On Jacobi fields in quaternion Kaehler manifolds with constant Q-sectional curvature

By Mariko Konishi

Kosmanek [6] gave a characterization of Kaehler manifolds of constant holomorphic sectional curvature in relation with Jacobi fields. That is, the following property $(\mathscr{C} \mathscr{F})$ is satisfied if and only if the Kaehler manifold is of constant holomorphic sectional curvature:
$(\mathscr{C} \mathscr{F})$ "For a given geodesic $\gamma(t)$ in a Kaehler manifold (J, g), every Jacobi field Y along γ such that $Y(0)=0$ and $\nabla_{\dot{i}} Y(0)=J \dot{\gamma}(0)$, is proportional to $J \dot{\gamma}$, where $\dot{\gamma}(\dot{t})$ denotes the tangent vector at $\gamma(t)$ ".

The main purpose of this paper is to study the corresponding problem in quaternion Kaehler manifolds and characterize the manifolds of constant Q-sectional curvature, that is to prove Theorem 1.

On the other hand, Kashiwada [4] recently obtained analogous result for Sasakian manifolds (ϕ, ξ, g) with constant ϕ-holomorphic sectional curvature in terms of Jacobi field along geodesics orthogonal to ξ. From a point of view of submersion [8], the results for Kaehler manifolds and Sasakian manifolds are closely related and so are the relations between quaternion Kaehler manifolds and manifolds with Sasakian 3-structure ($\{\xi, \eta, \zeta\}, \tilde{g}$). We apply Theorem 1 to study Jacobi fields in the manifolds with Sasakian 3structure when each ϕ-, ϕ - and θ-holomorphic sectional curvatures are constant on the distribution $\widetilde{D}=\{\widetilde{X} \mid \tilde{g}(\xi, \widetilde{X})=\tilde{g}(\eta, \widetilde{X})=\tilde{g}(\zeta, \widetilde{X})=0\}$.

§ 1. Quaternion Kaehlerian manifolds

Let M be a differentiable manifold of dimension n and assume that there is a 3 -dimensional vector bundle V consisting of tensors of type (1.1) over M satisfying the condition:
"In any coordinate neighborhood U of M, there is a local base $\{F, G, H\}$ of V such that

$$
\begin{align*}
& F^{2}=G^{2}=H^{2}=-I, \\
& G H=-H G=F, \quad H F=-F H=G, \quad F G=-G F=H, \tag{1.1}
\end{align*}
$$

I denoting the identity tensor field of type (1.1) in $M^{\prime \prime}$.
In an almost quaternion manifold (M, V), we take two intersecting
coordinate neighborhoods U, U^{\prime} and local basis $\{F, G, H\},\left\{F^{\prime}, G^{\prime}, H^{\prime}\right\}$ satisfying (1.1) in U and U^{\prime}, respectively, then they have relations in $U \cap U^{\prime}$ as

$$
\begin{align*}
& F^{\prime}=s_{11} F+s_{12} G+s_{13} H, \\
& G^{\prime}=s_{21} F+s_{22} G+s_{23} H, \tag{1.2}\\
& H^{\prime}=s_{31} F+s_{32} G+s_{33} H,
\end{align*}
$$

where $s_{\alpha \beta}(\alpha, \beta=1,2,3)$ form an element $s_{V D^{\prime}}=\left(s_{\alpha \beta}\right)$ of the special orthogonal group $\mathrm{SO}(3)$ of dimension 3 . In any almost quaternion manifold (M, V), there is a Riemannian metric g such that

$$
\begin{gathered}
g(F X, Y)+g(X, F Y)=0, \quad g(G X, Y)+g(X, G Y)=0 \\
g(H X, Y)+g(X, H Y)=0
\end{gathered}
$$

hold for any local base $\{F, G, H\}$ and any vector fields X, Y. Assume that the Riemannian connection ∇ of (M, g) satisfies for any local base $\{F, G, H\}$

$$
\begin{align*}
& \nabla_{x} F=\quad+r(X) G-q(X) H \\
& \nabla_{x} G=-r(X) F \quad+p(X) H \tag{1.3}\\
& \nabla_{x} H=q(X) F-p(X) G
\end{align*}
$$

where p, q and r are certain 1 -forms defined in U. Then (M, g, V) is called a quaternion Kaehler manifold (See [2]).

Given a vector X at a point P of M, we denote by $Q(X)$ the 4-dimensional subspace spanned by $X, F X, G X$ and $H X$, and call it a Q-section determined by X. It is easily shown that this definition is independent of the choice of local base. The orthogonal complemented subspace of $Q(X)$ in $T_{P}(M)$ will be denoted by $Q^{\perp}(X)$. If for any $Y, Z \in Q(X)$, the sectional curvature $\sigma(Y, Z)$ is a constant $k(X, P)$, then $k(X, P)$ is called the Q-sectional curvature at P. Moreover, suppose that the sectional curvature $k(X, P)$ is a constant $k(P)$ independent of X at each point P, then we say that the quaternion Kaehler manifold (M, V) is of constant Q-sectional curvature. In such a case it is known that the function $k(P)$ is constant in M, and if $\operatorname{dim} M \geqq 8$ (Theorem 5 in [2]), the curvature tensor R satisfies

$$
\begin{align*}
R(X, Y) Z & =\frac{k}{4}\{g(Y, Z) X-g(X, Z) Y+g(F Y, Z) F X-g(F X, Z) F Y \tag{1.4}\\
& -2 g(F X, Y) F Z+g(G Y, Z) G X-g(G X, Z) G Y \\
& -2 g(G X, Y) G Z+g(H Y, Z) H X-g(H X, Z) H Y \\
& -2 g(H X, Y) H Z\}
\end{align*}
$$

§ 2. Lemmas

Let (M, g) be a quaternion Kaehler manifold of dimension $n=4 m$ and $\{F, G, H\}$ be a local base of V in a coordinate neighborhood U in M. We can choose an orthonormal basis \mathfrak{F} of the tangent space $T_{P}(M)$ at P as $\mathfrak{F}=\left\{e_{1}, \cdots, e_{m}, e_{i}, \cdots, e_{\bar{m}}, e_{i}, \cdots, e_{\bar{m}}, e, \cdots, e_{\vec{m}}\right\}$, where $e_{i}=F e_{i}, e_{i}=G e_{i}, e_{i}=H e_{i}$, $(i=1, \cdots, m)$. Then we see that F, G and H have components as

$$
F:\left(\begin{array}{c:c}
-I_{m} \tag{2.1}\\
I_{m} & 0 \\
\hdashline 0 & I_{m}
\end{array}\right), \quad\left(I_{m}\right),\left(\begin{array}{c:c}
0 & -I_{m} \\
\hdashline I_{m} & 0
\end{array}\right), \quad H:\left(\begin{array}{c:c}
0 & -I_{m} \\
\hdashline I_{m} & 0
\end{array}\right)
$$

with respect to \mathfrak{F}, where I_{m} being the identity (m, m)-matrix.
Putting

$$
\left.R_{x \nu \nu 2}=g\left(R\left(e_{x}, e_{\nu}\right) e_{\mu,}, e_{2}\right), \quad \rho_{2 \mu}=-R_{2 \mu \mu \mu}, *\right)
$$

we prove the following two lemmas for later use.
Lemma 1. The curvature tensor in a quaternion Kaehler manifold satisfies the following;

$$
\begin{align*}
& \rho_{i j}=\rho_{i \bar{j}}=\rho_{i \bar{j}}=\rho_{i j} \tag{2.5}\\
& \rho_{i \bar{j}}=\rho_{i j}, \quad \rho_{i \bar{j}}=\rho_{i j}, \quad \rho_{i j}=\rho_{i j} . \tag{2.6}\\
& \rho_{\bar{i} \bar{j}}=\rho_{\bar{i} \bar{j}}, \quad \rho_{\bar{y} \bar{y}}=\rho_{i_{\bar{j}}}, \quad \rho_{\bar{x}_{\bar{j}}}=\rho_{\bar{i} \bar{j}}, \tag{2.7}\\
& \begin{array}{lll}
\rho_{i j}+\rho_{i j}=-R_{i t j 3}, & \rho_{i j}+\rho_{i j}=-R_{i z j \bar{j}}, & \rho_{i j}+\rho_{i j}=-R_{i t j 3}, \\
\rho_{i j}+\rho_{i j}=-R_{i z j}, & \rho_{i j}+\rho_{i j}=-R_{i j 7 j}, & \rho_{i j}+\rho_{i j}=-R_{i j 3 j} .
\end{array}
\end{align*}
$$

Proof. From the identity obtained by (5.9) in [2], we have

$$
\begin{aligned}
R_{\lambda \mu t \hbar} & =R_{2 \mu \hbar \pi}-4 a\left(G_{2 \mu} G_{i \hbar}+H_{2 \mu} H_{i n}\right) \\
& =R_{\alpha \mu \hbar \hbar}-4 a\left(H_{2 \mu} H_{i n}+F_{2 \mu} F_{i n}\right) \\
& =R_{\alpha \mu t \hbar}-4 a\left(F_{2 \mu} F_{i n}+G_{2 \mu} G_{i n}\right),
\end{aligned}
$$

$4 m(m+2) a$ being a constant equal to the scalar curvature in M. Here,
*) Latin indices i, j, k run over the range $\{1, \cdots, m\}$, and Greek indices $\lambda, \mu, \nu, \kappa$ run over the range $\{1, \cdots, 4 m\}$.
F, G, H have components as (2.1) with respect to \mathfrak{F}, hence we see $F_{i h}=G_{i h}=H_{i n}=0$, which give (2.2). Similarly from (2.2) in [2], we have

$$
\begin{aligned}
& R_{\lambda \mu \bar{t} h}+R_{\lambda \mu i \bar{h}}=-4 a\left(G_{\lambda \mu} H_{i h}+H_{\lambda \mu} G_{i n}\right)=0, \\
& R_{\lambda \mu, \bar{t} h}+R_{\lambda \mu \mu \bar{\imath}}=-4 a\left(H_{\lambda, t} F_{i h}+F_{\lambda \mu} H_{i n}\right)=0 \text {, } \\
& R_{\lambda \mu, i n}+R_{\lambda \mu i \bar{h}}=-4 a\left(F_{\lambda \mu} G_{i h}+G_{\lambda \mu} F_{i h}\right)=0,
\end{aligned}
$$

which imply (2.3). Besides

$$
\begin{aligned}
& R_{\lambda \mu \bar{j} \bar{j}}+R_{\lambda \mu \bar{j} \bar{j}}=4 a\left(F_{\lambda \mu} G_{i j}-G_{\lambda \mu} F_{i j}\right)+8 a g_{i j}, \\
& R_{\lambda \mu \bar{j} \bar{j}}+R_{2 \mu} \lambda_{\bar{j}}=4 a\left(G_{2 \mu} H_{i j}-H_{\lambda \mu} G_{i j}\right)+8 a g_{i j}, \\
& R_{\lambda \mu \mu \bar{j}}+R_{2 \mu i \bar{j}}=4 a\left(H_{\lambda \mu} F_{i j}-F_{\lambda \mu} H_{i j}\right)+8 a g_{i j} .
\end{aligned}
$$

Since $F_{i j}=G_{i j}=H_{i j}=0$ and $g_{i j}=\delta_{i j}$, we have (2.4). Then (2.5), (2.6) and (2.7) can be deduced from (2.2), (2.3) and (2.4).

Next from Bianchi identity we have

$$
R_{i z j j}=R_{i j j j}-R_{i j \pi j}=R_{i j i j}+R_{i j i j}=-\rho_{i j}-\rho_{i j}
$$

by virtue of $(2.2)_{1},(2.3)_{1}$. The others are followed by similar way (Q.E.D). We next prove
Lemma 2. A quaternion Kaehler manifold $(\operatorname{dim} M \geqq 8)$ is of constant Q sectional curvature k, if and only if the curvature tensor R satisfies

$$
\begin{equation*}
g(R(X, Y) X, Z)=0, \quad Y \in Q(X), \quad Z \in Q^{\perp}(X) \tag{2.9}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
R(X, Y) X=-k Y, \quad Y \in Q(X) \tag{2.10}
\end{equation*}
$$

for every vector field X.
The necessity is obvious from (1.4). We shall show the sufficiency. If (2.9) is satisfied for every X, we have

$$
g(R(X+t Y, F(X+t Y))(X+t Y), Z)=0
$$

for any X, Y, Z and $t \in R$ such that $Z \in Q^{\perp}(X+t Y)$. Then we have

$$
\begin{align*}
& t^{3} g(R(Y, F Y) Y, Z)+t^{2} g(R(X, F Y) Y+R(Y, F X) Y+R(Y, F Y) X, Z) \tag{2.11}\\
& \quad+t g(R(Y, F X) X+R(X, F Y) X+R(X, F X) Y, Z) \\
& \quad+g(R(X, F X) X, Z)=0 .
\end{align*}
$$

If we put $X=e_{i}, Y=e_{j}$ and $Z=F(t X-Y)=t e_{i}-e_{j}\left(Z \in Q^{\perp}(X+t Y)\right)$, then
we have

$$
\begin{aligned}
& t^{4} R_{j \bar{j} \bar{z}}+t^{3}\left(-R_{j \bar{j} j \bar{j}}+R_{i \bar{j} j \bar{i}}+R_{j \bar{j} \bar{i} \bar{i}}+R_{j \bar{z} \bar{z}}\right)+t^{2}\left(R_{i \bar{i} j \bar{z}}-R_{j \bar{j} \bar{j} \bar{j}}\right) \\
& \quad+t\left(-R_{j i i \bar{j}}-R_{i \bar{j} i \bar{j}}-R_{i \bar{i} j \bar{j}}+R_{i \bar{i} \bar{i} \bar{z}}\right)+R_{i \bar{i} \bar{i} \bar{j}}=0,
\end{aligned}
$$

from $(2.2)_{2}$. Thus we have

$$
\begin{gathered}
t^{4} R_{j \bar{j} j \bar{i}}+t^{3}\left(-2 \rho_{i \bar{j}}+R_{i \bar{\eta} j \bar{j}}+\rho_{j \bar{j}}\right)+t^{2}\left(R_{i \bar{i} j \bar{z}}-R_{j \bar{j} \bar{j} \bar{j}}\right) \\
\quad+t\left(2 \rho_{j \bar{z}}-R_{i \bar{i} j \bar{j}}-\rho_{i \bar{z}}\right)+R_{i \bar{i} i \bar{j}}=0 .
\end{gathered}
$$

Hence we have

$$
\begin{equation*}
\rho_{i \bar{z}}=2 \rho_{i j}-R_{i \bar{j} j \bar{j}}=\rho_{j j} . \tag{2.12}
\end{equation*}
$$

Taking account of (2.8), we have

$$
\begin{equation*}
\rho_{i \bar{i}}=3 \rho_{i j}+\rho_{i \bar{j}} . \tag{2.13}
\end{equation*}
$$

If we substitute $Y=e_{j}\left(Z=t e_{i}+e_{j}\right)$ instead of $e_{j}\left(Z=t e_{i}-e_{j}\right)$, we have

$$
\rho_{i z}=3 \rho_{i \bar{j}}+\rho_{i j},
$$

which, together with (3.5), induces

$$
\begin{equation*}
\rho_{i j}=\rho_{i \bar{j}} \quad \text { and } \quad \rho_{j \bar{j}}=\rho_{i \bar{i}}=4 \rho_{i j} . \tag{2.14}
\end{equation*}
$$

Similarly we obtain

$$
\begin{equation*}
\rho_{i j}=\rho_{i \bar{j}}=\rho_{i \bar{j}}=\rho_{i \bar{j}} \quad \text { and } \quad \rho_{i \bar{z}}=\rho_{i \bar{i}}=4 \rho_{i j} . \tag{2.15}
\end{equation*}
$$

Next we put $X=e_{i}, Y=e_{\dot{j}}, Z=-H(t X-Y)=t e_{\bar{i}}-e_{\bar{j}}\left(Z \in Q^{\perp}(t X+Y)\right)$. Then we have

$$
\begin{gathered}
t^{4} R_{j \bar{j} \bar{j} \bar{i}}+t^{3}\left(-2 \rho_{\bar{i} \bar{j}}+R_{\bar{i} \overline{\bar{j}} \bar{j}}+\rho_{j \bar{j}}\right)+t^{2}\left(R_{\bar{i} \bar{\xi} \bar{z}}-R_{\bar{j} \bar{j} \bar{j} \bar{j}}\right) \\
+t\left(2 \rho_{\bar{j} \bar{z}}-R_{\left.\bar{i} \overline{\bar{j}} \bar{j}-\rho_{\bar{z} \bar{i}}\right)+R_{\bar{z} \bar{i} \bar{j} \bar{j}}=0 .} .\right.
\end{gathered}
$$

That is, we have

$$
\rho_{\bar{i} \bar{z}}=2 \rho_{\bar{i} \bar{j}}-R_{\bar{i} \bar{k} \bar{j} \bar{j}}=\rho_{\bar{j} \bar{j}}
$$

and

$$
\rho_{\bar{i} \bar{i}}=3 \rho_{\bar{i} \bar{j}}+\rho_{\bar{i} \bar{j}} .
$$

Replacing $e_{\bar{j}}\left(Z=t e_{\bar{\xi}}-e_{\bar{j}}\right)$ with $e_{\bar{j}}\left(Z=t e_{\bar{\xi}}-e_{\bar{j}}\right)$, we get

$$
\rho_{i z}=3 \rho_{\bar{i} \bar{j}}+\rho_{\bar{i} j}
$$

Hence we get

$$
\begin{equation*}
\rho_{i j}=\rho_{\bar{i} \bar{j}}=\rho_{\bar{i} \bar{j}}, \quad \rho_{\bar{i} \bar{i}}=4 \rho_{i j} \tag{2.16}
\end{equation*}
$$

by virtue of Lemma 1. Similarly we have

$$
\begin{align*}
& \rho_{i z}=\rho_{i \bar{z}}=4 \rho_{i j}, \tag{2.17}\\
& \rho_{\bar{i} \bar{j}}=\rho_{\bar{i} \bar{j}}=\rho_{i j}, \quad \rho_{i \bar{j}}=\rho_{\bar{i} \bar{j}}=\rho_{i j} .
\end{align*}
$$

Summing up the equalties $(2.14) \sim(2.17)$ obtained above, we can conclude that a quaternion Kaehler manifold satisfying (2.12) is of constant Q-sectional curvature. As this result, we have (2.10) by virtue of (1.4).

§3. The property (\mathscr{E})

Let γ be a geodesic in a quaternion Kaehler manifold and Y be a Jacobi field along γ. Then Y satisfies

$$
Y^{\prime \prime}+R(Y, \dot{\gamma}) \dot{\gamma}=0
$$

where Y^{\prime} denotes the covariant differentiation along γ. Along γ, we can define an almost complex structure J which is parallel along γ. In fact, for a local base $\{F, G, H\}$ in U, we may put in $U_{\cap} \gamma$

$$
\begin{equation*}
J=a F+b G+c H, \quad a^{2}+b^{2}+c^{2}=1 \tag{3.1}
\end{equation*}
$$

which a, b, c satisfy

$$
\left\{\begin{array}{l}
a^{\prime}-b r(\dot{\gamma})+c q(\dot{\gamma})=0 \tag{3.2}\\
b^{\prime}-c p(\dot{\gamma})+a r(\dot{\gamma})=0, \\
c^{\prime}-a q(\dot{\gamma})+b p(\dot{\gamma})=0,
\end{array} \quad a(0)^{2}+b(0)^{2}+c(0)^{2}=1\right.
$$

p, q, r being local 1 -forms defined in (1.3).
Assume that M is of constant Q-sectional curvature k, then the curvature tensor is in the form (1.4). So we have

$$
R(\dot{\gamma}, J \dot{\gamma}) \dot{\gamma}=-k J \dot{\gamma}
$$

when t is an affine parameter. Hence we see that

$$
Y(t)=(\sin \sqrt{k} t) J \dot{\gamma}(t) \quad(\text { resp. } t J \dot{\gamma},(\sinh \sqrt{-k} t) J \dot{\gamma})
$$

are Jacobi fields along γ, when $k>0$ (resp. $k=0, k<0$). Moreover the following property is satisfied: "Every Jacobi field Y with initial conditions $Y(0)=0$ and $Y^{\prime}(0)=J \dot{\gamma}(0)$ is proportional to $J \dot{\gamma} . "$ We call such a property (\mathscr{Q}) following Kosmanek.

Conversely we assume that $(\mathscr{Q} \mathscr{F})$ is satisfied. If we denote by J_{r} the set of Jocobi fields Y along γ which are orthogonal to γ and satisfy $Y(0)=0$, $Y^{\prime}(0) \in Q(\dot{r}(0))$, then $\operatorname{dim} J_{\boldsymbol{r}}=3$. In fact, we define a quaternion structure $\left\{J_{1}, J_{2}, J_{3}\right\}$ by

$$
J_{\alpha}=s_{\alpha 1} F+s_{\alpha 2} G+s_{\alpha 3} H \quad(\alpha=1,2,3)
$$

where $s_{\alpha \beta}$ form an element of $\mathrm{SO}(3)$ and for a fixed $\alpha, s_{\alpha \beta}$ satisfy (3.2). Then J_{α} are all parallel along γ and $\left\{J_{1} \dot{\gamma}, J_{2} \dot{\gamma}, J_{3} \dot{\gamma}\right\}$ are linearly independent.

Taking account of this fact, for every geodesic γ and any vector $w_{0} \in Q(\dot{r}(0))$, there exists a Jacobi field Y which is contained in $Q(\dot{r})$ at every point $\gamma(t)$ and endowed the initial conditions $Y(0)=0, Y^{\prime}(0)=w_{0}$. Then, on account of (1.3), Y^{\prime} and $Y^{\prime \prime}$ are also contained in $Q(\dot{\gamma})$. Hence

$$
\begin{equation*}
g(R(\dot{\gamma}, Y) \dot{\gamma}, Z)=0 \tag{3.3}
\end{equation*}
$$

for any vector field $Z \in Q(\dot{\gamma})$. At the point $\gamma(0), Y(0)$ being taken arbitrarily, we conclude that such a quaternion Kaehler manifold is of constant Q sectional curvature by Lemma 2. Thus we have
Theorem 1. Let M be a quaternion Kaehler manifold. The property ($\mathscr{E} \mathcal{F})$ is satisfied if and only if M is of constant Q-sectional curvature. And $\operatorname{dim} J_{r}=3$, for every geodesic γ.

§4. Sasakian 3-structure

In this section we consider a corresponding property in the manifold $(\widetilde{M}, \tilde{g})$ with Sasakian 3 -structure $\{\xi, \eta, \zeta\}$. That is, ξ, η and ζ are mutually orthogonal Killing vector fields of unit length and the contact structures ϕ, ψ and θ defined by

$$
\tilde{\nabla} \xi=\phi, \quad \tilde{\nabla}_{\eta}=\psi, \quad \tilde{\nabla} \zeta=\theta
$$

are all Sasakian structures, where $\tilde{\nabla}$ denotes the Riemannian connection of $(\widetilde{M}, \tilde{g})$.

Let \widetilde{P} be a point of \widetilde{M}. We can find a sufficiently small coordinate neighborhood \widetilde{U} of \widetilde{P}, in which the distribution \widetilde{D} spanned by ξ, η and ζ is regular. Then \widetilde{U} is a Riemannian manifold with the induced regular Sasakian 3 -structure and we have a local fibering

$$
\begin{equation*}
\pi: \widetilde{U} \longrightarrow \widetilde{U} / \widetilde{D}=U \tag{}
\end{equation*}
$$

Since \widehat{U} admits Sasakian 3 -structure, U is a quaternion Kaehler manifold (cf. Ishihara [1], Tanno [7]).

We call a vector \widetilde{X} vertical when it is tangent to fibres and horizontal when it is orthogonal to fibres. An arbitrary geodesic $\tilde{\gamma}$ in \widetilde{U} needs not project to a geodesic, but it is known that if $\tilde{\gamma}$ is horizontal, then $\pi \circ \tilde{\gamma}$ is to be a geodesic and their affine parameters can be taken in common. (See [8]).

Then the following lemma is already known.
Lemma 3. (O'Neill [8]) Let $\pi: \widetilde{U} \rightarrow U$ be a submersion and $\tilde{\gamma}$ be a horizontal
geodesic in \widetilde{U}. Given a Jacobi field Y on $\pi \circ \tilde{\gamma}$ and a vertical vector \widetilde{U} at $\tilde{\gamma}(0)$, there exists a unique Jacobi field \tilde{Y} on $\tilde{\gamma}$ such that $\pi_{*}(\widetilde{Y})=Y, D(\tilde{Y})=0$ and $\bar{Y}(0)=\widetilde{U}$. Where $D(\widetilde{Y})$ is a (vertical) derived vector field from \widetilde{Y}.
Remark. We can not define the derived vector field without preparations for theory of submersions. The definition of D and its local expression were given in O'Neill [8] and Ishihara-Konishi [3, p. 48]. However the components with respect to ξ, η and ζ are given by

$$
\begin{aligned}
& \tilde{g}(D(\widetilde{Y}), \xi)=\frac{d}{d t} \tilde{g}(\widetilde{Y}, \xi)-2 \tilde{g}(\phi \dot{\tilde{r}}, \widetilde{Y}) \tilde{g}(\dot{\tilde{r}}, \dot{\hat{r}}), \\
& \tilde{g}(D(\widetilde{\gamma}), \eta)=\frac{d}{d t} \tilde{g}(\widetilde{Y}, \eta)-2 \tilde{g}(\phi \dot{\tilde{r}}, \tilde{Y}) \tilde{g}(\dot{\gamma}, \dot{\gamma}), \\
& \tilde{g}(D(\widetilde{Y}), \zeta)=\frac{d}{d t} \tilde{g}(\widetilde{Y}, \zeta)-2 \tilde{g}(\theta \dot{\tilde{r}}, \tilde{Y}) \tilde{g}(\dot{\hat{\gamma}}, \dot{\hat{\gamma}}) .
\end{aligned}
$$

Let $\tilde{\gamma}$ be a horizontal geodesic in \widetilde{U} and γ be its projection. We define tensor fields J_{1}, J_{2}, J_{3} along r by

$$
J_{1} X=\pi_{*} \phi X^{L}, \quad J_{2} X=\pi_{*} \psi X^{L}, \quad J_{3} X=\pi_{*} \theta X^{L},
$$

X being a vector field along γ and X^{L} the lift of X to $\tilde{\gamma}$. Then we see that $J_{\boldsymbol{\alpha}}(\boldsymbol{\alpha}=1,2,3)$ are all almost complex structures which are parallel along r. (See Ishihara [1]). Then, as a result of Theorem 1, if U is of constant Q-sectional curvature k (k is necessarily positive in this case), then $(\sin \sqrt{k} t)$ $J_{\alpha} \dot{\gamma}$ are Jacobi fields along γ. Taking account of Lemma 3 and Remark, $\widetilde{Y}_{1}=(\sin \sqrt{k} t) \phi \dot{\tilde{r}}-(\cos \sqrt{k} t) \xi$ is seen to be a Jacobi field along $\tilde{\gamma}$, since its derived vector field $D\left(\widetilde{Y}_{1}\right)$ vanishes. Similarly $\widetilde{Y}_{2}=(\sin \sqrt{k} t) \phi \dot{\tilde{r}}-(\cos \sqrt{k} t) \eta$ and $\widetilde{Y}_{3}=(\sin \sqrt{k} t) \theta \dot{\tilde{r}}-(\cos \sqrt{k} t) \zeta$ are Jacobi fields.

On the other hand the Ricci curvature tensors \widetilde{S} of \widetilde{U} and S of U are related by

$$
\begin{aligned}
& \tilde{S}\left(X^{L}, Y^{L}\right)=S(X, Y)-6 g(X, Y), \quad \tilde{S}\left(X^{L}, \widetilde{V}\right)=0, \\
& \tilde{S}(\widetilde{V}, \widetilde{W})=(n-1) \tilde{g}(\widetilde{V}, \widetilde{W}),
\end{aligned}
$$

where X, Y are vector fields in U and $\widetilde{V}, \widetilde{W}$ are vertical vector fields (cf. [3] and [77]. If U of constant Q-sectional curvature k, from (1.4)

$$
S(X, Y)=k^{\prime}(n+5) g(X, Y), \quad k^{\prime}=k / 4
$$

and hence

$$
\tilde{\boldsymbol{S}}\left(X^{L}, Y^{L}\right)=\left\{(n+5) k^{\prime}-6\right\} g(X, Y) .
$$

However \widetilde{U} being an Einstein manifold (See Kashiwada [5]),

$$
(n+5) k^{\prime}-6=n-1
$$

thus k^{\prime} is necessarily equal to 1 .
Lemma 4. In the fibering $\left(^{*}\right)$, if U is of constant Q-sectional curvature k, then \widetilde{U} is of constant curvature 1.
Proof) Co-Gauss equation of the curvature tensor \widetilde{R} of \widetilde{U} being

$$
\begin{aligned}
\widetilde{R}\left(X^{L}, Y^{L}\right) Z^{L} & =\{R(X, Y) Z-g(F Y, Z) F X+g(F X, Z) F Y \\
& +2 g(F X, Y) F Z-g(G Y, Z) G X+g(G X, Z) G Y \\
& +2 g(G X, Y) G Z-g(H Y, Z) H X+g(H X, Z) H Y \\
& +2 g(H X, Y) H Z\}^{L}
\end{aligned}
$$

for arbitrary local base $\{F, G, H\}$ (See [3]), then we have by (1.4) and Lemma 4

$$
\begin{equation*}
\widetilde{R}\left(X^{L}, Y^{L}\right) Z^{L}=\tilde{g}\left(Y^{L}, Z^{L}\right) X^{L}-\tilde{g}\left(X^{L}, Z^{L}\right) Y^{L} \tag{4.1}
\end{equation*}
$$

Since \widetilde{U} have Sasakian 3 -structure, the sectional curvature of the section containing at least one of ξ, η, ζ is equal to 1 . Together with (4.1), we have a conclusion.

Thus we have
Theorem 2. Let \bar{M} be a Riemannian manifold with Sasakian 3-structure $\{\xi, \eta, \zeta\}$. If in the local fibering $\widetilde{U} \rightarrow \widetilde{U} \mid \widetilde{D}, \widetilde{U} / \widetilde{D}$ is of constant Q-sectional curvature k (in such a case k is necessarily equal to 1), then for every horizontal geodesic $\dot{\tilde{\gamma}},(\sin 2 t) \phi \dot{\tilde{\gamma}}-(\cos 2 t) \xi,(\sin 2 t) \phi \dot{\tilde{\gamma}}-(\cos 2 t) \eta$ and $(\sin 2 t) \theta \dot{\tilde{\gamma}}$ $-(\cos 2 t) \zeta$ are Jacobi fields along $\tilde{\gamma}$, when t is the arc-length. The converse is also true.
Remark. Taking account of a result in [4], we see that under the assumptions in Theorem 2, for not necessarily horizontal geodesic $\tilde{\gamma}$ but perpendicular to one of the structures, say $\xi,(\sin 2 t) \phi \dot{\tilde{\gamma}}-(\cos 2 t) \xi$ is a Jacobi field along $\tilde{\gamma}$.

> Department of Mathematics Tokyo Institute of Technology

Bibliography

[1] Ishihara, S.: Quaternion Kaehler manifolds and fibred Riemannian manifolds with Sasakian 3-structure, Kōdai Math. Sem. Rep. 25 (1973), 321-329.
[2] Ishihara, S.: Note on quaternion Kaehler manifolds, J. Diff. Geom. 9 (1974), 483-500.
[3] Ishihara, S. and M. Konishi : Differential Geometry of fibred spaces, Tokyo, 1973.
[4] KASHiwada, T.: On a characteristic property of Sasakian manifolds with constant ϕ-holomorphic sectional curvature. Hokkaido Math. J. 1 (1972), 250253.
[5] KASHIWADA, T.: A note on a Riemannian space with Sasakian 3-structure. Nat. Sci. Rep. Ochanomizu Univ. 22 (1971), 1-2.
[6] KOSMANEK, É.: Une propriété caractéristique des variétés Kählériennes à courbure holomorphe constante. C. R. Acad. Sci. Paris, t. 259 (1964), 705-708.
[7] TANNO, S.: Killing vectors on contact Riemannian manifolds and fibering related to the Hopf fibrations. Tôhoku Math. J. 23 (1971), 313-334.
[8] O'Neill, B.: Submersions and geodesics, Duke Math. J. 34 (1967), 363-373.
(Received March 14, 1974)
(Revised August 27, 1974)

