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1. Introduction

In this paper we shall prove the following theorem.

THEOREM 1. Let G be a doubly transitive group on the set 2={1, 2,
-, n}.  If the stabilizer G,, of points 1 and 2 is isomorphic to the Janko’s
simple group J(11) of order 2°-3-5-7-11-19 or a group R(q) of Ree type,
then G has a regular normal subgroup.

By Walter’s theorem a simple group with abelian Sylow 2-subgroups
is isomorphic to J(11), R(q)(¢#3), PSL(2,2™) or PLS(2,q) with ¢=3 or
5 (mod 8). Theorefore by and theorems in we have the
following. :

THEOREM 2. Let G be a doubly transitive group on the set 2={1,2, ---,
n}. If G,, is isomorphic to a simple group with abelian Sylow 2-subgroups,
then G is isomorphic to the alternating group A, of degree seven, the Mathieu
group M, of degree eleven or G has a regular normal subgroup.

Let X be a subset of a permutation group. Let F(X) denote the set of
all fixed points of X and a(X) be the number of points in F(X). Ng(X)
acts on F(X). _

Let %,(X) and X(X) be the kernel of this representation and its image,
respectively. The other notation is standard.

2. Preliminaries

Let G be a doubly transitive group on £ not containing a regular
normal subgroup such that G, is isomorphic to J(11) or R(g). Let K be
a Sylow 2-subgroup of G,,. Then K is an elementary abelian 2-group of
order 8. Let I be an involution of G with the cycle structure (1, 2)---.
Then I normalizes G,,. Since Aut(G,,)/Inn(G,;) is of odd order, we may
assume I centralizes G,,. Let r be an involution of K. Let r fix 7 points
of 2, say 1,2, ---,i. Since every involution of G is conjugate to an involu-
tion in IG,, it is conjugate to I or Ir.

Let d be the number of elements in G,, inverted by I Set =[G,
Cs(r)NG,z). Let B be the number of involutions with the cycle structures
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(1, 2) --- which are conjugate to z. Let ¢;(2) and ¢*(2) be numbers of in-
volutions which only the point 1 and which fix no point of 2, respectively.
Then n=i(Bi—B+7)[r and d=p+9{(2) if n is odd and d=B+g¢*(2)(n—1)
if n is even. (

LeMMA 1. G has two classes of involutions.

Proor. See [6, Lem. 5].

LemMma 2. d=7+1 and B=1 or 7.

Proor. By G has two classes of involutions. If Ir is con-
jugate to 7, B=7 and if I is conjugate to 7, 8=1.

3 The case n is odd

LEMMmaA 3. B=1 and ¢ (2)=T :

Proor. If B=7, then ¢f(2)=1. By [2] G must have a regular normal
subgroup.

LeMMA 4. X(7) contains a regular normal subgroup and a(Cs, (7)) is
odd

ProOF. Assume the lemma is false. If G,,=R(3), then X(z).=1, Z
or A, and if G,,=J(11) or R(q) with ¢>3, then X(r),=1 or PSL(2, 7
with r==+3 (mod 8). By [1], and [9] x(z)=PGL(2, 4) and i=5, or
X(r)=A; and =15 or 7. If {=5 or 15, then n=i({—1+7.9)/7.9 and if
i=7, then n=7(6+7)/7, which is a contradiction.

LEMMA 5. a(Gy,) is odd

ProOF. Since a(<I, Cq, ()>)=1 by let a be the point of
F(<I, Cg, (t)>). Let 4 be a G,z-orbit containing a. If |4]=1, then a(G,,)
is odd since F(G,;)'=F(G,;). Assume |4|>1. Since I centralizes G,, 4
is contained in F(I). If G,,=J(11) or R(q) with ¢>3, then Cg (7) is
maximal in G,, and hence G,,.=Cg, (r). There exists an element x of
Ng, ,(K) of order 7 not contained in Cq_ (7). Since Gi;,2K=Gz.x, |F(K)
N4d|>7. Thus a(<I, K>)>7, which is a contradiction. Next assume
G1.=R(@3). Ce,,(z)is not maximal in G,,,. If Gy;,q does not contain Ny, (K),
then we have a contradiction as above. If Gy, containes N  (K), then
|4]=9. Let H be a Sylow 7-subgroup of Ng (K). Since a(<I, H>)>2,
<I, H> is isomorphic to a subgroup of G,,. On the other hand a subgroup
ofG,, of order 14 is not abelian, which is a contradiction.

By and g¥(2)=1. This contradicts Lemma 3.
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4., The case n is even

1.  Case G,,=J(11). Since Aut J(11)=J(11) and R(q) does not involve
J(11) ([5, Lem. 7, 6], G,=J(11) O(G,) by [12]. Thus O(G),) is regular on
2—{1}). By G contains a normal complete Frobenius subgroup G'.
Then KG’ is a solvable 2-transitive group on 2. By K must be cyclic,
which is a contradiction.

2. Case G,,=R(3) (=PI'L(2, 8)). If |X(z).| is odd, then G contains
a regular normal subgroup by [11]. Thus X(z),,=A, and X(r)=A, (i=6)
or AG(2, 4) (i=16). Since 7=63, =1 or 63 by If i=6, then
B=63, n=36 and |G|=36-35-9-8-21. If =16, then =63, n=16* and
|G|=16%-15-17-9-8-21. Thus G, does not involve J(11) or R(q) with ¢>3.
By [12] G,/O(G,)=PI'L(2, 8). By [3] G contains a regular normal subgroup
and K must be cyclic by [4], which is a contradiction.

3. Case G,;=R(q), ¢>3. If x(z),=1, then G contains a regular
normal subgroup by [11]. Thus X(z),,=PSL(2, q). By X(z) contains
a regular normal subgroup. Let .S be a normal subgroup containing X%(z)=
<t> such that S/<z> is a regular normal subgroup of X(r). Then S is
an elementary abelian 2-group of order 2i.

LEMMA 6. If an involution of S is conjugate to t, then it is conjugate
to v under Ng(S). |Ng(S)=7*(i—1)|Cq, (7).

Proor. Assume 7=z is in SNS?% KS is a Sylow 2-subgroup of
Ce(r). We shall prove that S is a unique elementary abelian subgroup of
KS of order 2i. Since X(r) contains a regular normal subgroup and it has
two classes involutions, an involution 7’ of Cg(r) not contained in S fixes
at least two points of F(z). By the argument in i=a(<7,7'>F. Thus
|Cs(z')| =247 and hence |Cys(c')|=8Vi. If 8/7>|S|=2i then i=4 or 16.
Since n=i(B(t—1)+7)/1, B=7, n=1¢% and ¢*(2)=n—1. Thus the set T con-
sisting of elements of C,4(r) which fix no point of £ and the identity
element is a group and it is transitive on F(r). T9=T since S’ is con-
tained in Cg(z). F(z/)=F(r) and =7, which is a contradiction. Thus ¢
is in Ng(S). The other part of is trivial.

LEMMA 7. B=7 and n=1"

Proor. By lemma 2 =1 or 7. By n=i(B(—1)+7)/r must
be divisible by 2. Thus n=72

LemMMma 8. Every involution of G, acts trivially on O(G,).

Proor. Assume O(G;)#1. Let K'=<<z, '> is a four group contained
G,: Since every involution of G, is conjugate to each other, by a theorem

of Brauer-Wielandt |O(GY)|Coay(K')?=|Cpay(7)’. Since O(G,))NGy.=1,
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|Co,(7)| is a factor of i—1 and |O(G,)| is a factor of n—1=4’—1. Thus
|O(G,)| is a factor of i—1 and hence O(G)) is contained in Cg(z).

By there exists a normal subgroup G| of odd index containing
O(G,) such that G}/O(G,) is isomorphic to R(7) and G,/O(G,) is isomorphic
to a subgroup of Aut R(r) -

(

LemMma 9. R(r)#R(q)

Proor. Assume R(r)=R(q). 1=0(G, G,,. By G, is
normal in G| and hence in G,, which is a contradrction.

LEMMA 10. i+1=(*+1)7*(¢g+1)/(r+1)¢*(F+1), i—1=]0(G,)| |G,/Gi]|
|7(r*—1)q(¢*—1)| and Vi —1=]0(G))| |G\/Gi| (r+1)/(g+1).

Proor. Since R(r) has a doubly transitive permutation representation
such that the stabilizer of two points is cyclic, [Caus ren(9): Creny(7)]=[Aut
R(7): R(r)] for every involution # of R(r). Thus |Cy (z)|=|Cre (%) |GG
|O(G,)| by Lemma 8 Since [G,: Cq (t)]=(i+1)|Gis: Gi,(7)|, we get first
two equalities in the lemma. Let K’ <r, />, be a subgroup of G,, of
order 4. By the argument in —1=yi—1= |Cq,(K"): Cg, ,(K")| =
G, : GI| |0(GY)] |Caer (KY): CR<q><K'>1 _ |61 : Gil |0(G)] (r+Dllg+1),

By this lemma +i +1=(G—1)/¥i—1)=r(r—1)/q(g—1). Thus i+1=
Wi+ 1=(r(r—1)/qg(g—1)—17+1=2 (mod 3) since r>g by On
the other hand 7+1=0 (mod 3) by Lemm 10, which is a contradiction.

This complets the proof of [Theorem 1.

5. Corollaries

CorROLLARY 1. Let G be a 3-transitive group on 2={1,2,---,n}. If
the stabilizer G,,; of points 1, 2 and 3 is isomorphic to a simple group
with abelian Sylow 2-subgroup or R(3), then G=As and n=8.

Proor. If G, contains a normal subgroup which is regular on 2—({1},
then G contains a normal subgroup M such that M<G< Aut M and M
acts on £ as one of the following groups in its usual 2-transitive repre-
sentation : a sharply transitive group, PSL(2, q), S.(q), PSU(3, g) or a group
of Ree type. If M is sharply transitive, then M, is a normul subgroup of
2-transitive group G; and elementary abelian. Thus |M,| is prime and G,
is solvable, which is a contradiction. If M=PSL(2, q) or S.(q), then G,
must be cyclic since Aut M/M is cyclic. If M=PSU(3, gor a group of
Ree type, then G,,; must have a cyclic normal subgroup M,,, which is
a contradiction. Thus by G,=A, with n=8 or G,=M,, with
n=13." If G,=A, then G=A4, By there exists no group such that
n=13 and G,=M,,. » 4
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Similary we have the following corollary of Theorem in [6].

COROLLARY 2. Let G be a 3-transitive group on 2. If G, 3 is com-
plete Frobenius group such that its kernel is a 2-group, then G=A, or G
contains a regular normal subgroup, G,=A, and n=16.

ProoF. Let M be as in [Corollary 1. If M is sharply transitive, then
G is solvable. This contradicts [4]. Thus by [6.] G,=A4; with n=7 or
G,=A, with n=16. If G,=A, then G=A, If G;=A, then G is isomor-
phic to a subgroup of AG(4, 2) (see [10]).
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