On Jacobi fields in quaternion Kaehler manifolds

with constant Q-sectional curvature

By Mariko KonNisHI

Kosmanek- [6] gave a characterization of Kaehler manifolds of constant
holomorphic sectional curvature in relation with Jacobi fields. That is, the
following property (¥ %) is satisfied if and only if the Kaehler manifold is
of constant holomorphic sectional curvature :

(¥ #) “For a given geodesic 1(t) in a Kaehler manifold (J,g), every
Jacobi field Y along T such that Y(0)=0 and V;Y(0)=J7(0), is proportional
to Ji, where 7(t) denotes the tangent vector at T(t)”. ST

The main purpose of this paper is to study the corresponding problem
in quaternion Kaehler manifolds and characterize the manifolds of constant
Q-sectional curvature, that is to prove [Theorem 1.

On the other hand, Kashiwada [4] recently obtained analogous result
for Sasakian manifolds (g, & g) with constant ¢-holomorphic sectional cur-
vature in terms of Jacobi field along geodesics orthogonal to £&. From a point
of view of submersion [8], the results for Kaehler manifolds and Sasakian
manifolds are closely related and so are the relations between quaternion
Kaehler manifolds and manifolds with Sasakian 3-structure ({¢, 9, £}, §). We
apply to study Jacobi fields in the manifolds with Sasakian 3-
structure when each ¢-, ¢- and #-holomorphic sectional curvatures are con-
stant on the distribution D={X|§(&, X)=§(y, X)=§(¢, X)=0}.

§ 1. Quaternion Kaehlerian manifolds

Let M be a differentiable manifold of dimension 7z and assume that
there is a 3-dimensional vector bundle V consisting of tensors of type (1.1)

over M satisfying the condition :
“In any coordinate neighborhood U of M, there is a local base {F, G, H}

of V such that
FPP=G=H'=-1,
GH=—-HG=F, HF=—-FH=G, FG=—-—GF=H,

I denoting the identity tensor field of type (1.1) in M”.
In an almost quaternion manifold (M, V), we take two intersecting

(1.1)
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coordinate neighborhoods U, U’ and local basis {F, G, H}, {F', G', H"}
satisfying (1.1) in U and U’, respectively, then they have relations in
unul as

F' = 511F+812G+313H,
(1. 2) G' =suF+snG+suH,
H = 331F+S32G+333H,

where s.,(a, =1, 2, 3) form an element sy, =(s,;) of the special orthogonal
group SO (3) of dimension 3. In any almost quaternion manifold (M, V),
there is a Riemannian metric g such that :

g(FX, Y)+g9(X,FY)=0, ¢(GX,Y)+¢(X,GY)=0,
g(HX, Y)+g¢(X, HY)=0

hold for any local base {F, G, H} and any vector fields X, Y. Assume that
the Riemannian connection of (M, g) satisfies for any local base {F, G, H}

VeF= . +rX)G-qX)H,
(1.3) V:G=—r(X)F +p(X)H,
V:H = 9(X)F-p(X)G,

where p,q and r are certain l-forms defined in U. Then (M,g, V) is
called a quaternion Kaehler manifold (See [2]).

Given a vector X at a point P of M, we denote by Q(X) the 4-dimen-
sional subspace spanned by X, FX, GX and HX, and call it a Q-section
determined by X. It is easily shown that this definition is independent of
the choice of local base. The orthogonal complemented subspace of Q(X)
in T»(M) will be denoted by Q(X). If for any Y, ZeQ(X), the sectional
curvature (Y, Z) is a constant k(X, P), then k(X, P) is called the Q-sectional
curvature at P. Moreover, suppose that the sectional curvature %X, P) is
a constant %2(P) independent of X at each point P, then we say that the
quaternion Kaehler manifold (M, V) is of constant Q-sectional curvature.
In such a case it is known that the function %(P) is constant in M, and if
dim M=8 (Theorem 5 in [2]), the curvature tensor R satisfies

(1.4 RX Y)Z= —E—{g(Y, HNX—9 X, 2)Y+g(FY,Z)FX—q(FX,Z)FY

—29(FX, Y)FZ+¢(GY,Z)GX—9(GX, Z2)GY
—29(GX,Y)GZ+g(HY,Z)HX—g(HX, Z)HY

—2g(HX, Y) HZ} .
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§2. Lemmas

Let (M, g) be a quaternion Kaehler manifold of dimension n=4m and
{F, G, H} be a local base of V in a coordinate neighborhood U in M. We
can choose an orthonormal basis § of the tangent space T-(M) at P as
S={e, -, emey -, €m0, eq, €, es), where e,=Fe, e;=Ge, e;= He,
(=1, ---,m). Then we see that F, G and H have components as

F: —Img 0 , G: 0 E_Im \, H: 0 —-1I,
Im : E Im :—Im
2.1) | — i =l I A
0 Im \ —Im! 0 / Im i 0
with respect to §, where I,, being the identity (m, m)-matrix.
Putting

Rx»lll =g (R(e” e,) €y €1> ’ Py =— Rlﬂlﬂ ’*)

we prove the following two lemmas for later use.

LeEmMA 1. The curvature tensor in a quaternion Kaehler manifold
satisfies the following ;

(2.2) Ry = Rzm‘ = Rzpls = Rz,ﬁ} ’

(2.3) Ryy+Ru;=0, Ryuj;+Ri:;=0, R,;3+Ry3;=0,

(2. 4) Ru3+Ry3;=0, Rya3 +R,a;=0, R+ Ra3=0,

(2.5) By =0:3=053=Py;

(2.6) P;3= 04y, 03 =03, Pg5=03;.

2.7 03 = Py;, P33 = P33, P35 = 043,

(2.8)  Py+0,5=—Ryy;, Piy+P5=—Ray3, 0,5+0,3=—Ry,3,

Py+ P35 = — Ryyy3, P33+ P53 = — Ryy3, 033+ 033 =— Riz; .
Proof. From the identity obtained by (5.9) in [2], we have
Rii» = Ryu5—4a(G,, G+ H,,H,,)
= Rysn—4a(H,,Hy+ F,, Fyy)
= R,s—4a(F,, F;,+ G,,G,),

4m(m+2)a being a constant equal to the scalar curvature in M. Here,

*) Latin indices ¢, j, 2 run over the range (1,:--,m}, and Greek indices 2, g, v, ¥ run
over the range (1, -, 4m}.
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F, G, H have components as (2.1) with respect to , hence we see
F},L=;GM=I-L,L=O, which give (2.2). Similarly frpm (2.2) in [2], we have
R+ Rz = —4a(G, Hy,, + H,,G;,) =0
Ry + Ry =—4a(H,, F,, + F,, H,)=0,
| Ryn+Rys = —4a(F,, Gy + G, Fu) =0,
which imply (2.3). Besides
R34 Ra; = 4a(F,, Gy — G, F;)+ 8ag,;,
Ry33+ Rya5 = 4a(G,, H;;— H,, G¢,)+8agu ,
R334 Ryuy = 4a(H,, Fy;—F,, H,,)+8ayg,; .

Since F;;=G;;=H;;=0 and g¢,;=d,;, we have (2.4). Then (2.5), (2.6) and
(2.7) can be deduced from (2.2), (2.3) and (2. 4).,
Next from Bianchi identity we have

Rujj = Rijlj _Rij'vj = Rzﬁj + Riﬁj =—0;— pi}

by virtue of (2.2),, (2.3). The others are followed By similar way (Q.E.D).
We next prove -

LEMMA 2. A quaternion Kaehler manifold (dim M=8) is of constant Q-
sectional curvature k, if and only if the curvature tensor R satisfies

(2. 9) o(RX, )X, Z)=0, YeQ(X), ZeQ'(X)
or equivalently |

(2. 10) RX,Y)X=—-FY, YeQ(X)

for every wvector field X.

The necessity is obvious from (1.4). We shall show the sufficiency. |
If (2.9) is satisfied for every X, we have

0(R(X+2Y, F(X+tY))(X+tY), Z)=
for any X, Y, Z and t€R such that ZeQ (X +tY). Then we have
(2.11) £¢(R(Y,FY)Y, Z) +#g(R(X, FY) Y+R(Y, FX) Y+R(Y, FY) X, z)
+tg(R(Y, FX) X+R(X, FY) X+ R(X, FX) Y, Z)
+g(R(X, FX) X, Z)=0
If we put X=e, Y=¢, and Z=ﬁ(tX-Y)'=te;—e3 (Ze QL(X + Y)), then
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we have

# Ryjp+ (= Ryzs3+ Rizp+ Ryjis + Rysj) + E(Rasgs— Ryzej)

‘ + t(— Ryse;— Rijiz— Risgs + Russ) + Rigy =0,

fI‘OI}'l (2.2),. Thus we have

t'Rys5+ £(—20,5+ Rz 3+ 0 45) + 2 (Rys s — Ry303)

+2(20 53— Ry3 55— Pus) + Ris3 = 0.
Hence we have
(2.12) Pu=2P;3—Ry55=0y5.
Taking account of (2.8), we have
(2.13) P =305+ 0,5 .
If we substitute Y=e¢; (Z=te,+e¢;) instead of e; (Z=te;—e;), we have
Py =305+ 04y,

which, together with (3.5), induces
(2. 14) P, ;=05 and Py =P;=40y.
Similarly we obtain
(2. 15) Piyy=0;3=03=03 and Pz=PLz=40;.

Next we put X=e¢, Y=¢;, Z=—H@tX-Y)=te;—e; (Z€Q'(tX+ Y)).
Then we have ~

t'Ry3+ £'(—2Pg5+ Rugzz+ P55)+ ' (Raazi— Ryze)
+ (2053 — Ryz33—Pu3) + Razi3=10.

That is, we have

Py = 20y5— Rz = Py;
and

P =305+ 0y;.
Replacing e; (Z=te;—e;) with e; (Z=te;—e;), we get

P43 = 3035+ 053 .
Hence we get
(2.16) Pij=Py3="05,  Pg=40y

by virtue of Lemma 1. Similarly we have
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P31 = Py, = 40,
p?,?'—pgj—pij, 923=p2§=p¢;j.

(2.17)

Summing up the equalties (2.14)~(2.17) obtained above, we can conclude
that a quaternion Kaehler manifold satisfying (2.12) is of constant Q-sectional
curvature. As this result, we have (2.10) by virtue of (1.4).

§3. The property (& _f)

Let 7 be a geodesic in a quaternion Kaehler manifold and Y be a Jacobi
field along 7. Then Y satisfies
Y'+RY,7)7=0

where Y’ denotes the covariant differentiation along 7. Along 7, we can
define an almost complex structure J which is parallel along 7. In fact,
for a local base {F, G, H} in U, we may put in Un7 .

3.1) J=aF+bG+cH, a+b+E=1,
which a, b, ¢ satisfy

a' —br(t)+cq(7)
(3.2) b —cp(7)+ar()

¢'—aq(f)+bp(i) =

2, q, r being local 1-forms defined in (1.3).
Assume that M is of constant Q-sectional curvature %, then the cur-
vature tensor is in the form (1.4). So we have

R(7,J7)i=—RJT,
when ¢ is an affine parameter. Hence we see that
Y(6)=(sinvE ) Ji(2)  (resp. tJi, (sinhv—Fk¢t)J7)

are Jacobi fields along 7, when £>0 (resp. £=0, £<0). Moreover the following
property is satisfied: “Every Jacobi field Y with initial conditions Y(0)=
and Y'(0)= Ji(0) is proportional to Ji.” We call such a property (& #)
following Kosmanek. ' -
Conversely we assume that (& #) is satisfied. If we denote by J, the
set of Jocobi fields Y along 7 which are orthogonal to 7 and satisfy Y(0)=
Y'(0)eQ(7(0)), then dimJ,=3. In fact, we define a quaternion structure

{Jb ']2, ']3} bY

0,
0, a(0f+5(07+c(0f=1,

I

J¢=S¢1F+5¢2G+S¢3H (a=1, 2, 3)
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where s,; form an element of SO(3) and for a fixed a,s,; satisfy (3.2).
Then J, are all parallel along 7 and {Ji7, J;7, Js/} are linearly independent.

Taking account of this fact, for every geodesic 7 and any vector
w,€Q(7(0)), there exists a Jacobi field Y which is contained in Q(7) at every
point 7(#) and endowed the initial conditions Y(0)=0, Y’'(0)=w,. Then, on
account of (1.3), Y’ and Y” are also contained in Q(7). Hence

(3.3) o(R(, Y)1,Z)=0

for any vector field ZeQ(7#). At the point 7(0), Y(0) being taken arbitrarily,
we conclude that such a quaternion Kaehler manifold is of constant Q-

sectional curvature by Thus we have

THEOREM 1. Let M be a quaternion Kaehler manifold. The property (&2 F)
is satisfied if and only if M is of constant Q-sectional curvature. And
dim J,=3, for every geodesic T.

§4. Sasakian 3-structure

In this section we consider a corresponding property in the manifold
(M, §) with Sasakian 3-structure {&, 7, {}. That is, & % and { are mutually
orthogonal Killing vector fields of unit length and the contact structures

&, ¢ and 6 defined by
Fe=¢, Py=¢, 7e=0
are all Sasakian structures, where 7 denotes the Riemannian connection of
(1,5 _
Let P be a point of M. We can find a sufficiently small coordinate
neighborhood U of P, in which the distribution D spanned by &, 7 and ¢

is regular. Then U is a Riemannian manifold with the induced regular
Sasakian 3-structure and we have a local fibering

(*) 7:0—U/D=U.

Since U admits Sasakian 3-structure, U is a quaternion Kaehler manifold

(cf. Ishihara [1], Tanno [7].

We call a vector X vertical when it is tangent to fibres and horizontal
when it is orthogonal to fibres. An arbitrary geodesic 7 in U needs not
project to a geodesic, but it is known that if ¥ is horizontal, then z°7 is to
be a geodesic and their affine parameters can be taken in common. (See [8]).

Then the following lemma is already known.

LEMMA 3. (O’'Neill [8]) Let n: U—U be a submersion and T be a horizontal
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geodesic in U. Given a Jacobi field Y on noT and a vertical vector U at
7(0), there exists a unique Jacobi fild ¥ on ¥ such that n4(¥)=Y, D(T)=0
and Y(0)=U. Where D(Y) is a (vertical) derived vector field from Y.

REMARK. We can not define the derived vector field without preparations

for theory of submersions. The definition of D and its local expression
were given in O’Neill and Ishihara-Konishi [3, p.48]. However the
components with respect to & 7 and { are given by

| Let 7 be a horizontal geodesic in U and 7 be its projection. We define
tensor fields J, J, J; along 7 by

LX =ny0XF,  LX=me0X", S X=r,.0X",

X being a vector field along 7 and X* the lift of X to 7. Then we see
that J, (@=1, 2, 3) are all almost complex structures which are parallel along
7. (See Ishihara [1]). Then, as a result of [Theorem 1, if U is of constant
Q-sectional curvature & (k is necessarily positive in this case), then (sinvZ )

J,7 are Jacobi fields along 7. Taking account of and Remark,
Y,=(sinvk ¢) g7 —(cosVkt)& is seen to be a Jacobi field along 7, since its
derived vector field D(Y)) vanishes. Similarly Y, =(sinvk¢)¢7—(cos vk ¢)y
and Y,=(sinvk )87 —(cos vk ¢){ are Jacobi fields.

On the other hand the Ricci curvature tensors 8 of U and S of U
are related by

SX5EYH=8X,V)—-69(X,Y), SX:tV)=0,
SV, W)=n—-1)§V, W),

where X, Y are vector fields in U and V, W are vertical vector fields (cf.
and [7]). If U of constant Q-sectional curvature k, from (1.4)

SX,V)=Fn+5¢(X,Y), k=4kA

and hence
S(X% Y9 ={n+5)k—6} ¢(X, Y).
However U being an Einstein manifold (See Kashiwada [5]),
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(n+b5)k—6=n—1,
thus %' is necessarily equal to 1.
LEMMA 4. In the fibering (*), if U is of constant Q-sectional curvature k,
then U is of constant curvature 1.

ProOF) Co-Gauss equation of the curvature tensor R of U being
R(XE YO ZE = {R(X, Y)Z—g(FY,Z)FX+g(FX,Z)FY

+2¢(FX,Y)FZ—¢(GY, Z) GX+¢(GX, Z) GY
+2¢(GX, Y)GZ~g(HY, Z) HX + ¢(HX, Z) HY
(

+2¢(HX, Y) HZ}"

for arbitrary local base {F,G, H} (See [3]), then we have by (1.4) and

(4.1) R(X*, Y*) ZE = §(Y% Z5) X*—§(XE Z5) Y* |

Since U have Sasakian 3-structure, the sectional curvature of the section
containing at least one of & #, { is equal to 1. Together with (4.1), we
have a conclusion.

Thus we have

THEOREM 2. Let M be a Riemannian manifold with Sasakian 3-structure
(&0, If in the local fibering U—U|D, U|D is of constant Q-sectional
curvature k (in such a case k is necessarily equal to 1), then for every
horizontal geodesic T, (sin 2t) ¢7—(cos 2¢) &, (sin 2¢) ¢F —(cos 28) n and (sin 2¢) 67
—(cos 2¢) { are Jacobi fields along 7, when t is the arc-length. The converse
is also true.

REMARK. Taking account of a result in [4], we see that under the assump-
tions in for not necessarily horizontal geodesic 7 but perpen-
dicular to one of the structures, say &, (sin 2£) 67 —(cos 2¢)& is a Jacobi field
along 7.
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