Nonmaximal weak-*Dirichlet algebras

By Takahiko NAKAZI

(Received April 14, 1975)

0. Introduction

Let A be a weak-*Dirichlet algebra of $L^{\infty}(m)$ which was introduced by Srinivasan and Wang [7]. Let $H^{\infty}(m)$ denote the weak-*closure of A in $L^{\infty}(m)$. Suppose there exists at least one positive nonconstant function v in $L^{1}(m)$ such that the measure vdm is multiplicative on A. Then Merrill [4] characterizes the classical space $H^{\infty}(d\theta)$ by invariant subspaces of $H^{\infty}(m)$ or the maximality of $H^{\infty}(m)$ as a weak-*closed subalgebra of $L^{\infty}(m)$. In section 1 we characterize $H^{\infty}(d\theta \, d\phi)$, which is certain weak-* Dirichlet algebra on the torus, by invariant subspaces of $H^{\infty}(m)$. We need not assume the existence of the above v. Then, in some special case, Muhly [6] shows that $H^{\infty}(m)$ is a maximal weak-*closed subalgebra of $L^{\infty}(m)$. But in general, $H^{\infty}(m)$ is not maximal and so there exist weak-* closed subalgebras of $L^{\infty}(m)$ which contain $H^{\infty}(m)$ properly. In section 2 we construct some typical subalgebra in such subalgebras and we determine forms of all weak-*closed subalgebras which contain this subalgebra. This is applied to determine forms of all subalgebras which contain $H^{\infty}(d\theta d\theta)$.

Recall that by definition a weak-*Dirichlet algebra is an algebra A of essentially bounded measurable functions on a probability measure space (X, \mathfrak{M}, m) such that (i) the constant functions lie in A; (ii) $A + \overline{A}$ is weak-* dense in $L^{\infty}(m)$ (the bar denotes conjugation, here and always); (iii) for all f and g in A, $\int fg dm = (\int f dm) (\int g dm)$. The abstract Hardy spaces $H^{p}(m)$, $1 \leq p \leq \infty$, associated with A are defined as follows. For $1 \leq p < \infty$, $H^{p}(m)$ is the $L^{p}(m)$ -closure of A, while $H^{\infty}(m)$ is defined to the weak-*closure of A in $L^{\infty}(m)$. For $1 \leq p \leq \infty$, $H_{0}^{p} = \{f \in H^{p}(m) : \int f dm = 0\}$. For any subset $M \subseteq L^{\infty}(m)$, denote by $[M]_{2}$ the $L^{2}(m)$ -closure of M. A closed subspace M of $L^{p}(m)$ is called B-invariant if $f \in M$ and $g \in B$ imply that $fg \in M$, where B is a subalgebra of $L^{\infty}(m)$. In particular, if $B = L^{\infty}(m)$, M is called doubly-invariant. For any measurable subset E of X, the function χ_{E} is the characteristic function of E. If $f \in L^{p}(m)$, write E_{f} for the support set of f and write χ_{f} for the characteristic function of E_{f} .

We use the following result.

(a) If M is a weak-*closed A-invariant subspace of $L^{\infty}(m)$, then M =

 $[M]_2 \cap L^{\infty}(m).$

For weak-*Dirichlet algebras this has never published, but the proof is easy if we use the logmodularity of $H^{\infty}(m)$.

1. Characterization of $H^{\infty}(d\theta d\phi)$

Let A be the algebra of continuous, complex-valued functions on the torus $T^2 = \{(z, w) : |z| = |w| = 1\}$ which are uniform limits of polynomials in $z^n w^m$ where

$$(n, m) \in \Gamma = \{(n, m): m > 0\} \cup \{(n, 0): n \ge 0\}.$$

Denoting the normalized Haar measure on T^2 by $d\theta d\phi$, then A is a weak-* Dirichlet algebra of $L^{\infty}(d\theta d\phi)$. Recall $H^{\infty}(d\theta d\phi)$ is the weak-*closure of A in $L^{\infty}(d\theta d\phi)$.

In general, let A be a weak-*Dirichlet algebra of $L^{\infty}(m)$. Suppose there exists at least one positive nonconstant function v in $L^{1}(m)$ such that for all f and g in A, $\int fgvdm = (\int fvdm)(\int gvdm)$. Then by the logmodularity of $H^{\infty}(m)$, $H_{0}^{\infty} = ZH^{\infty}(m)$ for some inner function Z in $H^{\infty}(m)$, where a function $f \in H^{\infty}(m)$ is called inner if |f| = 1 a.e..

In [4] Merrill obtains the following result for the characterization of the classical space $H^{\infty}(d\theta)$.

(b) The following properties for $H^{\infty}(m)$ are equivalent.

(1) $H^{\infty}(m)$ is isomorphic to the classical space $H^{\infty}(d\theta)$.

(2) Every nonzero weak-*closed A-invariant subspace of $H^{\infty}(m)$ has the form

$$M = FH^{\infty}(m)$$

where F is an inner function in M.

(3) $H^{\infty}(m)$ is a maximal weak-*closed subalgebra of $L^{\infty}(m)$.

In this section we characterize $H^{\infty}(d\theta \, d\phi)$ which is not a maximal weak-*Dirichlet algebra [4]. Let J^{∞} be the weak-*closure of $\bigcup_{n=0}^{\infty} \overline{Z}^n H^{\infty}(m)$ and let I^{∞} be $\bigcap_{n=0}^{\infty} Z^n H_0^{\infty}$.

THEOREM 1. (1) J^{∞} is the minimum weak-*closed subalgebra of $L^{\infty}(m)$ which contains $H^{\infty}(m)$ properly. (2) I^{∞} is the maximal weak-*closed ideal of J^{∞} in $H^{\infty}(m)$.

PROOF. First, we shall show that if B is a weak-*closed subalgebra of $L^{\infty}(m)$ such that $B \supseteq H^{\infty}(m)$, then $B \supseteq J^{\infty}$. If m is multiplicative on B, then \overline{B} is orthogonal to H_0^{∞} and hence $B \subseteq H^2(m)$ [7, p 226] and hence $B \subseteq H^2(m) \cap L^{\infty}(m) = H^{\infty}(m)$ by (a) in Introduction. This contradicts to $B \supseteq H^{\infty}(m)$. If *m* is not multiplicative on *B*, the function *Z* has the inverse in *B*. For, if not, there exists a complex homomorphism ϕ on *B* such that $\phi(Z)=0$. Then ker $\phi \supseteq H_0^{\infty}=ZH^{\infty}(m)$. If ϕ is restricted to $H^{\infty}(m)$, then ker $\phi=H_0^{\infty}$, so by the logmodularity, the unique representing measure of ϕ is *m*. This contradicts that *m* is not multiplicative on *B*. Thus *B* is the weak-*closed subalgebra of $L^{\infty}(m)$ that contains \overline{Z} and $H^{\infty}(m)$, so $B \supseteq J^{\infty}$. This proves (1).

Now if K is the weak-*closed ideal of J^{∞} such that $I^{\infty} \subseteq K \subseteq H^{\infty}(m)$, since both Z and \overline{Z} is in J^{∞} , the subalgebra K = ZK. Thus $K \subseteq \bigcap_{n=1}^{\infty} Z^n H^{\infty}(m)$ $= I^{\infty}$. It is known [5] that I^{∞} is the ideal of J^{∞} . This proves (2).

Denote by \mathscr{H}^p $(1 \le p \le \infty)$ the closure in $L^p(m)$ (weak-*closure for $p = \infty$) of polynomials in Z. Denote by \mathscr{L}^p $(1 \le p \le \infty)$ the closure in $L^p(m)$ (weak-* closure for $p = \infty$) of polynomials in Z and \overline{Z} . Let I^p be the closure of I^{∞} in $L^p(m)$ and let \mathscr{I}^p be the closure of $I^p + \overline{I}^p$ in $L^p(m)$ and let J^p be the closure of J^{∞} in $L^p(m)$. The following result is known [4, Lemma 5].

(c) If $1 \le p \le \infty$, then

$$H^{p}(m) = \mathscr{H}^{p} + I^{p}, \quad L^{p}(m) = \mathscr{L}^{p} + \mathscr{I}^{p}$$
$$J^{p} = \mathscr{L}^{p} + I^{p}$$

where + denotes algebraic direct sum and if p=2, each decomposition is orthogonal.

If $1 , we can show easily that <math>L^{p}(m) = J^{p} + \overline{I}^{p}$.

The following result is known, too [3].

(d) For $1 \le p \le \infty$, there exists an isometric-*isomorphism (i.e., taking complex conjugates into complex conjugates) between $L^{p}(d\theta)$ of the disc and \mathscr{L}^{p} in $L^{p}(m)$, which maps the classical space $H^{p}(d\theta)$ onto \mathscr{U}^{p} in $H^{p}(m)$.

We can prove the following results (e) and (f). The proofs are almost parallel to those of (c) and (d). Suppose there exists a nontrivial inner function W in I^{∞} . Denote by H^p $(1 \le p \le \infty)$ the closure in $L^p(m)$ (weak-* closure for $p = \infty$) of polynomials in $Z^n W^m$ where $(n, m) \in \Gamma$. Then H^p is a subspace (subalgebra for $p = \infty$) of $H^p(m)$ by $ZI^p = I^p$ which (2) in theorem 1 shows. Denote by L^p $(1 the closure in <math>L^p(dm)$ (weak-* closure for $p = \infty$) of polynomials in Z, \overline{Z}, W and \overline{W} . Let

$$S^{p} = \left\{ f \in H^{p}(m) : \int Z^{n} \overline{W}^{m} f dm = 0, (n, m) \in \Gamma \right\}.$$

Denote by \mathscr{I}^p the closure of $S^p + S^p$ in $L^p(m)$ (weak-*closure for $p = \infty$).

(e) For $1 \le p \le \infty$, there exists an isometirc*-isomorphism between $L^p(d\theta d\phi)$ of the torus and L^p , which map $H^p(d\theta d\phi)$ onto H^p .

(f) If $1 \le p \le \infty$, then

 $H^{p}(dm) = H^{p} + S^{p}, \quad L^{p}(dm) = L^{p} + \mathscr{S}^{p}$

where + denotes algebraic direct sum and if p=2, each decomposition is orthogonal.

LEMMA 1. Suppose $I^{\infty} = WJ^{\infty}$ for some inner function W in I^{∞} . Then S^{∞} is a weak-*closed J^{∞} -invariant subspace of $H^{\infty}(m)$ such that $S^{\infty} = WS^{\infty}$.

PROOF. By the above remark (c) and $I^{\infty} = WJ^{\infty}$, $I^2 \ominus WI^2 = W\mathscr{L}^2$, where \ominus is orthogonal complement. Denote $S = I^2 \ominus \sum_{j=1}^{\infty} W^j \mathscr{L}^2$, then $S = \bigcap_{j=1}^{\infty} W^j I^2$ and $I^2 = S + \sum_{j=1}^{\infty} W^j \mathscr{L}^2$. The proof of WS = S is the same as [1, p 109] and S is a J^{∞} -invariant subspace of $H^2(m)$ by that $S = \bigcap_{j=1}^{\infty} W^j I^2$ and I^2 is a J^{∞} invariant subspace by (2) of theorem 1. The proof of $S = S^2$ is trivial. By the definition, $S^{\infty} = S^2 \cap L^{\infty}(m)$ and hence $S^{\infty} = WS^{\infty}$ and S^{∞} is a J^{∞} -invariant subspace.

THEOREM 2. The following properties for $H^{\infty}(m)$ are equivalent.

(1) $H^{\infty}(m)$ is isomorphic to $H^{\infty}(d\theta d\phi)$.

(2) (a) J^{∞} has no doubly invariant subspace, (b) every nonzero weak-* closed J^{∞} -invariant subspace M of $H^{\infty}(m)$ has the form

 $M = \chi_E F J^{\infty}$

where χ_E is a characteristic function in J^{∞} and F is a unimodular function.

PROOF. (1) \Rightarrow (2). If M is a J^{∞} -invariant subspace, then $ZM \subset M$ and so M is a sesqui-invariant subspace [5]. So by [5, p 473], $M = \chi_E F J^{\infty}$ where χ_E is a characteristic function in \mathscr{L}^{∞} and F is a unimodular function. But we can show easily that for any characteristic function χ_E , $\chi_E \in J^{\infty}$ if and only if $\chi_E \in \mathscr{L}^{\infty}$. This proves (2). (2) \Rightarrow (1). By the hypothesis of (b) in (2), we can write $I^{\infty} = \chi_E W J^{\infty}$, where $\chi_E \in J^{\infty}$ and W is a unimodular function. If m(E) < 1, by the remark (c), J^{∞} must have some doubly invariant subspace. So we can write $I^{\infty} = WJ^{\infty}$ with W in I^{∞} . For this inner function W, S^{∞} is a weak-*closed J^{∞} -invariant subspace of $H^{\infty}(m)$ and $S^{\infty} = WS^{\infty}$ by Lemma 1. If $S^{\infty} \neq \{0\}$, by the hypothesis of (b) in (2), we can write $S^{\infty} = \chi_E F J^{\infty}$ where $\chi_E \in J^{\infty}$ and F is a unimodular function. By that $\chi_E F \in$ $\chi_E F J^{\infty}$ and $\overline{W} S^{\infty} = S^{\infty}$, the function $\chi_E F \overline{W}$ is in $\chi_E F J^{\infty}$ and hence there exists some function g in J^{∞} such that $\chi_E = \chi_E Wg$. From $W \in I^{\infty}$, it follows that $\chi_E Wg \in I^{\infty}$ and hence $\chi_E \in I^{\infty}$. This shows that $\chi_E = 0$ by $\chi_E \in J^{\infty}$ and hence $S^{\infty} = \{0\}$. By the remark (f), $H^{\infty}(m) = H^{\infty}$ and by the remark (e), this proves (1).

T. Nakazi

 $H^{\infty}(d\theta d\phi)$ is not maximal as a weak-*closed subalgebra of $L^{\infty}(d\theta d\phi)$. So it is impossible to characterize $H^{\infty}(d\theta d\phi)$ by the maximality. One question that arises is: is it possible to characterize $H^{\infty}(d\theta d\phi)$ by subalgebras of $L^{\infty}(m)$ which contain it? In the next section we shall answer this.

2. Subalgebras which contain $H^{\infty}(m)$

Let A be a weak-*Dirichlet algebra of $L^{\infty}(m)$. We need not always the assumption such that there exists a positive nonconstant function v in $L^{1}(m)$ such that the measure v dm is multiplicative on A.

Muhly [6] show that $H^{\infty}(m)$ is a maximal weak-*closed subalgebra of $L^{\infty}(m)$ if and only if no nonzero function in $H^{\infty}(m)$ can vanish on a set of positive measure. If V is a weak-*closed subalgebra which is generated by $H^{\infty}(m)$ and χ_f for all $f \in H^{\infty}(m)$, then the subalgebra V contains $H^{\infty}(m)$ and $\chi_f \in V$ for every $f \in H^{\infty}(m)$. We determine forms of all subalgebras which contain V.

THEOREM 3. Let V be a weak-*closed subalgebra of $L^{\infty}(m)$ which contains $H^{\infty}(m)$. The following are equivalent.

(1) $\lambda_f \in V$ for every $f \in V$.

(2) $\lambda_f \in V$ for every $f \in H^{\infty}(m)$.

(3) Each weak-*closed subalgebra B of $L^{\infty}(m)$ that contains V has the form

$$B = \chi_E V + \chi_E^{\ c} L^{\infty}(m)$$

for some $\chi_E \in V$.

PROOF. $(1) \Rightarrow (2)$ trivial.

 $(2) \Rightarrow (3)$. Let K be an orthogonal complement of B in $L^2(m)$. We may assume $K \neq \{0\}$. Let E be the support set of K, then $\chi_E \in V$. For since B contains $H^{\infty}(m)$, the set $K \subseteq \overline{H}_0^2$ [7, p 226]. For each f in $H^2(m)$, there exists a function g in $H^{\infty}(m)$ such that $\chi_f = \chi_g$ [6]. So if f in K, then $\chi_f = \chi_f \in V$ by the hypothesis of (2). If f and g in K, let $F = E_f \setminus E_g$, then $\chi_F \in V$. Since $\chi_F B \subseteq B$, we can show $\chi_F K \subseteq K$ and hence $h = g + \chi_F f$ is in K. So if $f, g \in K$, there exists $h \in K$ with $E_h = E_f \cup E_g$. This shows that there exists a function f in K such that $E_f = E$ and hence $\chi_E \in V$. Since $\chi_E^c K = \{0\}$ and $\chi_E \in V$, we can get $B \supseteq \chi_E V + \chi_E^c L^{\infty}(m)$ and $\chi_E V + \chi_E^c L^{\infty}(m)$ is a weak-*closed subalgebra.

We shall show $B = \chi_E V + \chi_E^c L^{\infty}(m)$. Suppose $B \neq \chi_E V + \chi_E^c L^{\infty}(m)$. Just as Muhly [6], there exists a nonconstant unimodular function q and \bar{q} in B such that $\bar{q} \notin \chi_E V + \chi_E^c L^{\infty}(m)$. Then $\chi_E \bar{q} \notin \chi_E V$. Let N be the weak-* closure of polynomials of q, \bar{q} and all characteristic functions in V. Then N is a commutative von Neumann algebra as an algebra of operators on $L^2(m)$. By $\chi_E \bar{q} \notin V$, V can not contain the whole $\chi_E N$. There exists χ_{E_0} in N such that $\chi_{E_0 \cap E} \neq 0$ and for any nonzero χ_F in V

$$\chi_{E_0\cap E}\chi_F\neq\chi_F.$$

For suppose there exists a nonzero χ_{F} in V such that $\chi_{H\cap E}\chi_{F} = \chi_{F}$ for any χ_{H} in N such that $\chi_{H\cap E} \neq 0$. Then $H \cap E \supset F$ for the nonzero χ_{F} in V. If $H \cap E \neq F$, since $\chi_{H}\chi_{F}^{c} \in N$ and $\chi_{H}\chi_{F}^{c} \neq 0$, there exists a nonzero $\chi_{F'}$ in V such that $H \cap F^{c} \cap E \supset F'$ arguing as above. This leads to that $\chi_{H\cap E} \in V$ for any χ_{H} in N, i.e. $\chi_{E}N \subseteq V$ by that N is a commutative von Neuman algebra. This contradiction shows that there exists such a $\chi_{E_{0}}$ in N. By $\chi_{E_{0}\cap E} \in B$, it follows that $\chi_{E_{0}\cap E}K \subseteq K$. If $\chi_{E_{0}\cap E}K \neq \{0\}$, we can show that there exists some nonzero $\chi_{F_{0}}$ in V such that $\chi_{E_{0}\cap E}\chi_{F_{0}} = \chi_{F_{0}}$. $\chi_{E_{0}\cap E}K = \{0\}$. Since $m(E_{0} \cap E) > 0$, this contradicts that E is the support set of K. Thus $B = \chi_{E}V + \chi_{E}^{c}L^{\infty}(m)$.

 $(3) \Rightarrow (1)$. Suppose f in any function in V. We can assume that $0 < \chi_f < 1$. Let D = D(f) be the weak-*closure of $\{fg : g \in V\}$, then $D \subseteq V$ and the support set of D coincides with the support set of f. Let $B = \{v \in L^{\infty}(m) : vD \subseteq D\}$. Then $V \subseteq B$. From the hypothesis of (3), we can write $B = \chi_E V + \chi_E^{\circ} L^{\infty}(m)$ for some $\chi_E \in V$. Then we can choose χ_E in V such that $\chi_E V$ has no doubly invariant subspace. If m(E)=0, then $B=L^{\infty}(m)$ which means that D is doubly-invariant and hence $\chi_f L^{\infty}(m) \subseteq V$. So $\chi_f \in V$. Suppose m(E) > 0. Since $(1-\chi_f) L^{\infty}(m) \subseteq B$ and $\chi_E^{\circ} L^{\infty}(m)$ is the maximum doubly-invariant subspace of B, we have $E_f \supseteq E$. If $E_f \neq E$, define $g = \chi_E^{\circ} f$, then the function g is in V and $g \neq 0$. Arguing as above, there exist a nonzero χ_F in V such that $E_f \cap E^{\circ} \supseteq F$. This shows that $\chi_f \in V$.

COROLLARY 1. (Muhly [6]) The following properties for $H^{\infty}(m)$ are equivalent.

(1) no nonzero function in $H^{\infty}(m)$ can vanish on a set of positive measure.

(2) $H^{\infty}(m)$ is a maximal weak-*closed subalgebra of $L^{\infty}(m)$.

PROOF. (1) \Rightarrow (2). If f is any function in $H^{\infty}(m)$, then $\chi_f \equiv 0$ or $\chi_f \equiv 1$ and hence $\chi_f \in H^{\infty}(m)$. Apply theorem 3 with $V = H^{\infty}(m)$. (2) \Rightarrow (1). The condition (3) in theorem 3 is satisfied with $V = H^{\infty}(m)$ because of the maximality of $H^{\infty}(m)$. Therefore $\chi_f \in H^{\infty}(m)$ for every $f \in H^{\infty}(m)$. But the only real valued functions in $H^{\infty}(m)$ are constants, hence $\chi_f \equiv 0$ or $\chi_f \equiv 1$.

If there exists a positive nonconstant function v in $L^{1}(m)$ such that

T. Nakazi

the measure vdm is multiplicative on A, we can choose J^{∞} as V. Here J^{∞} is the minimum weak-*closed subalgebra of $L^{\infty}(m)$ which contains $H^{\infty}(m)$ properly.

THEOREM 4. The following properties for $H^{\infty}(m)$ are equivalent.

(1) $\chi_f \in J^{\infty}$ for every $f \in H^{\infty}(m)$.

(2) Each weak-*closed subalgebra B of $L^{\infty}(m)$ that contains $H^{\infty}(m)$ properly has the form

$$B = \chi_E J^{\infty} + \chi_E^{\ c} L^{\infty}(m)$$

for some $\chi_E \in J^{\infty}$.

PROOF. If $B \supseteq H^{\infty}(m)$, then $B \supseteq J^{\infty}$ since J^{∞} is the minimum weak-* closed subalgebra. So by theorem 3, we can get this theorem.

In section 3 we shall show that $\chi_f \in J^{\infty}$ for every f in $H^{\infty}(d\theta \, d\phi)$, i.e. this algebra satisfies the condition (1) of theorem 4. Moreover we shall give an example (2) such that $H^{\infty}(m)$ satisfies the condition (1) of theorem 4 and it is not isomorphic to $H^{\infty}(d\theta \, d\phi)$. Now we can give the negative answer to the question raised at the end of section 1. For $H^{\infty}(m)$ in example (2) and $H^{\infty}(d\theta \, d\phi)$ have same subalgebras in the form which contain them by theorem 4.

COROLLARY 2. Suppose $J^{\infty} \neq L^{\infty}(m)$ and $\chi_{f} \in J^{\infty}$ for every f in $H^{\infty}(m)$. Then there is no algebra which contains $H^{\infty}(m)$ and is maximal among the proper weak-*closed subalgebras of $L^{\infty}(m)$.

PROOF. Suppose B is a maximal weak-*closed subalgebra of $L^{\infty}(m)$ such that $H^{\infty}(m) \subsetneq B \subsetneqq L^{\infty}(m)$. By theorem 4 we can write $B = \chi_E J^{\infty} + \chi_E^{\circ}$ $L^{\infty}(m)$ for some E such that m(E) > 0 and $\chi_E \in J^{\infty}$. Then we can choose χ_E such that $\chi_E J^{\infty}$ has no doubly invariant subspace. But $\chi_E \in J^{\infty}$ if and only if $\chi_E \in \mathscr{L}^{\infty}$. By the remark (d) in section $1 \mathscr{L}^{\infty}$ is isomorphic to $L^{\infty}(d\theta)$ of the disc. If F in $L^{\infty}(d\theta)$ corresponds to $f \in \mathscr{L}^{\infty}$, then f(x) = F(Z(x)) a.e. [5, Lemma 4]. Hence there is a measurable set E' such that $E' \subset E$ and $m(E) \neq m(E') > 0$ and $\chi_{E'} \in \mathscr{L}^{\infty}$. If $B' = \chi_{E'} J^{\infty} + \chi_{E'} C^{\infty}(m)$, then $L^2(m) \supseteq [B']_2$ $\supseteq [B]_2$ by that $\chi_{E'} J^{\infty}$ has no doubly invariant subspace and hence $B \subsetneq B' \subsetneqq L^{\infty}(m)$.

COROLLARY 3. Suppose $\chi_f \in J^{\infty}$ for every f in $H^{\infty}(m)$. If B is a weak-* closed subalgebra of $L^{\infty}(m)$ which contains $H^{\infty}(m)$ and a function v such that $\chi_E v \in J^{\infty}$ for any nonzero $\chi_E \in J^{\infty}$, then $B = L^{\infty}(m)$.

PROOF. By theorem 4, we can write $B = \chi_E J^{\infty} + \chi_E^{\ c} L^{\infty}(m)$ for some $\chi_E \in J^{\infty}$. Since B contains v, $\chi_E v \in \chi_E J^{\infty} \subseteq J^{\infty}$. If m(E) > 0, then $\chi_E v \notin J^{\infty}$ by assumption. This implies m(E) = 0, hence $B = L^{\infty}(m)$.

94

3. Example

(1) Let A be the weak-*Dirichlet algebra on the torus which was raised at the first of section 1. Then there exist positive nonconstant functions in $L^1(d\theta \, d\phi)$ which are multiplicative on A. $H_0^{\infty}(d\theta \, d\phi) = zH^{\infty}(d\theta \, d\phi)$ and J^{∞} is the weak-*closure of $\bigcup_{n=0}^{\infty} \bar{z}^n H^{\infty}(d\theta \, d\phi)$. Then $\chi_f \in J^{\infty}$ for every $f = f(z, w) \in H^{\infty}(d\theta \, d\phi)$. In fact, there exist polynomials $p_n(w)$ such that for almost all points z_0 in T, as $n \to \infty$

$$\int_{r} \left| f(z_0, w) - p_n(w) \right|^2 d\phi \longrightarrow 0.$$

Then it follows that $f(z_0, w)=0$ a.e. $d\phi$ or $|f(z_0, w)|>0$ a.e. $d\phi$. Let $E_1 = \{z_0 \in T : |f(z_0, w)|>0$ a.e. $d\phi\}$. Then the set $E_1 \times T$ is a support set of f. For every (n, m) with m>0

$$\iint_{T^2} \chi_{E_1 \times T} z^n w^m d\theta d\phi$$
$$= \int_{E_1} d\theta \int_T z^n w^m d\phi = 0.$$

Hence $\chi_f = \chi_{E_1 \times T} \in J^{\infty}$ by that $L^2(d\theta \, d\phi) = \bar{J}^2 + I^2$ and the remark (a) in Introduction. Thus by theorem 4, each weak-*closed subalgebra B of $L^{\infty}(d\theta \, d\phi)$ that contains $H^{\infty}(d\theta \, d\phi)$ properly has the form $B = \chi_{E_1 \times T} J^{\infty} + \chi_{F_1 \times T} L^{\infty}(d\theta \, d\phi)$ where E_1 is some measurable set of T and $F_1 = T \setminus E_1$. It is known [2] that there exists a maximal uniform closed subalgebra of $C(T^2)$ the set of all complex-valued continuous functions on T^2 , which contains A. But by corollary 2, there is no algebra which contains $H^{\infty}(d\theta \, d\phi)$ and is maximal among the proper weak-*closed subalgebras of $L^{\infty}(d\theta \, d\phi)$. Moreover as v in corollary 3, we can take $u \overline{w}^r$ (r is a positive real number and $u \in \mathscr{L}^{\infty}$ and |u| > 0, $\chi_E(E = T \times E_2, d\phi(E_2) < 1)$, etc.

(2) Let K be the Bohr compactification of the real line. Let A be the algebra of continuous, complex-valued functions on $T \times K$ which are uniform limits of polynomials in $z^n \chi_r$, where

$$(n,\tau)\in\Gamma=\left\{(n,\tau)\colon\tau\!>\!0\right\}\cup\left\{(n,0)\colon n\!\geq\!0\right\}$$

and denote by χ_{τ} the characters on K, where τ in the real line. Denote by m the normalized Haar measure on $T \times K$, then A is the weak-*Dirichlet algebra of $L^{\infty}(m)$ [5]. There exist positive nonconstant functions in $L^{1}(m)$ which are multiplicative on A. $H_{0}^{\infty} = zH^{\infty}(m)$ and J^{∞} is the weak-*closure of $\bigcup_{n=0}^{\infty} \bar{z}^{n}H^{\infty}(m)$. We can show that $\chi_{f} \in J^{\infty}$ for every $f \in H^{\infty}(m)$ as in (1).

T. Nakazi

(3) Let A be the algebra of continuous, complex-valued functions on $K \times K$ which are uniform limits of polynomials is $\chi_{r_1} \chi_{r_2}$ where

$$(\tau_1, \tau_2) \in \Gamma = \{(\tau_1, \tau_2) : \tau_2 > 0\} \cup \{(\tau_1, 0) : \tau_1 \ge 0\}$$

and denote by χ_{τ_i} the characters on K, where τ_i in the real line. Denote by m the normalized Haar measure on $K \times K$, then A is the weak-* Dirichlet algebra of $L^{\infty}(m)$. Then there exist no positive nonconstant functions in $L^1(m)$ which are multiplicative on A. Let V be the weak-* closure of $\bigcup_{\tau_1 \geq 0} \bar{\chi}_{\tau_1} H^{\infty}(m)$, then $H^{\infty}(m) \subsetneq V \subsetneq L^{\infty}(m)$ and V is a weak-*closed subalgebra. We can show that $\chi_f \in V$ for every $f \in H^{\infty}(m)$ as in (1). By theorem 3, we can know the form of weak-*closed subalgebras of $L^{\infty}(m)$ which contains V properly.

References

- [1] K. HOFFMAN: Banach spaces of analytic functions, Prentice-Hall, 1962.
- [2] K. HOFFMAN: Maximal subalgebras of $C(\Gamma)$, Amer. J. Math., 79 (1957), 295-305.
- [3] G. LUMER: H[∞] and the imbedding of the classical H^p spaces in arbitrary ones, Proc. Internat. Sympos. on Function Algebras (Tulane Univ., 1965), Scott-Foresman, Chicago, III., 1966, 285-286.
- [4] S. MERRILL: Maximality of Certain Algebras $H^{\infty}(dm)$, Math. Zeit., 106 (1968), 261-266.
- [5] S. MERRILL and N. LAL: Characterization of certain invariant subspaces of H^p and L^p spaces derived from logmodular algebras, Pacific J. Math., 30 (1969), 463-474.
- [6] P. S. MUHLY: Maximal weak-*Dirichlet algebras, Proc. Amer. Math. Soc., 36 (1972), 515-518.
- [7] T. P. SRINIVASAN and Ju-kwei WANG: Weak-*Dirichlet algebras, Proc. Internat. Sympos. on Function Algebras (Tulane Univ., 1965), Scott-Foresman, Chicago, III., 1966, 216-249.

T. Nakazi Research Institute of Applied Electricity Hokkaido University Sapporo, Japan