On finite groups whose Sylow *p*-subgroup is a *T. I.* set.

By Tetsuro Okuyama

1. Introduction. Let G be a finite group whose Sylow *p*-subgroup is a T. I. set of order p^{a} and suppose that G has a faithful complex character of degree less than $p^{a/2}$. Then it is conjectured that a Sylow *p*-subgroup is normal in G [2, 5]. Under some additional assumptions this conjecture was solved by Brauer-Leonard [1] and Leonard [5, 6, 7]. In this paper we prove the following theorem.

THEOREM. Let G be a finite p-solvable group whose Sylow p-subgroup is a T. I. set of order p^{α} and suppose that G has a faithful complex character of degree less than $p^{\alpha}|\varepsilon-1$, where $\varepsilon=1$ if p is odd and $\varepsilon=2$ if p is 2, then a Sylow p-subgroup is normal in G.

The method of the proof of Theorem is similar to one of Ito [4]. The notation is standard.

2. Proof of Theorem. We use induction on |G|, so let G be a minimal counterexample of Theorem and we seek a contradiction. Let P be a Sylow p-subgroup of G and χ be a faithful complex character of degree less than $p^a/\varepsilon - 1$.

STEP 1. G=PQ. Q is a q-group for some prime q distinct from p and normal in G.

PROOF. Since G is p-solvable and P is a T. I. set, it follows that $G/O_{p'}(G) \triangleright PO_{p'}(G)/O_{p'}(G)$, that is $G \triangleright PO_{p'}(G)$. If $G \neq PO_{p'}(G)$, by the minimality of $G PO_{p'}(G)$ char P and $G \triangleright P$. So $G = PO_{p'}(G)$. Next suppose that $\pi(O_{p'}(G)) = \{q_1, q_2, \dots, q_t\}, t \ge 2$. For each prime q_i let Q_i be a P-invariant Sylow q_i -subgroup then $G \neq PQ_i$ and the minimality of G implies $Q_i \subseteq N_G(P)$ for every *i*. Thus $G = N_G(P)$, which is a contradiction. So t=1.

STEP 2. We may assume χ is irreducible.

PROOF. Let ζ be a irreducible constituent of χ and assume Ker $\zeta = H \neq 1$. ζ is a faithful character of G/H. If $G \neq PH$, then $PH \triangleright P$ and $G \triangleright H$ char $P \cap H$. Since P is a T. I. set $P \cap H=1$ and the order of Sylow p-subgroup of G/H is p^a . Since $|G/H| < |G| G/H \triangleright PH/H$, that is

 $G \triangleright PH$ and $G \triangleright PH$ char P. So we must have G = PH, in particular H =Ker $\zeta \supseteq Q$. Since above argument is valid for every constituent of χ , if there is no faithful irreducible constituent of χ , Ker $\chi \supseteq Q$. This is a contradiction.

STEP 3. Q is nonabelian.

PROOF. Assume that Q is abelian. By [3, Theorem 5.2.3] $Q = [P, Q] \times C_Q(P)$. If $C_Q(P) \neq 1$, then $Q \neq [P, Q]$ and $G \neq P[P, Q]$. The minimality of G shows $P[P, Q] \triangleright P$ and $[[P, Q], P] \equiv P \cap Q = 1$. Then $[P, Q] \subseteq C_Q(P)$, $Q = C_Q(P)$ and $G = PC_Q(P) \triangleright P$, a contradiction. So $C_Q(P) = 1$. If we set $N_G(P) = PQ_0$ ($Q_0 \subseteq Q$), then $G \triangleright Q$ imples that $Q_0 \subseteq C_G(P)$. Therefore $N_G(P) = PC_G(P) = P$ and G is a Frobenius group with complement P. The characters of Frobenius group are known and the degrees of the faithful irreducible characters of G are p^a . This contradicts the assumption in Theorem.

STEP 4. Q is an extra-special q-group of order q^{2m+1} , $m \ge 1$ and $|N_{q}(P)| = p^{\alpha}q$.

PROOF. Let Q_0 be a *P*-invariant proper normal subgroup of Q. Then $PQ_0 \neq G$ and $PQ_0 \triangleright P$. So $[P, Q] \subseteq P \cap Q_0 = 1$ and $Q_0 \subseteq C_G(P)$. Therefore *P* centralizes every *P*-invariant proper normal subgroup of Q. By [3, Theorem 5.3.7] and Step 3 $C_Q(P) = Z(Q) = Q' = \Phi(Q)$ is elementary abelian and $N_G(P) = PC_G(P) = PZ(Q)$. Since by Step 2 *G* has a faithful irreducible character, Z(G) = Z(Q) is cyclic. So *Q* is extraspecial, $|N_G(P)| = p^a q$ and we can write $|Q| = q^{2m+1}$ by [3, Theorem 5.5.2].

STEP 5. (final contradiction).

Ł

As Q is extra-special the degrees of the faithful irreducible characters of Q are q^m . Restricting χ to Q we obtain $\chi(1) \ge q^m$. On the other hand by Step 4 $|G: N_G(P)| = q^{2m} \equiv 1 \pmod{p^a}$ and $p^a|(q^{2m}-1) = (q^m+1)(q^m-1)$. If p is odd, then $p^a \le q^m + 1 \le \chi(1) + 1 < p^a$. If p is 2, then $p^a \le 2(q^m+1) \le 2(\chi(1) + 1) < p^a$. This is a final contradiction.

REMARK. If p is 2, by Suzuki [8] a group with an independent Sylow 2-subgroup is determined and has a well known structure. So our Theorem and direct calculations show that the conjecture discribed in Introduction is true for p=2.

Department of Mathematics Hokkaido University

References

- [1] R. BRAUER and H. S. LEONARD Jr.: On finite groups with an abelian Sylow group, Canad. J. Math., 14 (1962), 436-450.
- [2] W. FEIT,: The current situation in the theory of finite simple groups, Actes. Congrés inter. math., (1970) 55-93.
- [3] D. GORENSTEIN,: Finite Groups, Harper and Row, New York-London (1968).
- [4] N. ITO,: On a theorem of H. F. Blichfeldt, Nagoya Math. J., 5 (1953), 75-77.
- [5] H. S. LEONARD JR.,: On finite groups whose p-Sylow subgroup is a T. I. set, Proc. Amer. Math. Soc., 19 (1968), 667-670.
- [6] H. S. LEONRRD JR.,: Finite linear groups having an abelian Sylow subgroup, J. Algebra, 20 (1972), 57-69.
- [7] H. S. LEONARD JR.,: Finite linear groups having an abelian Sylow subgroup, II, J. Algebra, 26 (1973), 368-372.
- [8] M. SUZUKI,: Finite groups of even order in which Sylow 2-groups are independent, Ann. math., 80 (1964), 58-77.

(Received November 7, 1974)