{1^{ }},\cdots, K_{n})\backslash \{\infty\} is closed in C.

THEOREM 3. 13. Forj=1, 2, \cdots , n, let A_{f} : D[A_{f}]\subset X_{f}- X_{f} be a densely
defifined closed linear operator in a complex Banach space X_{f} with non-empty
resolvent set \rho(A_{f}) . Let \alpha be a uniform reasonable norm on X_{1}\otimes\cdots\otimes X_{n} .

If P(\zeta) is a polynomial continuous at \prod_{f=1}^{n}\sigma_{e}(A_{f}) (as a mapping of C^{*n} into
C^{*}), then we have for the spectra of P(A_{1}\otimes\cdots\otimes I_{n^{ }},\cdots, I_{1}\otimes\cdots\otimes A_{n}) and of
its maximal extension \Theta(P;A) in X_{1} \otimes\cdots\otimes X_{n}\bigwedge_{a}

P(\sigma(A_{1}), \cdots , \sigma(A_{n}))=\sigma(P(A_{1}\otimes\cdots\otimes I_{n^{ }},\cdots, I_{1}\otimes\cdots\otimes A_{n}))

=\sigma(\Theta(P;A)) ,

provided none of the \sigma(A_{f}) are mpty. The mptiness of at least one of the
\sigma(A_{f}) is equivalent to the emptiness of \sigma(P(A_{1}\otimes\cdots\otimes I_{n^{ }},\cdots)) and of \sigma(\Theta(P;A)) .

Proof. If all A_{f} are bounded, Theorem 3.13 follows from Theorem
2.4. By Theorem 3.6, we have only to show the other inclusion, assuming
P(\zeta) is not identically constant and P(\sigma(A_{1}), \cdots, \sigma(A_{n}))\neq C.

Suppose \lambda\leq P(\sigma(A_{1}), \cdots, \sigma(A_{n})) . Set P_{\lambda}(\zeta)=P(\zeta)-\lambda . Then the continuity

of P(\zeta) at \prod_{f=1}^{n}\sigma_{e}(A_{f}) implies that P_{\lambda}(\zeta)^{-1} is holomorphic in an open neigh-

bourhood of f=1I^{n}I\sigma_{e}(A_{f}) in C^{*n}, so that P_{\lambda}(\zeta) satisfies the condition of P in CO-
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rollary 3. 11. It follows that \Theta(P_{\lambda} ; A)=\Theta(P;A)-\lambda I admits a densely defined
-\wedge-

bounded inverse \Theta(\tilde{P_{\lambda}^{-1}})|R[\Theta(P_{\lambda} ; A)] in X_{1}\otimes\cdot a..\otimes X_{n} . Thus \lambda\leq\sigma(\Theta(P;A)).
Q. E. D.

REMARK 3. 14. Since the spectrum, approximate point spectrum and
compression spectrum do not change under maximal extensions, Theorem
3.6, Corollary 3.8 and Theorem 3.13 are valid for densely defined closable
linear operators A_{f} in X_{f}, 1\leq j\leq n , if the closures of A_{f}^{\nu} coincide with (\tilde{A}_{f})^{\nu}

for j=1,2, \cdots , n, and \nu=1,2 , \cdots , so that any maximal extension of
\vee\sim

P(A_{1}\otimes\cdots\otimes I_{n^{ }},\cdots, I_{1}\otimes\cdots\otimes A_{n}) in X_{1}\otimes\cdot\alpha..\otimes X_{n} is at the same time a maximal
extension of P(\tilde{A}_{1}\otimes\cdots\otimes I_{n^{ }},\cdots, I_{1}\otimes\cdots\otimes\tilde{A}_{n}) in X_{1} \otimes\cdots\otimes X_{n}\bigwedge_{\alpha} .

Finally we note that all the considerations would be simpler in virtue
of Theorem 3.4, if the norm \alpha is in addition faithful.
3. 4. The tensor product A\otimes B

Theorem 3.13 with Remark 3.14 and Corollary 2.8 give now a precise
knowledge of the spectrum \sigma(A\otimes B) for the tensor product A\otimes B of
densely defined closable operators A and B, if we take the polynomial
P(\zeta_{1}, \zeta_{2})=\zeta_{1}\cdot\zeta_{2} (cf. [9]).

THEOREM 3. 15. Let X and Y be complex Banach spaces and \alpha be
a unifom reasonable norm on X\otimes Y. Let A(resp. B) be a densely defifined
closable linear operator in X(resp. Y) with spectrum \sigma(A) (resp. \sigma(B)) and
extmded spectrum \sigma_{e}(A) (resp. \sigma_{e}(B)). Denote by A\otimes B the tensor product
of A and B and by A \bigotimes_{\alpha}^{\wedge}B its maximal extmsion in X \bigotimes_{\check{\alpha}}^{\wedge}Y.

Thm among the following four assertions:
(1) It is not the case that one of the extended spectra \sigma_{e}(A) and \sigma_{e}(B)

contains 0 and the other contains \infty ;
(1)’ \sigma_{e}(A)\sigma_{e}(B)=\{\alpha\beta;(\alpha, \beta)\in\sigma_{e}(A)\cross\sigma_{e}(B)\} is a well-defifined [closed)

subset of the extended complex plane C^{*} , where \alpha\cdot\beta is defifined except
\alpha=0, \beta=\infty or \alpha=\infty , \beta=0 ;

(1)’ ( i) A and B are bounded in X, Y, respectively, so that \sigma_{e}(A)=

\sigma(A) and \sigma_{e}(B)=\sigma(B) are compact in C ;
(ii) A and B have densely defifined bounded inverses, so that

O\in\rho(A) and O\in\rho(B) ;
(iii) One of A and B is bounded and has a dmsdy defifined

bounded inverse, while the other is arbitrary;
(2) \sigma(A)\sigma(B)=\sigma(A\otimes B)=\sigma(A\bigotimes_{\alpha}^{\wedge}B), if none of \sigma(A) and \sigma(B) are empty,

while \sigma(A\otimes B)=\sigma(A\bigotimes_{\alpha}^{\wedge}B)=\phi is equivalent to \sigma(A)=\phi or \sigma(B)=\phi ;
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we have the implication (1)=(1)’=(1)’\Rightarrow(2) and if { I) is not satisfified, (2) is
not always true ([9]); it may be tme, for instance, note that the spectrum
of the tensor product A\otimes B of the zero operator A=O and an arbitrary
operator B is {0}.

4. An application

We consider the characteristic initial value problem for the partial
differential equation

L[u]= 0 \leq k\leq n\sum_{0\leq f\leq m},c_{fk}(\frac{\partial}{\partial x})^{f}(\frac{\partial}{\partial y})^{k}u(x, y)=f(x, y) ,

with constant coefficients c_{fk} , c_{mn}\neq 0 , under the initial condition

u(0, y)= \frac{\partial}{\partial x}u(0, y)=\cdots=(\frac{\partial}{\partial x})^{m-1}u(0, y)=0 ,

u(x, 0)= \frac{\partial}{\partial y}u(x, 0)=\cdots=(\frac{\partial}{\partial y})^{n-1}u(x, 0)=0 ,

in the square I\cross I, I=[0,1]\subset R .
We denote the operator L with this initial condition also by the same L.
Denote by \Re one of the following function spaces on I\cross I :
C(I\cross I)=Banach space of the continuous functions on I\cross I ;
B(I\cross I)=Banach space of the functions continuous on I\cross I, analytic in

the interior of I\cross I ;
L^{2}(I\cross I)=Hi1bert space of the square integrable functions on I\cross I.
For each \Re , let

\mathfrak{D}=\{f;(\frac{\partial}{\partial x})^{f}(\frac{\partial}{\partial y})^{k}f(x, y)\in\Re , 0\leq j\leq m0\leq k\leq n , u(0, y)= \frac{\partial}{\partial x}u(0, y)=\cdots

\ldots=(\frac{\partial}{\partial x})^{m-1}u(0, y)=0 , u(x, 0)= \frac{\partial}{\partial y}u(x, 0)=\cdots=(\frac{\partial}{\partial y})^{n-1}u(x, 0)=0\} .

THEOREM 4. 1. L^{-1} exists and is a continuous operator of ’\overline{J}t onto \mathfrak{D} .
Proof. Denote by x one of the function spaces on I :
C(I)=Banach space of the continuous functions on I ;
B(I)=Banach space of the functions continuous on I, analytic in the

interior of I ;
L^{2}(I)=Hi1bert space of the square integrable functions on I.
Then we have
C(I\cross I)=C(I)\wedge\otimes.C(I), B(I\cross I)=B(I)\wedge\otimes.B(I), and L^{2}(I\cross I)=L^{2}(I)\wedge\otimes L^{2}(I),

where all norms are faithful.
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For each x, let

\mathfrak{d}=\{\varphi;\varphi(t)\in \mathfrak{c} , \frac{d}{dt}\varphi(t)\in r , \varphi(0)=0\} .

Consider the ordinary differential operators A= \frac{d}{dx} , B= \frac{d}{dy} in 1 with
domains D[A]=D[-B]=\mathfrak{d} . A and B are densely defined closed operators
in \tau with these domains, and, their spectra \sigma(A) and \sigma(B) are empty.

We can verify that the operator L:\mathfrak{D}\subset\Rearrow\Re coincides with the closure
of the operator \sum_{f,k}c_{fk}A^{f}\otimes B^{k} in \Re . Then, in virtue of Theorem 3.13, the
spectrum of L is empty, which yields the assertion.
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