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Thg n\rho_{--}tion\acute{\}}\wedge of ha-xmonic mappings was introduced and such mappings
were studied by Eells and Sampson [1], Recently, rch mappings have
beea\cdot discuss by \backslash severa1_{\aleph} authors (See [1], [2], [3], [4] a\grave{a}d [5\}, for example)
and many interesting results have been obtained. \cdot Yano and one of the
present authors [5]^{t} have proved, concerning harmonic m\grave{a}\overline{p}p_{1}bgs, some
theorems in which sufficient conditions for a harmonic mapping to be
affine or homothetic are stated. To prove these theorems, they computed
Laplacian \Delta||df||^{2} of the square of the differential mapping df for a har-
monic mapping f of a compact Riemannian space (M, g) into a Riemannian
space (N_{ },.\overline{q}) and pinched in a certain sense the sum of eigenvalues of the
tensor g^{*} induced in M from \overline{g} by f. In the present paper, we define
relatively harmonic immersions of a compact Riemannian space (M,\overline{g}) of
dimension n into a Riemannian space (N,\overline{g}) of dimension n+1 (See \S 1)
and obtain some sufficient conditions for such an immersion to be relatively
affine or homothetic by a similar way to that taken in [5]. The results
will be stated in Theorems 4.1\sim 4.5.

In \S 1, notations and some concepts concerning immersions and rela-
tively harmonic immersions will be defined and some propositions will be
proved. In \S 2 Laplacian \Delta||df||^{2} will be computed and in \S 3 some ine-
qualities will be given for later use. The last \S 4 is devoted to prove
Theorems 4.1\sim 4.5.

\S 1. Differentiable immersions of a Riemannian space into
another

Let (M, g) and (N,\overline{g}) be two Riemannian spaces of dimension n and
n+1 respectively, where n\geqq 2 . Let there be given a differentiable immer-
sion f:Marrow N, that is, a differentiable mapping f:Marrow N whose rank is
equal to n everywhere. Such an immersion will be sometimes denoted by
f:(M, g)arrow(N,\overline{g}) . Manifolds, mappings and geometric objects we discuss
are assumed to be differentiable and of class C^{\infty} . Take a coordinate
neighborhoods {U, x^{\acute{\iota}}\rangle of M and \{\overline{U}, y\}\alpha of N in such a way that f(U)\subset\overline{\overline{U}},
where local coordinates of M are denoted by (x^{h})=(x^{1_{ }},\cdots x^{n}) and those of
N by (y^{\alpha})=(y^{\overline{1}_{ }},\cdots, y^{\overline{n+1}}) . The indices h, i, j, k, I, m, r, s run over the range
\{1, \cdots, n\} and the indices \alpha, \beta, \gamma, \delta, \lambda, \mu, \nu over the range { \overline{1} , \cdots , \overline{n+1}\rangle . The
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summation convention will \backslash be used with respect to these two systems of
indices. Suppose that the mapping f is represented by equations

.t^{\backslash \sim}’

(1. 1) y^{\alpha}=y^{\alpha}(x^{1_{ }},\cdots, x^{n})

with respect to \{U, x^{h}\} and \{\overline{U}, y\}\alpha . Differentiating (1. 1), we now put in U

(1.2) A_{i}^{\alpha}=\partial_{i}y^{\alpha}(x^{1_{ }},\cdots, x^{n}) ,

where \partial_{i}=\partial/\partial x^{i} . Then the differential mapping df of f is represented by the
matrix (A_{i}^{\alpha}) with respect to local coordinates (x^{h}) of M and those \backslash .(y^{v}) of N.

When a function \rho, local or global, is given in N, we shall throughout
this paper identify \rho with the function \rho\circ f induced in M. We denote by
g_{ji} components of the Riemannian me\backslashtric g in M and by.\overline{q}_{\gamma\beta} those of the
Rie^{*}\dot{m}annian metric.\overline{q} in N. We now put (g^{fi})=(g_{fi})^{-1} and (\backslash \overline{q}^{\gamma\beta})=(\overline{g}_{\gamma\beta})^{-1} . Then

(1. 3) g_{fi}^{*}=\overline{g}_{\gamma\beta}A_{f}^{f}A_{i}^{\beta}

are components of the Riemannian metric g^{*}=f^{*}\overline{g} induced in M from \overline{g}

by f:Marrow N. The Christoffel’s sym^{\iota}bols \{\begin{array}{l}hji\end{array}\} , \{_{T\beta}^{\alpha}\} and \{\begin{array}{l}h\dot{y}i\end{array}\} are formed
with g_{ji},\overline{g}_{\gamma\beta} and g_{f_{p}^{j}}^{*} , respectively.

In this and the next sections, we denote by X, Y and Z arbitrary
vector fields in M with local expressions X=X^{h}\partial/\partial x^{h}., Y- Y^{h}\partial/\partial x^{h} and Z=
Z^{h}\partial/\partial x^{h}, respectively. Then (A_{i}^{\alpha}X^{i})\partial/\partial y^{\alpha} is the local expression of the vector
field (df)X defined along f(M’). If we put in U

(1. 4) A_{fi}^{\alpha}=\nabla_{f}A_{i\backslash }^{\alpha}

where we have defined \nabla_{f}A_{i}^{\alpha} by

(1. 5) \nabla_{f}A_{i}^{u}.=\partial_{f}A_{i}^{\alpha}+\{_{\mathcal{T}\beta}^{\alpha}\}A_{f}^{f}.A_{i}^{\beta}-\{\begin{array}{l}hji\end{array}\} A_{h}^{\alpha} ,

then (A_{fi}^{\alpha}X^{f}Y^{i})\partial/\partial y^{\alpha} is the local expression of a vector field B defined along
f(M). Denoting by C^{\alpha}\partial/\partial y^{\alpha} a local vector field along U which is unit and
normal to f(M), we can put

’\backslash

(1. 6) A_{fl}^{\alpha}=D_{ll}^{t}A_{h}^{\alpha}+H_{gi}C^{\alpha} ,

where D_{fi}^{h} are components of a tensor field D of type (1, 2) in M and H_{Jt}

components of the second fundamental tensor H of the isometric immer-
sion f:(M, g)*- (N,\overline{g}) . Thus we can easily verify

(1._{7)}\cdot.- D_{fi}^{h}=\{\begin{array}{l}hji\end{array}\}-\{\begin{array}{l}hji\end{array}\}.\cdot

I^{\backslash }f we- pu\overline{t}

-. \cdot 5
-,. : -\grave{3}
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\nabla_{f}C=\partial_{f}C^{\alpha}+\{_{r^{\alpha}\beta}\}A_{f}^{\gamma}C^{\beta} ,

then, using A_{i}’C\overline{g}_{\beta\alpha}=0_{f} we obtain

(1. 8) \nabla_{f}C^{\alpha}=-k_{f}^{h}A_{h}^{\alpha} ,

where
(1. 9) k_{f}^{h}g_{hi}^{*}=H_{fi}

Summing up (1. 6) and (1. 8), we now have
\nabla_{f}A_{i}^{\alpha}=D_{fi}^{h}A_{h}^{\alpha}+H_{f}‘ C^{\alpha} ,(1. 10)
\nabla_{f}G=-k_{f}^{h}A^{\alpha}, 1

Consider a curve \gamma:Iarrow M in M, I being an interval, and denote by
\overline{\gamma}_{=}f\circ \mathcal{T}:Iarrow N the image of \gamma by f. Then we have easily

\dot{\overline{\gamma}}=(df)\dot{\gamma}+A(\dot{\gamma},\dot{\gamma}) ,

where A(\dot{r},\dot{\gamma})=(A_{fi}^{ae}\dot{\gamma}^{f}\dot{\gamma}^{i})\partial/\partial y^{\alpha},\dot{\gamma}^{f_{l}} being components of \dot{\gamma} . Thus we see that
f:(M, g)arrow(N,\overline{g}) is affine, i . e. , for any geodesic \gamma in (M, g) (for any curve
\gamma satisfying \dot{\mathcal{T}}=0 ) its image \overline{\gamma} is also a geodesic in (N,\overline{q}), if and only if
A_{fi}^{\alpha}=0 . We say that f:(M, g)arrow(N,\overline{g}) is relatively affine when any geodesic
\gamma in (M, g) is also a geodesic in (M, g)^{*} . When g^{*}=\rho^{2}g with function
\rho^{2}>0, f:(M, g)arrow(N,.\overline{q}) is called a relatively conformal immersion. When
g^{*}=\rho^{2}g with constant \rho^{2}>0, f:(M, g)arrow(N,\overline{.q}) is said to be relatively homO-
thetic. We now have by using (1. 7)

PROPOSITION 1. 1 f:(M, g)arrow(N,\overline{g}) is relatively affiffiffine if and only if
D=0, i. e. , D_{fi}^{h}=0 .

PROPOSITION 1. 2 f:(M, g)arrow(N, g) is relatively homothetic if and only
if it is rdativdy affiffiffine and at the same time relatively conformal.

On putting

(1. 11) A^{C}=gA_{f\dot{\iota}}^{\alpha}fi ,

we have
(1. 12) A^{\alpha}=E^{h}A_{h}^{t}+hG :

where
(1. 13) E^{h}=gD_{fi}^{z}fi . h=H_{fi}q^{fi}

Then we can easily see that A^{\epsilon} are components of a vector field T defined
along f(M), E^{k} are components of a vector field E in M and h is a local
function defined in each coordinate neighborhood and globally defined up
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to sign. The vector fields T, E and the function h are called the tension
field, the relative tmsion fifield and the relative mean curvature of f:(M, g)
arrow(N,\overline{q\backslash }), respectively. By the way, the local function
(1. 14) \overline{h}=H_{Jtgj}^{*fi}

where (g^{*fi})=(g_{fi}^{*})^{-1}, is the mean curvature of the isometric immersion
f:(M, g)*arrow(N,\overline{g}) . We now put for later use

(1. 15) \nabla_{f}A^{\alpha}=\partial_{f}A^{\alpha}+\{_{\mathcal{T}\beta}^{\alpha}\}A_{f}^{f}A^{\beta} .

Let I=(-a, a) be an interval. Consider a mapping F:M\cross Iarrow N such
that F(p, O)=f(p) for any p\in M. Such a mapping F is called a variation
of f. If we suppose that F has the local expression

y^{\alpha}=y^{\alpha}(x^{h}, t), (t\in I) ,

then v^{\alpha}=(\partial y^{\alpha}(x^{h},t)/\partial t)_{t=0} define a vector field v=v^{\alpha}\partial/\partial y^{\alpha} along f(M), which is
called the variation vector of the variation F. For f:(M, g)arrow(N,\overline{.}\overline{q}) we put

E(f, D)= \int_{D}||df||^{2}d\sigma_{g} ,

D being a compact domain with boundary \partial D in M, where d\sigma_{g} the volume
element of (M, g) and

(1. 16) ||df||^{2}=A_{f}^{\beta}A^{\alpha}
‘

g^{jl}\overline{g}_{\beta\alpha}=g_{fi}^{*}g^{fi}

On putting

\delta_{F}E(f, D)=[\frac{d}{dt}E(F_{t}, D)]_{t=0} ,

where F_{t}(p)=F(p, t) for any p\in M, we can easily verify

\delta_{F}E(f, D)=2\int_{D}[(\nabla_{f}v^{\beta})A_{i}^{\alpha fi}g\overline{g}_{\beta a}]d\sigma_{g} ,

where

\nabla_{f}v^{\alpha}=\partial_{f}v^{\alpha}+\{_{7\beta}^{\alpha}\}A_{f}^{r}v^{\beta} ,

and hence, because of
(\nabla_{f}v^{l})A_{ig}^{\alpha f\dot{\iota}}\overline{g}_{\beta\alpha}=g^{fi}\nabla_{f}(v^{\beta}A_{i}^{\alpha}\overline{g}_{\beta\alpha})-v^{\beta}A^{\alpha}\overline{g}_{\beta\alpha} ,

we have

(1. 17) \delta_{F}E(f, D)=-2\int_{D}[v^{\beta}A^{q}\overline{g}_{\beta\alpha}]d\sigma_{g}
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or

(1. \cdot 18) \delta_{F}E(f, D)=-2\int_{D}[v^{f}E^{i*}g_{fi}+v^{0}h]d\sigma_{g-},

where v^{\alpha}=v^{i}A_{i}^{\alpha}+v^{0}C^{\alpha}, when the variation vector v vanishes along f(\partial D) .
When \delta_{P}E(f, D)=0 for any variation F and f whose variation vector
vanishes along f(\partial D) and for any D, f is called a harmonic mapping.
Thus, from (1. 17), it follows that f is harmonic if and only if T=0
(i. e., A^{\alpha}=0) (See [1]). Wherj \delta_{F}E(f, D)=0 for any D and for any variation
F whose variation vector vanishes along f(\partial D) and is tangent to f(M)f
is called a relatively harmonic immersion. Thus we have from (1. 18)

PROPOSITION 1. 3. f:(M, g)arrow(N,\overline{g}) is relativdy harmonic if and only
if E=0, i. e. , E^{h}=0 .

PROPOSITION 1. 4. f:(M, g)arrow(N,\overline{g}) is harmonic if and only if it is
relatively harmonic (i. e. E=0) and relatively minimum (i. e. h=0) at the
same time.

\S 2. Laplacian of ||df||^{2}

We now put in U

(2. 1\{ ^{F_{k}A_{fi}-\partial_{k}A_{fi}^{\alpha}+}\{\emptyset-\{_{\mathcal{T}\beta}^{\alpha}\}A_{k}^{\gamma}A_{fi}^{\beta}-\{_{kj}^{m}\}A_{mi}^{\alpha}-\mathfrak{l}_{ki}^{m}\}A_{fm}^{ae}

Then (\nabla_{k}A_{fi}^{\alpha}X^{k}Y^{f}Z^{i})\partial/\partial y^{\alpha} is the local expression of a vector field defined
along f(M). Taking accound of (i. 4), (1. 5) and (2. 1), we obtain the fol-
lowing formula of Ricci-type:
(2. 2) \nabla_{k}\nabla_{f}A_{i}^{\alpha}-\nabla_{f}\nabla_{k}A_{i}^{\alpha}=\overline{R}_{\delta\gamma\beta}^{\alpha}A_{k}^{\delta}A_{f}^{f}A_{i}^{\beta}-R_{kfi}^{h}A_{h}^{\alpha} ,

where \overline{R}_{f9}^{\alpha}, and R_{kfi}^{h} are components of the curvature tensors of \overline{g} and g,
respectively. We are now going to compute the Laplacian \Delta||df||^{2} . We
here have

(2. 3) \frac{1}{2}\Delta||df||^{2}=\frac{1}{2}g^{lk}\nabla_{l}\nabla_{k}(A_{f}^{\beta}A_{ig}^{\alpha ji}\overline{q_{\beta\alpha}.})

=g^{lk}(\nabla_{l}\nabla_{\lambda}A_{j}^{\beta}).A_{tg\overline{g}_{\beta\alpha}+||B||^{2}}^{\alpha fi}\rangle ,

where
||B||^{2}=A_{lk}^{\beta}A_{fi}^{\alpha lfki}gg\overline{g}_{\beta\alpha}=’||D||^{2}+||H||^{2},

(2. 4) ’
||D||^{2}=D^{m}lkD^{hlfki}figgg_{mr_{l}}^{*}

)

J
. ||H|1^{2}=H_{lk}H_{fi}g^{lj}g^{K^{\wedge}i}

Thus, using (2. 2) and putting
\overline{R}_{\delta f\beta\alpha}=\overline{R}_{\delta\gamma\beta}^{- z}\overline{g}_{\lambda\alpha} , \backslash \backslash
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we obtain from (2. 3)

\frac{1}{2}\Delta||df||^{2}=(\nabla_{f}A^{\beta})A_{ig}^{afi}\overline{\overline{g}}_{\beta\alpha}+||B||^{2}

+\overline{R}_{\delta\gamma\beta\alpha}A_{l}^{\delta}A_{i}^{r}A_{k}^{\rho}A_{f}\alpha gg+lkftR_{ig_{hf}g}^{h*if}. ,

where \nabla_{f}A^{\alpha} was defined by (1. 15), and then

\frac{1}{2}\Delta||df||^{2}-\delta S=-||T||^{2}+||B||^{2}

+\overline{R}_{\iota r\beta\alpha}A_{l}^{\delta}A_{l}^{r}A_{k}^{\beta}A_{f}^{\alpha lkf}gg‘+R_{f}^{h*f}g_{h}‘ g
‘ ,

where R_{k}^{h}=R_{kfig}^{hf}.\cdot are components of the Ricci tensor of g and

(2. 5) \delta S=g^{fl}\nabla_{f}(A_{i}^{\beta}A^{\alpha}\overline{g}_{\beta\alpha}) , ||T||^{2}=A^{\beta}A^{\alpha}\overline{g}_{l\propto} .
=g^{fi}\nabla_{f}(E^{h*}g_{n}‘) ,

Substituting (2. 5) into the equation above, we have

(2. 6) \frac{1}{2}\Delta||df||^{2}-\delta S=-’||E||^{2}-h^{2}+||H||^{2}+’||D||^{2}

+\overline{\dot{R}}_{\dot{e}r\beta\alpha}A_{l}^{\delta}AfA_{\lambda}^{\beta}A_{f}^{\alpha\dot{l}kfi}gg \dagger R_{f}^{h*fi}g_{hi}g_{\backslash }

,

where we have used

||T||^{2}=|’|E||^{2}+h^{2},\cdot ’||E||^{2}=g_{f}^{*}‘ E^{f}E\dot{.}

Since E=0 implies \delta S=0 as a consequence of (2. 5), we have by using (2. 6)
LEMMA 2. 1. For a rdativdy harmonic immersion f : (M, g)arrow(N,.\overline{q}),

we have

(2. 7) \frac{1}{2}\Delta||df||^{2}=|’|D||^{2}+||H||^{2}-h^{2}

+\overline{R}_{\delta\gamma\beta\alpha}A_{l}^{\delta}A^{r}‘ A_{k}^{\beta}A_{\dot{f}}^{lkfl}gg+R_{J^{h*f}}g_{h}‘ g‘ .

Next, putting

(2. 8) L_{f\dot{0}}=H_{fi}- \frac{1}{n}hg_{fi}.
,

||L||^{2}=L_{lk}L_{je\emptyset g}^{lfkl} ,

we obtain

(2. 9) ||L||^{2}=||H||^{2}- \frac{1}{n}h^{2} .

Thus, substituting (2. 9) into (2. 7), we have
LEMMA 2. 2 For a relatively harmonic immersion f:(M,., g.)– (N,\overline{g}),

we have
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(2. 10) \frac{1}{2}\Delta||df||^{2}=|’|D||^{2}+||L||^{2}-\frac{n-1}{n}h^{2}

+\overline{R}_{\iota r\mu}A_{l}^{\delta}A_{i}^{r}A_{k}^{\beta}A_{f}\alpha gg+lkfiR_{f}^{h*fi}g_{hi}g

\S 3. Some inequalities

We shall, in this section, give some inequalities for later use; assumeing
that M is compact. At each point of (M, g), we take n orthonormal vectors
e_{(1)} , \cdots , e_{(n)} such that
(3. 1) g_{fi}^{*}=\lambda_{1}e_{(1)f}e_{(1)i}+\cdots+\lambda_{n}e_{(n)f}e_{(n)i} ,

where e_{(s)}^{h} are components of e_{(s)} and e_{(s)i}=e_{(s)}^{h}g_{hi}, and hence we have \lambda_{1} ,
\ldots , \lambda_{n}>0 because (gj_{i}^{*}) is positive definite.

On putting e_{(s)}=(df)e_{(s)} , e_{(1)} , \cdots,\overline{e}_{(n)} are linearly independent and tangent
to f(M). Denoting by \dot{e}_{(s)}^{\alpha} components of e_{(s)} , we obtain
(3. 2) e_{(s)}^{\alpha}=A_{i}^{\alpha}e_{(i)}^{s}

and hence
(3. 3) ||e_{(g)}||_{2}=\overline{g}_{\beta}ie^{\beta}e^{\alpha}(s).(8)’\langle e_{(r)}, e_{(s)}\rangle=\overline{g}_{\beta\alpha}\dot{e}_{(r)}^{\beta}\overline{e}_{(s)}^{\alpha}

=\lambda_{s} =0 , (r\neq s)

because of (3. 1). On the other hand, we have

A_{l}^{r}A_{kg=A_{l}^{\gamma}A_{k}^{\beta}\sum_{s}e_{(s)}^{l}e_{(s)}^{k}=\overline{e}_{(s)}^{\gamma}e_{(s)}^{\beta}}^{\beta lk}

\sqrt

because of (3. 2). Thus, using the equation above, we find
\overline{R}_{\delta\gamma\beta\alpha}A_{l}^{\delta}A_{i}^{r}A_{k}^{\beta}A_{f}^{\alpha lkf\prime i}gg=\sum_{r\neq s}\overline{R}_{\delta\gamma\beta\alpha}e_{(r)}^{\delta}\overline{e}_{(s)}^{r}e_{(r)}^{\beta}e_{(s)}^{\alpha} ,

from which, using (3. 3),

(3. 4) \overline{R}_{\delta\gamma\beta a}A_{l}^{\delta}A_{i}^{r}A_{k}^{\beta}A_{f}\alpha gg=lkf\prime i-\sum_{r\neq s}\overline{\sigma}(e_{(r)}, e_{(s)})\lambda_{r}\lambda_{s\prime}.

where \overline{\sigma}(\overline{X},\overline{Y}) denotes the sectional curvature of (N,.\overline{q}) . r_{\ell}

We now consider the following condition:
(C) There exists a constant c such that

c\geqq\overline{\sigma}(\overline{X},\overline{Y})

at any point p\in N for any two linearly indepen&nt vectors \overline{X} and \overline{Y} at p.
Under the condition (C), since \lambda_{s}>0, we have from (3. 4)

(3. 5) \overline{R}_{\delta\gamma\beta\alpha}A_{l}^{\delta}A_{i}^{f}A_{k}^{\beta}A_{f}^{\alpha lkf\dot{\iota}}gg\geqq-c\sum_{r\neq s}\lambda_{r}\lambda_{s} .

On putting
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(3. 6) \tilde{\lambda}=\frac{1}{n}\sum_{s}\lambda_{s} ,

we easily obtain
(3. 7) \sum_{r\neq s}l\lambda_{s}=-\sum_{s}(\lambda_{s}-\tilde{\lambda})^{2}+n(n-1)\tilde{\lambda}^{2}.,

where we can easily verify

(3. 8) n\tilde{\lambda}=g_{fi}^{*}g^{fi}=||df||^{2}=Traceg^{*}

Thus, substituting (3. 7) into (3. 5), we have

(3. 9) \overline{\overline{R}}_{\delta\gamma\beta\alpha}A_{l}^{\delta}A_{i}^{r}A_{k}^{\beta}A_{f}^{\alpha lkf^{\dot{n}}}gg.\geqq c\sum_{s}(\lambda_{s}-\tilde{\lambda})^{2}-n(n-1)c\tilde{\lambda}^{2}

when the condition (C) is satisfied.
We take n orthonormal vectors e_{(s)} satisfying (3. 1) at each point of

(M, g). Then we have
(3. 10) h=H_{fig=\sum_{s}H_{fi}e_{(\epsilon)}^{f}e_{(s)}^{i}}^{fi} .

Next let a_{1}(p), \cdots , a_{n}(p) be eigenvalues of H with respect to g^{*} at p\in M.
Then we can put

(3. 11) A=Maxp\epsilon M Max \{|a_{1}(p)| , \cdots , |a_{n}(p)|\}\geqq 0 ,

provided that M is compact. Then for any vector field X=X^{h}\partial/\partial x^{h}, we get

|H_{fi}X^{f}X^{i}|\leqq A(g_{fi}^{*}X^{f}X^{i}) ,

from which, using (3. 10),

(3. 12) |h|\leqq nA\tilde{\lambda}, i . e. , h^{2}\leqq n^{2}A^{2}\tilde{\lambda}^{2}.

,

when M is compact.
In the last step, using (3. 1), we have

(3. 13) R_{f}hg_{h}‘ g=\lambda_{1}*fi(R_{fi}e_{(1)}^{J}e_{(1)}^{i})+\cdots+\lambda_{n}(R_{fi}e_{(n)}^{J}e_{(n)}^{i}) ,

where R_{Ji}=R_{f}^{h}g_{hi} , and hence

(3. 14) \hat{\lambda}r\leqq R_{f}^{h*fi}g_{hi}g ,

where we have put

(3. 15) \frac{r}{n}={\rm Min} R_{fi}A^{f}A^{t} ,

A=A^{h}\partial/\partial x^{h} running over the unit sphere bundle over (M, g), provided
that M is compact.
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Using (3. 9), (3. 12) and (3. 14) and taking account of Lemma 2. 2, we
have

LEMMA 3. 1. Assume that the conditions (C) is satisfied for a rdativdy
harmonic immersion f:(M, g)arrow(N,\overline{g}) and that M is compact. Thm we
have

(3. 16) \frac{1}{2}\Delta||df||^{2}\geqq’||D||^{2}+||L||^{2}+c\sum_{s}(\lambda_{s}-\tilde{\lambda})^{2}

-n(n-1)(A^{2}+c)\tilde{\lambda}^{2}+r\tilde{\lambda}1

We now put, assuming that M is compact,

(3. 17) A’= \frac{1}{n} Max |h(p)|

Then, substituting (3. 9), (3. 14) and (3. 17) into (2. 10) given in Lemma 2. 2,
we have

LEMMA 3. 2. Assume that the condition (C) is satisfified for a rdativdy
harmonic immersion f:(M, g)arrow(N,\overline{g}) and that M is compact. Thm we
have

(3. 18) \frac{1}{2}\Delta||df||^{2}\geqq’||D||^{2}+||L||^{2}+c\sum_{s}(\lambda_{s}-\tilde{\lambda})^{2}

-n(n-1)c\tilde{\lambda}^{2}+r\tilde{\lambda}-n(n-1)A^{\prime 2}

\S 4. Theorems.
First we shall give some remarks. The condition ’||D||^{2}=0 implies

D=0, which means that f:(M, g)arrow(N,\overline{g}) is relatively afHne. The condition
\sum(\lambda_{s}-\hat{\lambda})^{2}=0 implies g^{*}=\rho^{2}g . Thus, if ’ ||D||^{2}=0 and \sum(\lambda_{s}-\tilde{\lambda})=0, then f :
(M, g)arrow(N_{ },.\overline{q}) is relatively homothetic. The condition ||L||^{2}=0 implies
L_{fi}=0, i . e. , H_{fi}= \frac{h}{n}g_{fi} . When the condition H_{fi}= \frac{h}{n}g_{fi} is satisfied, f :
(M, g)arrow(N,\overline{g}) is said to be relatively umbilic. If f:(M, g)arrow(N,\overline{g}) is rela-
tively homothetic and relatively umbilic at the same time, then the isome-
tric immersion f:(M, g)*- (N,\overline{g}) is umbilic, i . e. , H= \frac{\overline{h}}{n}g^{*} . Taking account
of remarks given above and Lemma 3. 1, we now have

THEOREM 4. 1. Let f:(M, g)arrow(N,\overline{g}) be a relatively harmonic immer-
sion of a Riemannian space (M, g) of dimension n into another (N,\overline{g}) of
dimension n+1 and M be compact. Then,

(1) f:(M, g)arrow(N,\overline{g}) is relativdy homothetic and the isometric immersion
f:- \langleM, g^{*})-(N, g) is umbilic or totally geodesic if the following condition
(A_{1}) is satisfified :
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(A_{1}) Trace g^{*} \leqq\frac{r}{(n-1)(A^{2}+c)}

when there i^{1}s a constant c>0 such that c\geqq\overline{\sigma},\overline{\sigma} being the sectional cuma-
ture of (N_{ },.q), and (M, g) has positive defifinite Ricci tmsor;

(2) f:(M, y)arrow(N,\overline{q}\backslash ) is relatively affine and relatively umbilic if the fol-
lowing condition (A_{2}) is satisfified:
(A_{2}) Trace g^{*} \leqq\frac{r}{(n-1)A^{2}}

whm\overline{\sigma}\leqq 0, A>0 and (M, g) has positive defifini.te Ricci tensor; w_{z_{\backslash }}hereA

and r are defifined respectively by (3. 11) and (3. 15). In case (2), Trace g^{*}

is necessarily constant.
Assume now that \overline{\sigma}\leqq c=0 and A=0 in Lemma 3. 1. Then, M being

compact, the condition r\geqq 0 implies D=0, L=0 and r=0. Thus, using
(2. 1 ), (3. 4) and (3. 14), we find

\sum_{r*s}\overline{\sigma}(e_{(r)}, e_{(s)})l\lambda_{s}=R_{f}^{h*f\dot{t}}g_{h\dot{i}}g\geqq 0 .
-\vee-\cdotarrow-

On the other hand, since \overline{\sigma}\leqq 0, we obtain
\sum_{r\neq\epsilon}\overline{\sigma}(e_{(r)}, e_{(s)})\lambda\cdot\lambda_{s}\leqq 01

Therefore, we have
(4. 1) R_{f}^{h*fi}g_{h}‘ g=0

when r\geqq 0 . The condition r\geqq 0 is satisfied if and only if the Ricci tensor
of (M, g) is positive semi-definite. Then, using (3. 13) and (4. 1), we have
R_{fi}e_{(1)}^{f}e_{(1)}‘=\cdots=R_{fi}e_{(n)}^{f}e_{(n)}^{i}=0, which means that the Ricci tensor of (M, g)
vanishes. Summing up, we have

THEOREM 4. 2. If in Theorem 4. 1, the following condition A3 is
satisfified, then f:(M, g)*- (N,\overline{g}) is relatively affiffiffine and (M, g) has vanishing
Ricci tmsor:
(A3) \overline{\sigma}\leqq 0, f : (M, g)*- (N_{ },.\overline{q}) is totally geodesic and (M, g) has positive
semidefifinite Ricci tensor. In this case, Trace g^{*} is necessar ily constant.

If in case (1) of Theorem 4. 1 (N,\overline{g}) is a sphere (S^{n+1},\overline{g}_{0}) with constant
curvature c, then (M, g) is necessarily a sphere (S^{n}, g_{0}) with constant curva-
ture. If in case (2) of Theorem 4. 1 (N,\overline{g}) is a Euclidean space (E_{\lambda}^{n+1}\overline{g}_{0}),
then (M, g) becomes a sphere (S^{n}, g_{0}) of constant curvature and f:(M, g)arrow
(N,\overline{g}) is a relatively homothetic immersion, because in this case (M, g) is
an irreducible Riemannian space.

If in Theorem 4. 2 (N,\overline{g}) is a flat torus, then (M, g) is necessarily
a flat torus.
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Taking account of Lemma 3. 2, we have
THEOREM 4. 3. Let f:(M, g)arrow(N,.q) be a relatively harmonic immer-

sion }of a Rimannian space (M, g)\backslash of dimmsion n into another (N,\overline{g}) of
dimmsion n+1 and M be compact. Then,

(1 ) f:(M, g)arrow(N,\overline{g}) is relatively homothetic and the isometric immersion
f:(M, g)*- (N,\overline{g}) is umbilic if the following condition (B_{1}) is satisfified:
(B_{1}) 0<n\alpha\leqq Traceg^{*}\leqq n\beta,\cdot

\alpha and \beta being roots of the quadratic equation n(n-1)ct^{2}-rt+n(n-1)A^{\prime 2}

=0, whm there is a constant c such that

\frac{r^{2}}{4n^{2}(n-1)^{2}A^{\prime 2}}\geqq c>0 , c\geqq\overline{\sigma}’.

\overline{\sigma} being the sectiond curvature of (N,\overline{g}), where A’>0 and (M, g) has
positive defifinite Ricci tensor;

(2) f:(M, g)arrow(N,\overline{g}) is relatively homothetic and f:(M, g)*– (N,\overline{g}) is to-
tally geodesic, if the following condition (B_{2}) is satisfified:

(B_{2}) Trace g^{*} \leqq\frac{r}{(n-1)c}

when there is a constant c>0 such that c\geqq\overline{\sigma} , where f:(M, g)arrow(N,.q) is
relatively minimum, (i. e., h=0) and (M, g) has positive defifinite Ricci tmsor;

(3) f:(M, g)arrow(N_{ },.\overline{q}) is rdativdy affiffiffine and relatively umbilic if the
following condition (B3) is satisfied :

(B3) Traceg^{*}\geqq\frac{n^{2}(n-1)A^{\prime 2}}{r}

when \overline{\sigma}\leqq 0 , A’>0 and (M, g) has positive defifinite Ricci tensor; where A’
and r are defifined respectively by (3. 17) and (3. 15). In each case, Trace
g^{*} is necessarily constant.

We can easily prove the following Theorem 4. 4 in the same way as
taken in the proof of Theorem 4. 2.

THEOREM4.4. If, in Theorem 4. 3, the following condition (B_{4}) is
satisfified, thm f: (M, g)arrow(N,\overline{g}) is relatively affiffiffine, f : (M, g)*- (N,.\overline{q}) is t0-
tdly geodesic and (M, g) has vanishing Ricci tensor:
(B_{4}) \overline{\sigma}\leqq 0, f : (M, g)arrow(N,.\overline{q}) is relativdy minimum (i. e., h=0), (M, g) has
positive semi-&fifinite Ricci tmsor. In this case, Trace g^{*} is necessarily
constant.

In the last step, we assume that f:(M, g)arrow(N,\overline{g}) is relatively harmonic
and f:(M, g)*- (N,\overline{g}) is umbilical (or totally geodesic), i . e. , H=ag^{*} with
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a\neq 0 (or H=0). Suppose moreover that (N, .\overline{q}) is of constant curvature c.
Then, in the present case, we have

(4. 2) ||H||^{2}-h^{2}=a^{2}( \sum_{s}\lambda_{s}^{2}-(\sum_{s}\lambda_{s})^{2})

=-a^{2} \sum_{r\neq s}l\lambda_{s}=a^{2}\sum_{s}(\lambda_{s}-\tilde{\lambda})^{2}-n(n-1)a^{2}\tilde{\lambda}^{2} ,

(4. 3)
\overline{R}_{\delta\gamma\beta\alpha}A_{l}^{\delta}A_{i}^{r}A_{k}^{\beta}A_{f}^{\alpha lkfi}gg=-\overline{c}\sum_{r\neq s}\lambda_{r}\lambda_{s}

= \overline{c}\sum_{s}(\lambda_{s}-\tilde{\lambda})^{2}-n(n-1)\overline{c}\tilde{\lambda}^{2}

because of (3. 7), where we have used
||H||^{2}-h^{2}=H_{lk}H_{fi}^{llcfi}gg-(H_{fig}^{fi})^{2} ,

\overline{R}_{\delta\gamma\beta\alpha}=\dot{\overline{c}}(\overline{g}_{\delta\beta}\overline{g}_{\gamma ae}-g_{\gamma\beta}\overline{g}_{\delta\alpha}) .
Substituting (3. 15), (4. 2) and (4. 3) into (2. 7), we have in the present case

(4. 4) – \Delta|2|df||^{2}\geqq’||D||^{2}+(\overline{c}+a^{2})\sum_{s}(\lambda_{s}-\tilde{\lambda})^{2}1

- \frac{n-1}{n}(\overline{c}+a^{2}) (Trace g^{*})^{2}+ \frac{r}{n} (Trace g^{*}).

Taking account of (4. 4), we have
THEOREM 4. 5. Let (N,\overline{g}) be a Riemannian space of dimmsion n+1

with constant curvature \overline{c} and (M, g) a compact Rimannian space of
dimension n. Assume that f :(Dx)g)arrow(N,\overline{g}) is a relatively harmonic im-
mersion and f:(M, g)arrow(N,\overline{g}) is an umbilic {or totally geodesic) immersion,
i. e. , H=ag*witha\neq 0 (or H=0). Thm,

(1 ) f:(M, g)arrow(N,\overline{g}) is relatively homothetic if the following condition
(D_{1}) is satisfied :

(D_{1}) Trace g^{*} \leqq\frac{r}{(n-1)(\overline{c}+a^{2})}

whm\overline{c}+a^{2}>0 and (M, g) has positive defifinite Ricci tensor;
(2) f:(M, g)arrow(N,\overline{g}) is relatively affiffiffine and (M, g) has vanishing Ricci

tensor if the following condition (D_{2}) is satisfified:
(D_{2}) \overline{c}+a^{2}=0, (M, g) has positive semi-defifinite Ricci tmsor. Where r is
defifined by (3. 15.) In the case (2), Trace g^{*} is necessarily constant.
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