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Introduction

All notations and terminologies in this paper are same as those in the
author’s previous papers [7], [8], [9], [10] and [11]. All rings shall have
identities, and all subrings of them shall have the same identities as them.
Whenever we denote a ring and its subring by \Lambda and \Gamma, respectively, we
shall always denote the center of \Lambda by C and the centralizers of \Gamma in \Lambda,

i.e. , V_{A}(\Gamma), by \Delta . A ring \Lambda is an H-separable extension of a subring \Gamma

if \Lambda\otimes_{\Gamma}\Lambda is \Lambda-\Lambda-isomorphic to a \Lambda-\Lambda-direct summand of a finite direct sum
of copies of \Lambda . Some equivalent conditions and fundamental properties
have been researched in [3], [4] and [7]. In case \Gamma is the center of \Lambda,

this definition is same as that of Azumaya algebra, and we have found in
H-separable extension many similar properties to Azumaya algebra. In \S 1
we shall study in what case an H-sparable extension \Lambda of \Gamma become \Gamma-

projective. If B is an intermediate subring of \Lambda an\dot{d}\Gamma such that BB\Gamma<\oplus

B\Lambda_{r} and B is left relatively separable over \Gamma in \Lambda, \Lambda is left B-projective.
And if furthermore B is right relatively separable over \Gamma in \Lambda, \Lambda is a left
QF-extension of B (Theorem 1.1). In \S 2 we shall study some relations
between H-separable extensions of simple rings and classical fundamental
theorem on simple rings. The latter states that if \Lambda is a simple ring with
its center C, and if D is a simple C-algeba ([D:C]<\infty) contained in \Lambda,
then \Gamma=V_{A}(D) is simple, D=V_{A}(\Gamma), and some interesting commutor the0-
rems hold in this case (see [2]). Now we shall prove that \Lambda is an H-
separable extension of \Gamma in this case (Theorem 2.1). We have already
found that similar commutor theorems hold in general H separable exten-
sions (see Theorem 1 [6]). In \S 3 we shall study some properties of ideals
in H-separable extensions. Especially, we will see in Theorem 3.2 that if
\Lambda is an H-separable extension of \Gamma such that \Lambda is right \Gamma projective and
a right \Gamma-generator, there exists a 1-1 correspondence between the class
of left ideals of \Gamma and the class of left ideals of \Lambda which ars also right
\Delta-submodules.

The author gives his hearty thanks to Alexander von Humboldt-Stiftung in West Ger-
many who gave him the financial support when he wrote this paper in Munich.
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1. On projectivity of \bm{H}-separable extensions

For any ring \Lambda and a subring \Gamma of \Lambda, we have a well known canonical
\Lambda-\Lambda-homomorphism \theta

\theta : \Lambda\otimes_{\Gamma}\Lambdaarrow Hom(Hom(_{\Gamma}\Lambda_{ \Gamma},\Gamma)_{\Gamma}, \Lambda_{\Gamma})

such that \theta(x\otimes y)(f)=xf(y) for x, y\in\Lambda and f\in Hom(_{\Gamma}\Lambda_{ \Gamma},\Gamma) . It is obvious
that if \sum x_{i}\otimes y_{i}\in(\Lambda\otimes_{\Gamma}\Lambda)^{A}, that is, if \sum x_{i}\otimes y_{i} is a casimir element, \theta(\sum x_{i}

\otimes y_{i}) is a \Lambda-\Gamma-map. Also it is well known that if \Lambda is left \Gamma-f.g. projec-
tive, \theta is an isomorphism. On the other hand, \Lambda is an H-separable exten-
sion of \Gamma if and only if 1\otimes 1\in(\Lambda\otimes_{\Gamma}\Lambda)^{4}\Delta(\Delta=V_{A}(\Gamma)), that is, if and only if
there exist \sum x_{if}\otimes y_{if}\in(\Lambda\otimes_{\Gamma}\Lambda)^{4} and d_{i}\in\Delta(i=1,2, \cdots, n) such that 1\otimes 1=

\sum_{i}(\sum_{f}x_{if}\otimes y_{if})d_{i} . By putting \alpha_{i}=\theta(\sum x_{if}\otimes y_{if}), we have

LEMMA 1. 1 Let \Lambda be a ring and \Gamma a subring of \Lambda . Thm we have;

(1) If \Lambda is an H-separable extension of \Gamma, there exist \Lambda- l’.-maps \alpha_{i}

of Hom(_{\Gamma}\Lambda_{ \Gamma},\Gamma) to \Lambda and d_{i}\in\Delta such that \sum\alpha_{i}(d_{i}\cdot f)=f(1) for any feHm
(_{\Gamma}\Lambda_{ \Gamma},I’) .

(2) In case \Lambda is left \Gamma-f.g. projective, \Lambda is an H-separable extmsion
of \Gamma if and only if there exist \alpha_{i} and d_{i} vohich satisfy the condition of (1).

PROPOSITION 1. 1 Let \Lambda be an H-separable extmsion of \Gamma such that
J^{\cdot}\Gamma_{A}<\oplus_{\Gamma}\Lambda_{A} for some subring A of \Gamma Then,

(1) \Lambda is isomorphic to a direct summand of a fifinite direct sum of
copies of Hom(_{\Gamma\Gamma}\Lambda,\Gamma) as \Lambda- A-module, that is, \Lambda\Lambda A<\oplus_{A}(\sum\oplus Hom(_{\Gamma}\Lambda_{ \Gamma},\Gamma))_{A}n .

(2) If furthermore, \Lambda is left \Gamma-f.g. projective and the map \Lambda\otimes_{A}\Gammaarrow\Lambda

defifined by x\otimes rarrow xr for x\in\Lambda, r\in\Gamma., splits as \Lambda-\Gamma map \Lambda is a left QF-
extension of \Gamma

-

PROOF. (1). Let \alpha_{i} and d_{i} be as in Lemma 2. 1, and let p be the \Gamma-A-
projective of \Lambda to \Gamma. Then clearly d_{i}\circ p are also \Gamma- A-maps, and \sum\alpha_{i}(d_{i}\circ p)

=p(1)=1 . Then we have \Gamma-A-maps

G : \Lambdaarrow\sum\oplus Hom(_{\Gamma}\Lambda_{ \Gamma},\Gamma)n

F : \sum\oplus Hom(_{\Gamma}\Lambda_{ \Gamma},\Gamma)arrow\Lambda n

such that G(x)=(xd_{1}\circ p, xd_{2}\circ p, \cdots, xd_{n}\circ p) and F(f_{1}, f_{2}, \cdots, f_{n})=\sum\alpha_{i}(f_{i}), for
x\in\Lambda and f_{i}\in Hom(_{\Gamma}\Lambda_{ \Gamma},\Gamma) . Clearly FG=1_{A} , hence we have A \Lambda A<\oplus_{A}(\sum\oplus n

Hom(_{\Gamma}\Lambda_{ \Gamma},\Gamma))_{A} . (2). Let G and F be as above. Since the map \Lambda\otimes_{A}\Gammaarrow\Lambda

splits, there exists \sum x_{i}\otimes r_{i} in (\Lambda\otimes_{A}\Gamma)^{\Gamma} with \sum x_{i}r_{i}=1 . Then the map
defined by G’(x)= \sum G(xx_{i})r_{i} is a \Lambda-\Gamma map with GF’=1 . Since F is also
a \Lambda-\Gamma-map, we see that \Lambda is a left QF extension of \Gamma_{-}
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Now we had better give a new definition concerning as rings A\subset\Gamma\subset\Lambda

which satisfy the condition of Proposition 1. 1 (2).

DEFINITION Let \Lambda be a ring and A and \Gamma subrings of \Lambda with A\subset\Gamma-

Then we shall call that \Gamma is a left relatively separable subextension of
A in \Lambda, if map \pi of \Gamma\otimes_{A}\Lambda to \Lambda such that \pi(x\otimes y)=xy for x\in\Gamma, y\in\Lambda

splits as \Gamma-\Lambda-map. A right relatively separable subextension can be defifined
similarly.

Now assume again that a ring \Lambda is an H-separable extension of
a subring \Gamma In [11], H. Tominaga proved that if \Lambda is left (resp. right)
\Gamma-projective, \Lambda is left (resp. right) \Gamma-f.g. projective. Now we shall inves-
tigate in what case \Lambda is \Gamma-projective. First we shall note that the following
isomorphisms exist for every left \Lambda-module M.

\Delta\otimes_{C}M\cong\Delta\otimes_{C}Hom ( \Lambda , AM)\cong Hom (_{A}Hom(_{CC}\Delta,\Lambda), AM)

\cong Hom ( \Lambda\otimes_{\Gamma}\Lambda, AM)\cong Hom (_{r\Lambda,H}\tau om(_{AA}\Lambda,M))

\cong Hom(_{\Gamma}\Lambda_{ \Gamma},M)

the composition \eta_{M} of the above isomorphisms is such that \eta_{M}(d\otimes m)(x)=

dxm, for d\in\Delta, x\in\Lambda and m\in M. Therefore, for any left \Lambda-modules M,
N and for any left \Lambda map f of N to M, we have a commutative diagram

\Delta\otimes_{c}N

1_{\Delta}\otimes f-\Delta\otimes_{C}M

\downarrow\eta_{N}
\downarrow\eta_{M}

Hom (_{\Gamma}\Lambda_{ I’},N)\overline{Hom}\overline{(\Lambda,f)} Hom (_{\Gamma}\Lambda_{ \Gamma},M)

By this fact we have,
PROPOSITION 1. 2 If \Lambda is an H-separable extension of \Gamma, then for any

\Lambda{?} imorphism f of N to M and for any \Gamma-homomorphism g of \Lambda to M,
there exists a \Gamma-homomorphism h of \Lambda to N such that f\circ h=g .

PROPOSITION 1. 3 Let \Lambda be an H-separable extension of \Gamma_{-} Then if
there exists a subring A of \Gamma such that \Gamma is left relatively separable over
A in \Lambda and r\Gamma_{A}<\oplus_{\Gamma}\Lambda_{A} , we have

(1) \Lambda is left \Gamma-f. g . projective
(2) \Lambda is left (resp. right) A-projective if and only if \Gamma is left (resp.

right) A-projective.
PROOF. (1). Since \Gamma\otimes_{A}\Lambdaarrow\Lambda splits, there exists \sum r_{i}\otimes x_{i}\in(\Gamma\otimes_{A}\Lambda)^{\Gamma} with

\sum r_{i}x_{i}=1 . Now let f be any left \Gamma-epimorphism of N to M and g any
left \Gamma-homomorphism of \Lambda to M, where M and N are arbitrary left \Gamma-

modules. We can define a new \Gamma map of \Lambda to \Lambda\otimes_{A}M by G(x)= \sum r_{i}\otimes

g\{xix). Since \sum rr_{i}\otimes x_{i}x=\sum r_{i}\otimes x_{i}rx for any r\in\Gamma and x\in\Lambda, we see that
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G is a \Gamma-map. Then by Proposition 1. 2, there exists a left \Gamma-map H of
\Lambda to \Lambda\otimes_{A}N such that (1_{A}\otimes f)\circ H=G . Let p be the \Gamma- A projective of \Lambda

to \Gamma_{-} Then we have a commutative diagram of \Gamma-maps

\Lambda\Lambda\otimes_{A}N\Gamma\otimes_{A}NN\underline{H}\underline{p\otimes 1_{N}}\underline{\pi_{N}}

\backslash

G1_{A}I^{1}\otimes fI^{1}1_{\Gamma}\otimes f1^{1}f\Lambda\otimes_{A}M\Gamma\otimes_{A}MM\underline{p\otimes 1_{M}}\underline{\pi_{M}}

where \pi_{M} and \pi_{N} are the contraction maps. Then \pi_{M}\circ(F\otimes 1_{M})\circ G=g , since
\pi_{M}\circ(p\otimes 1_{M})\circ G(x)=\pi_{M}(p\otimes 1_{M})(\sum r_{i}\otimes g_{i}(x_{i}x))=\pi_{M}(\sum r_{i}\otimes g(x_{i}x))=\sum r_{i}g(x_{i}x)=

g( \sum r_{i}x_{i}x)=g(x) . Thus there exists a left \Gamma-homomorphism h(=\pi_{M}\circ(p\otimes

1_{N})\circ H) of \Lambda to N such that f\circ h=g . Therefore, \Lambda is left \Gamma-pojective.
(2). Suppose that \Gamma is right A-projective. Since ,\Lambda is projective by (1),
Hom(_{\Gamma}\Lambda_{ \Gamma},\Gamma) is right \Gamma-projective. Hence Hom(_{\Gamma}\Lambda_{ \Gamma},\Gamma) is right A-projective.
Then, since A \Lambda_{A}<\oplus_{\Lambda}(\sum n\oplus Hom(_{\Gamma}\Lambda_{ \Gamma},\Gamma))_{A} by Proposition 1. 1 and the assump-
tion that \tau\Gamma_{A}<\oplus_{\Gamma}\Lambda_{A} , \Lambda is right A-projective. Next suppose that \Gamma is left
A-projective. Then, since \Lambda is left \Gamma-projective, \Lambda is left A-projective.
The converse is clear, since \Gamma\Gamma A<\oplus_{\Gamma}\Lambda_{A} .

In [6] and [11], we considered the class \mathfrak{B}_{l} of subrings B of \Lambda such
that B\supset\Gamma. BB\Gamma<\oplus_{B}\Lambda_{I^{1}} and B is left relatively separable over \Gamma in \Lambda . Class
\mathfrak{B}_{r} is defined similarly. In case \Lambda is H-separable over \Gamma, these classes have
interesting properties, because there exists a 1-1 correspondence of \mathfrak{B}_{l} to
the class of C-subalgebras D of \Delta such that DD<\oplus_{D}\Delta and D is left rela-
tively C-separable in \Delta . It is easy to prove that if B\in \mathfrak{B}_{l} (or \mathfrak{B}_{r}), \Lambda is H-
separable over R. (see (0.8) [11]). Therefore by Proposition 1.3, we have ;

THEOREM 1. 1 Let \Lambda be an H-separable extension of \Gamma, and let \mathfrak{B}_{l}

and \mathfrak{B}_{r} be as above, Then, we have
(1) \Lambda is left (resp. right) B-f. g. projective for every B\in \mathfrak{B}_{l} (resp. \mathfrak{B}_{r}).
(2) \Lambda is a QF-extension of B for every B\in \mathfrak{B}_{l}\cap \mathfrak{B}_{r} .
(3) For any B in \mathfrak{B}_{l} , B is left (resp. right) \Gamma-f. g . projective if and

only if \Lambda is left (resp. right) J^{\gamma}
-f.g. projective.

THEOREM 1. 2 If \Lambda is an H-separable extension of \Gamma such that r\Gamma_{\Gamma}

<\oplus_{\Gamma}\Lambda,. , \Lambda is left and right I’- f.g . projective. In this case \Lambda is a Frobenius
extension of \Gamma

PROOF. The first part is clear by Proposition 1. 3. Then, since \Delta is
C-f. g . projective and separable (see Proposition 4.7 [4]), \Delta is a Frobenius
C-algebra by EndO-Watanabe’s Theorem. Then \Lambda is a Frobenius extension
of \Gamma (see Corollary 2 [8]).
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2. Some remarke on separable extensions over simple rings

First we shall give an example of H-separable extension over a simple
ring, which has a closed relation to the well known classical “fundamental
theorem on simple rings”.

THEOREM 2. 1 Let \Lambda be a simple ring with the center C and \Delta a sim-
pleC-algebra contained in \Lambda, and denote \Gamma=V_{A}(\Delta) . Thm \Gamma is a simple
ring and \Lambda is an H separable extmsion of \Gamma

-

PROOF. \Lambda\otimes_{C}\Delta^{o} is a simple ring, and \Lambda is a left \Lambda\otimes_{C}\Delta^{o}- and right \Gamma-

bimodule. Furthermore, we have an isomorphism Hom(_{A}\otimes c^{\Delta\Lambda\otimes_{C^{\Delta^{\circ}}}}\circ\Lambda,\Lambda)\cong V_{A}(\Delta),
by corresponding f in Hom(_{\Lambda\otimes^{s_{\Delta}\circ\Lambda},\Lambda\otimes_{C^{\Delta^{\circ}}}}\Lambda) to f(1). Now consider the map

\eta : \Lambda\otimes_{C}\Delta^{O}– Hom (\Lambda_{\Gamma}, \Lambda_{\Gamma})(\eta(x\otimes d^{o})(y)=xyd, for x, y\in\Lambda, d\in\Delta)

Since \Lambda\otimes_{C}\Delta^{o} is a simple ring, \Lambda is a \Lambda\otimes_{C}\Delta^{O}-generator. Hence \Lambda is right
finitely generated projective over \Gamma\cong End(_{A\otimes_{C^{\Delta}}}\circ\Lambda), and we have also

\Lambda\otimes_{C}\Delta^{o}\cong Bicom(_{4\otimes_{C^{\Delta}}},\circ\Lambda)\cong Hom(\Lambda_{\Gamma}, \Lambda_{\Gamma})

The composition of the above isomorphisms is exactly \eta, which is a \Lambda-\Lambda-

map Hence Hom (\Lambda_{\Gamma}, \Lambda_{\Gamma}) is \Lambda-centrally projective, i.e. , Hom (\Lambda_{\Gamma}, \Lambda_{\Gamma}) is
isomorphic to a direct summand of a finite direct sum of copies of \Lambda as
\Lambda-\Lambda-module. Therefore \Lambda is an H-separable extension of \Gamma by Corollary
3 [10]. That \Gamma is a simple ring is well known. But this is clear by the
fact that \Gamma\cong End(_{A\otimes_{C^{\Delta}}}\circ\Lambda) and \Lambda is finitely generated by a simple ring \Lambda\otimes_{C}\Delta^{o} .

In case \Gamma is a simple ring and \Lambda is an H-separable extension of \Gamma, \Lambda

is a simple ring, \Delta is a simple C-algebra with [\Lambda:\Gamma]_{l}=[\Lambda:\Gamma]_{r}=[\Delta:C] ,
and \Gamma=V_{A}(V_{A}(\Gamma)) (see Theorem 1.5 [11]). Now we shall study some prop-
erties of intermediate simple ring between \Lambda and \Gamma Before then, we shall
consider a general case. Let \Lambda be an arbitrary ring and \Gamma a subring of
\Lambda, and let M be a left \Gamma-module. Then \Lambda\otimes_{\Gamma}M is a left \Lambda- and right \Delta-

bimodule by x(y\otimes m)d=xyd\otimes m for x, y\in\Lambda, d\in\Delta and m\in M. By this
module structure we have,

LEMMA 2. 1 Let \Gamma and \Lambda be arbitrary rings with \Gamma a subring of \Lambda,
and let M be an arbitrary porjective left \Gamma-module. Then for any subring
D of \Delta, we have (\Lambda\otimes_{\Gamma}M)^{D}=V_{A}(D)\otimes_{\Gamma}M.

PROOF. Denote B=V_{A}(D) . Clearly B\supset\Gamma, and B\otimes_{\Gamma}M is a submodule
of \Lambda\otimes_{\Gamma}M, since M is \Gamma projective Let \{f_{i}, m_{i}\} be a dual basis of rM.
i.e. , f_{i}\in Hom(_{\Gamma\Gamma}M,\Gamma) and m_{i}\in M such that for every m\in M, f_{i}(m)=0 for
all but a finite number of i, and m= \sum f_{i}(m)m_{i} . Now for each i, define
a \Lambda map F_{i} of \Lambda\otimes_{\Gamma}M to \Lambda by F_{i}(x\otimes m)=xf_{i}(m) for x\in\Lambda and m\in M.
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Then clearly \{F_{i}, 1\otimes m_{i}\} is a dual basis of A\Lambda\otimes_{r}M. Hence we have \alpha=

\sum F_{i}(\alpha)\otimes m_{i} for any \alpha\in\Lambda\otimes_{\Gamma}M. Let \beta=\sum x_{f}\otimes n_{f} be an arbitrary element
of (\Lambda\otimes_{\Gamma}M)^{D} . Then d \beta=\beta d=\sum x_{f}d\otimes n_{f} for every d\in D, and we have
dF_{i}( \beta)=F_{i}(d\beta)=F_{i}(\beta d)=F_{i}(\sum x_{f}d\otimes n_{f})=\sum x_{f}df_{i}(n_{f})=\sum x_{f}f_{i}(n_{f})d=\sum F_{i}(\beta)d,
since d\in D\subset\Delta and f_{i}(n_{f})\in\Gamma Hence F_{i}(\beta)\in V_{A}(D)=B for each i. Since
\beta=\sum F_{i}(\beta)\otimes m_{i} , we have \beta\in B\otimes_{\Gamma}M. B\otimes_{\Gamma}M\subset(\Lambda\otimes_{\Gamma}M)^{D} is clear. There-
fore we have (\Lambda\otimes_{\Gamma}M)^{D}=B\otimes_{l’}M.

COROLLARY 2. 1 Let \Lambda be an arbitrary algebra over a commutative
ring R and M a projective R-module. Then we have (\Lambda\otimes_{R}M)^{A}=C\otimes_{R}M,
where C is the center of \Lambda .

PROPOSITION 2. 1 Let \Lambda be an H-separable extension of \Gamma such that
\Lambda is left \Gamma-projective. Then for any C-subalgebra D of \Delta and for B=
V_{A}(D), we have;

(1) The map \eta_{B} of B\otimes_{\Gamma}\Lambda to Hom(_{DD}\Delta,\Lambda) defifined by \eta_{B}(b\otimes x)(d)=

bdx is a B-\Lambda isomorphism.
(2) If \Delta is a left D-generator, then B is left relatively separable over

\Gamma in \Lambda .
(3) If \Delta is left D-f. g . projective, then BB\otimes_{\Gamma}\Lambda_{A}<\oplus_{B}(\Lambda\oplus\cdots\oplus\Lambda)_{A} .
(4) If furthermore B is right \Gamma-projective, then the map \rho_{B} of B\otimes_{\Gamma}B

to Hom(_{D}\Delta_{D,D}\Lambda_{D}) defifined in the same way as (1) is a B-B-isomorphism.
PROOF. (1). Since \Lambda is H-separable over \Gamma,\cdot we have a (\Lambda-\Delta)-(\Delta-\Lambda)-

isomorphism \eta of \Lambda\otimes_{\Gamma}\Lambda to Hom(_{CC}\Delta,\Lambda) defined in the same way as \eta_{B} .
Hence we have the following commutative diagram;

B\otimes_{\Gamma}\Lambda-Hom(_{DD}\Delta,\Lambda)

\downarrow

\eta_{B}

\downarrow

\Lambda\otimes_{\Gamma}\Lambda\overline{\eta}
Hom (_{CC}\Delta,\Lambda)

where all vertical maps are inclusion maps, since \otimes_{\Gamma}\Lambda is exact. Hence \eta_{B}

is a monomorphism. Then since Hom(_{DD}\Delta,\Lambda)=[Hom(_{C}\Delta_{ C},\Lambda)]^{D}, and B\otimes_{\Gamma}\Lambda

=V_{A}(D)\otimes_{\Gamma}\Lambda=(\Lambda\otimes_{\Gamma}\Lambda)^{D} by Lemma 2. 1, we see that \eta_{B} is an epimorphism.
Tnus \eta_{B} is an isomorphism. (2). Now consider the following commutative
diagram of B-\Lambda maps

B\otimes_{\Gamma}\Lambda-_{\eta_{B}},Hom(_{D}\Delta_{ D},\Lambda)\backslash _{\backslash _{\Lambda}\swarrow}\pi_{B}\overline{\prime}_{\varphi}

where \varphi(f)=f(1) for f\in Hom(_{DD}\Delta,\Lambda), and \pi_{B} is the contraction map.
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Denote the left D-projection of \Delta to D by p and the canonical B-\Lambda-

isomorphism of \Lambda to Hom(_{DD}D,\Lambda) by \nu . Then, we see \varphi\circ Hom(p, \Lambda)\circ\nu=1_{A} .
Thus \pi_{B} splits as B-\Lambda-map. (3). Since \Delta is left D-f. g . projective, we have
BB \otimes_{\Gamma}\Lambda_{A}\cong_{B}Hom(_{DD}\Delta,\Lambda)_{A}<\oplus_{B}[\sum n\oplus Hom(_{DD}D,\Lambda)]_{A}\cong_{B}(\Lambda\oplus\cdots\oplus\Lambda)_{A} . (4). Since
B is right \Gamma-f.g. projective and \eta_{B} in (1) is an isomorphism, we can prove
(4) in the same way as (1).

Applying this to H-separable extensions over simple rings, we obtain;

PROPOSITION 2. 2 Let \Gamma be a simple ring and \Lambda an H-separable ex-
tension of \Gamma Then for any simple subring B of \Lambda which contains \Gamma and
for D=V_{A}(B), we have ;

(1) The following two maps are isomorphisms
\eta_{B} : B\otimes_{\Gamma}\Lambdaarrow Hom(_{DD}\Delta,\Lambda)

(\eta_{B}(b\otimes x)(d)=bdx for x\in\Lambda, b\in B, d\in\Delta)

\rho_{B} : B\otimes_{\Gamma}Barrow Hom(_{D}\Delta_{D,D}\Lambda_{D})

(\rho_{B}(a\otimes b)(d)=adb, for a, b\in B, d\in\Delta)

(2) B is left as well as right relatively separable over \Gamma in \Lambda .
PROOF. It is well known that D is a simple C-subalgebra of \Delta and

B=V_{A}(D), by classical fundamental theorem on simple ring. Therefore,
the proof is immediate by Proposition 2. 2.

COROLLARY 2. 2 Let \Lambda, \Gamma, B and D be as in Prop. 2. 2. Then, we
have;

(1) B is a separable (resp. an H-separable) extension of \Gamma, if and only
if DDD<\oplus_{D}\Delta_{D} (resp. D\Delta D<\oplus_{D}(D\oplus\cdots\oplus D)_{D}).

(2) If BBB<\oplus_{B}\Lambda_{B} , B is a separable extension of \Gamma, and D is a sepa-
rable C-algebra.

PROOF. (1). Since \rho_{B} defined in Prop. 2. 2 is a B-B-isomorphism, the
‘if’ part is clear. The ‘only if part is due to (0.7) [11]. (2.) Since B\otimes_{\Gamma}\Lambda

arrow\Lambda splits and BBB<\oplus_{B}\Lambda_{B} , B is separable over \Gamma by (1.4) [11]. Then D
is C-separable by Theorem (1. 3) [11].

3. On ideals in \bm{H}-separable extension

It is well known that in Azumaya algebra there exists a 1-1 corre-
spondence between the class of two sided ideals and that of ideals of its
center. Therefore, it may be natural to consider this probrem for H-sepa-
rable extension. The following theorems are easy to prove but are inter-
esting. Before proving them, we need some remarks. In case \Lambda is an H-
separable extension of \Gamma,\cdot we have the following three ring isomorphisms
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\eta_{l} : \Delta\otimes_{C}\Lambda^{o}arrow Hom(_{\Gamma}\Lambda_{ \Gamma},\Lambda)

\eta_{r} : \Lambda\otimes

.
c^{\Delta^{o}arrow Hom(\Lambda_{\Gamma}, \Lambda_{\Gamma})}

\eta_{t} : \Delta\otimes_{C}\Delta^{o}arrow Hom(_{\Gamma}\Lambda_{\Gamma,\Gamma}\Lambda_{\Gamma})

defined by \eta_{l}(d\otimes x^{o})(y)=dxy , for x, y\in\Lambda and d\in\Delta, etc., (Prop. 3. 1 &4. 7
[4] ).

LEMMA 3. 1 Let \Lambda be an H-separable extension of \Gamma Then for left
\Delta- and right \Lambda-bisubmodule \mathfrak{A} of \Lambda, and for any f\in Hom(\Gamma\Lambda, \Gamma\Lambda) , we have
f(\mathfrak{A})\subset \mathfrak{A} .

PROOF. By the isomorphism \eta_{l} , we see f( \mathfrak{A})=\sum d_{i}\mathfrak{A}x_{i}\subset \mathfrak{A} for some
d_{i}\in\Delta and x_{i}\in\Lambda .

THEOREM 3. 1 Let \Lambda be an H-separable extension of \Gamma such that \Lambda

is right \Gamma-projective. Then for any left ideal \mathfrak{A} of \Lambda which is dso a rignt
\Delta-submodule, we have \mathfrak{A}=\Lambda(\mathfrak{A}\cap\Gamma) . In particular, for any two sided ideal
\mathfrak{A} of \Lambda, we have \mathfrak{A}=\Lambda(\mathfrak{A}\cap\Gamma)\Lambda .

PROOF. Let \{f_{f}, x_{f}\} be a dual basis of \Lambda_{\Gamma} . Then, since f_{f}\in Hom(\Lambda_{\Gamma} ,
\Gamma_{\Gamma})\subset Hom(\Lambda_{\Gamma}, \Lambda_{\Gamma}), f_{f}(\mathfrak{A})\subset \mathfrak{A}\cap\Gamma for each j. Then for each a\in \mathfrak{A} , a= \sum x_{f}

f_{f}(a)\in\Lambda(\mathfrak{A}\cap l^{1}) . Thus \mathfrak{A}=\Lambda(\mathfrak{A}\cap\Gamma) .
COROLLARY 3. 1 If \Gamma is a two sided simple ring, and if \Lambda is an H-

separable extension of \Gamma such that \Lambda is left or right \Gamma-projective, then \Lambda

is also a two sided simple ring.
Now consider the following correspondences of ideals;

I:\mathfrak{A}arrow \mathfrak{A}\cap\Gamma M:\alpha- \Lambda a

where \mathfrak{A} is a left ideal of \Lambda which is also a right \Delta-module, and \alpha is a left
ideal of \Gamma Then we have;

THEOREM 3. 2 Let \Lambda be an H-separable extension of \Gamma such that \Gamma_{\Gamma}

<\oplus\Lambda_{\Gamma} and \Lambda is right \Gamma-projective. Then we have;
(1) I and M are mutually converse 1-1 correspondences between the

class of left ideals of \Lambda which are also right \Delta-submodules and the class
of left ideals of \Gamma_{-}

(2) I and M induce 1-1 crrespondences between the class of left \Lambda-

and right \Gamma\Delta-bisubmodules of \Lambda and the class of two sided ideals of \Gamma

(3) If furthermore, \Lambda=\Gamma\Delta (e. g. , \Lambda is \Gamma-centrally projective), then
M(a)=\Delta a, and I and M induce 1-1 correspondences between the class of
two sided ideals of \Lambda and that of \Gamma_{-}

PROOF. For any left ideal 0 of \Gamma, \alpha\Delta=\Delta 0 and \Lambda\alpha is a \Lambda- \Delta-submodule.
Also it is obvious that \Lambda c|\cap\Gamma=0 , since \Gamma_{\Gamma}<\oplus\Lambda_{\Gamma} . MI=identity is due to
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Theorem 3. 1. Thus we have proved (1). (2) and (3) are easy consequences
of (1).

As for two sided ideal in general case, we see
PROPOSITION 3. 1 Let \Lambda be an H-separable extension of \Gamma- Then for

any two sided ideal \mathfrak{A} of \Lambda , we have (\mathfrak{A}\cap C)\Delta=\mathfrak{A}\cap\Delta .
PROOF. By (0. 1) [11], \Lambda is H-separable over \Gamma if and only if M^{4}.\otimes_{C}\Delta

\cong M^{\Gamma} by m\otimes darrow md(m\in M, d\in\Delta), for every two sided \Lambda-module M. Hence
\mathfrak{A}\cap\Delta=\mathfrak{A}^{\Gamma}\cong \mathfrak{A}^{A}\otimes_{C}\Delta=(\mathfrak{A}\cap C)\otimes_{C}\Delta\cong(\mathfrak{A}\cap C)\Delta . Thus we have (\mathfrak{A}\cap C)\Delta=\mathfrak{A}\cap\Delta .

Next we shall study some properties of ring homomorphisms of H-
separable extensions. The author has proved the next proposition in [7].

PROPOSITION 3. 2 Let \Lambda be an H-separable extension of \Gamma, \varphi a ring
homomorphism of \Lambda onto another ring \overline{\Lambda} , and denote \overline{\Gamma}=\varphi(\Gamma),\overline{\Delta}=V- (\overline{\Gamma})

and \overline{C}=the center of \overline{\Lambda} . Then \overline{A} is an H-separable extension of \overline{\Gamma} , and
the map g of \overline{C}\otimes_{C}\Delta to \overline{\Delta} defifined by g(\overline{c}\otimes d)=\overline{c}\varphi(d)(\overline{c}\in\overline{C}, d\in\Delta) is an
isomorphism. Consequently,\overline{\Delta}=\overline{C}\varphi(\Delta). {Prop. 1. 5 [7] ).

PROPOSITION 3. 3 Let \Lambda, \Gamma, \varphi,\overline{\Lambda} and \overline{\Gamma} be as above. Then \varphi induces
ring homomorphism \overline{\varphi}_{l} and \overline{\varphi}_{r} , as follows ;

\overline{\varphi}_{l} : Hom(_{\Gamma}\Lambda_{ \Gamma},\Lambda)arrow Hom(F\overline{\Lambda},\overline{r}\overline{\Lambda}) _{\overline{\varphi}_{l}(f)}(\varphi(x))=\varphi(f(x))

\overline{\varphi}_{r} : Hom(\Lambda_{\Gamma}, \Lambda_{\Gamma})- Hom(\overline{\Lambda}-, \overline{\Lambda}-) \overline{\varphi}_{r}(g)(\varphi(x))=\varphi(g(x))

where f\in Hom(_{\Gamma\Gamma}\Lambda,\Lambda), and x\in\Lambda . Both \overline{\varphi}_{l} and \overline{\varphi}_{r} are surjections.
PROOF. We need only to prove on \overline{\varphi}_{l} . Since f(ker\varphi)\subset ker\varphi for

every f\in Hom(_{\Gamma\Gamma}\Lambda,\Lambda) by Lemma 3. 1, \overline{\varphi}_{l} is a well defined ring homomor-
phism. By Prop. 3. 2, \overline{\Lambda} is H-separable over \overline{\Gamma} and \Delta\otimes{}_{C}\overline{C}\cong\overline{\Delta}(d\otimes\overline{c}arrow\varphi(d)c ,

for d\in\Delta, c\in\overline{C}). Hence \overline{\Delta}\otimes_{\overline{C}}\overline{4}^{o}\cong\Delta\otimes{}_{C}\overline{C}\otimes\sigma\overline{\Lambda}^{o}\cong\Delta\otimes_{C}\overline{\Lambda}^{O} . This isomorphism
induces a commutative diagram of ring homomorphisms;

\Delta\otimes_{C}\Lambda^{o-H}om(_{\Gamma}\Lambda_{ \Gamma},\Lambda)

\downarrow 1_{\Delta}\otimes\varphi\eta_{l} \downarrow\overline{\varphi}_{l}

\Delta\otimes_{C}\overline{4}^{o}Hom(_{\overline{r}^{j},\overline{r}}\overline{A})\overline{\xi_{l}}

where bl\epsilon(d\otimes x)rightarrow 0(\overline{y})=\varphi(d)\overline{y}xarrow, for \overline{x},\overline{\iota J}\in\overline{A} and d\in\Delta . Clearly \xi_{l} is an is0-
morphism. Then since \eta_{l} and \xi_{l} are isomorphisms and 1_{\Delta}\otimes\varphi is a surjec-
tion, \overline{\varphi}_{l} is a surjection.

PROPOSITION 3. 4 Let \Lambda, \Gamma,\overline{\Lambda},\overline{\Gamma} and \varphi be as in Prop. 3. 2. If \Lambda=\Gamma

\oplus A as left (resp. right or two sided) \Gamma-module, then we have;
(1) \overline{A}=\overline{T}^{i}Q+\varphi(A) as left (resp. right or two sided) \overline{\Gamma}-module.
(2) For any two sided ideal \mathfrak{A} of \Lambda, we have \mathfrak{A}=(\mathfrak{A}\cap\Gamma)\oplus(\mathfrak{A}\cap A) .
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PROOF. Suppose \Gamma\Lambda=_{\tau}(\Gamma\oplus A), and let \pi be the left \Gamma-projection of \Lambda

onto \Gamma. Then since \pi\in Hom(_{\Gamma\Gamma}\Lambda,\Lambda)\cong\Delta\otimes_{C}\Lambda^{o} , there exists \sum d_{i}\otimes x_{i}^{o}\in\Delta\otimes_{C}\Lambda^{o}

such that \sum d_{i}x_{i}=1 and \sum d_{i}Ax_{i}=0 . Then clearly \sum\varphi(d_{i})\varphi(x_{i})=\varphi(\sum d_{i}

x_{i})=\overline{1} in \overline{\Lambda}, and \varphi(d_{i})\in V- (\overline{\Gamma}) for each i. We also have \sum\varphi(d_{i})\varphi(A)\varphi(x_{i})

= \varphi(\sum d_{i}Ax_{i})=0 . Therefore, the map \overline{\pi} of \overline{A} to \overline{\Gamma} such that \overline{\pi}(x)arrow=\sum

\varphi(d_{i})x\varphi(arrow x_{i}) for \overline{x}\in\overline{A} , is the left \overline{\Gamma}-projection of \overline{A} to \overline{\overline{\Gamma}}

- Thus we have
\overline{r}\overline{A}= - (\overline{\Gamma}\oplus\varphi(A)) . Similarly we can prove in case \Lambda_{\Gamma}=(\Gamma\oplus A)_{\Gamma} . Further-
note since \Delta\otimes_{C}\Delta^{o}=Hom(_{\Gamma}\Lambda_{\Gamma,\Gamma}\Lambda_{\Gamma}) by \eta_{t} , we can prove in case \Gamma\Lambda I’\Gamma=(\Gamma\oplus

A)_{\Gamma} , in the same way. (2). Let \mathfrak{A} be an arbtrary two sided ideal of \Lambda,
and suppose \Lambda=_{\Gamma}(\Gamma\oplus A) . Let \varphi be the canonical map of \Lambda to \Lambda/A , and
put \overline{A}=\Lambda/A and \overline{\overline{\Gamma}}=\varphi(\Gamma) . Then by (1), we have \overline{r}\overline{\Gamma}= - (\overline{\Gamma}\oplus\varphi(A)) . For
any x\in \mathfrak{A} , we have x=r+a with r\in\Gamma and a\in A . Then 0=\varphi(x)=\varphi(r)+

\varphi(a), and \varphi(r)=\varphi(a)=0 . Therefore, r\in\Gamma\cap \mathfrak{A} and a\in A\cap \mathfrak{A} . Thus we have
\mathfrak{A}=(\Gamma\cap \mathfrak{A})\oplus(A\cap \mathfrak{A}) . We can prove in other cases in the same way.

4. On \bm{H}-separable extensions over self injective rings

To begin with, we note the following interesting properties of general
Hinseparable extensions. Let \sum x_{if}\otimes y_{if} , d_{t}(i=1, \cdots, n) be an H-system of
an H-separable extension \Lambda of f\Gamma, i.e. , 1 \otimes 1=\sum x_{if}\otimes y_{if}d_{i} , \sum x_{tf}\otimes y_{if}\in(\Lambda

\otimes_{\Gamma}\Lambda)^{A} and d_{i}\in\Delta . Now suppose that \Gamma is a left \Gammaindirect summand of \Lambda,
and let p be the \Gamma-projection of \Lambda to \Gamma Then for any z in \Lambda, we have;
z \otimes 1=\sum zx_{if}\otimes y_{ij}d_{i}=\sum x_{if}\otimes y_{if}zd_{i} , and z \otimes 1=z\otimes p(1)=\sum x_{tf}\otimes p(y_{if}zd_{i}) .
Thus we have an equation z= \sum x_{if}p(y_{if}zd_{i}), for any z in \Lambda . By this
formula, we have ;

THEOREM 4. 1 Let \Lambda be an H-separable extension of \Gamma such that \Gamma

is a left \Gammaindirect summand of \Lambda . Thm we have
(1) \Lambda is right \Gamma- fifinitdy generated.
(2) For any two sided ideal \mathfrak{A} of \Lambda, we have \mathfrak{A}=\Lambda(\Gamma\cap \mathfrak{A})=\Lambda(\Gamma\cap \mathfrak{A})\Lambda .
PROOF. (1). Let \sum_{j}x_{if}\otimes y_{if} , d_{i}(i=1,2, \cdots, n) and p be as above. Then,

since p(y_{if}zd_{i})\in\Gamma, we see \Lambda=\sum x_{if}\Gamma
- (2). For any a in \mathfrak{A}, we have a=

\sum x_{if}p(y_{if}ad_{i}) . But since y_{if}ad_{i}\in \mathfrak{A} , p(y_{if}ad_{i})\in\Gamma\cap \mathfrak{A} by Lemma 3. 1.
Hence \mathfrak{A}\subset\Lambda(\Gamma\cap \mathfrak{A}).

By Prop. 1. 1, we see that if \Lambda is an H-separable extension of \Gamma with
\Gamma a left direct summand of \Lambda, then A \Lambda<\oplus_{A}[\sum n\oplus Hom(_{\Gamma\Gamma}\Lambda,\Gamma)] , i.e. , Hom(_{\Gamma}\Lambda,
\Gamma\Gamma) is a left \Lambda-generator. On the other hand, for AM_{\rho} and AN, if N is \Lambda-

injective and M is \Omega-flat, Hom (AM, AN) is \Omega-injective. Therefore, we have
PROPOSITION 4. 1 Let \Lambda be an H-separable extension of \Gamma. Then we

have
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(1) If \Gamma is left self injective, then \Lambda is also left self injective.
(2) If \Gamma is left self injective and \Lambda is right \Gamma- fiat, \Lambda is left \Gamma injective

and [Hom(_{\Gamma}\Lambda_{ \Gamma},\Lambda)]^{o} is a left self injective ring.

PROOF. (1). Since \Gamma is left \Gamma injective, Hom(_{\Gamma\Gamma}\Lambda,\Gamma) is left \Lambda injective,

and also we have \Gamma\Gamma<\oplus_{\Gamma}\Lambda . Then by Prop. 1. 1, we see \Lambda\Lambda<\oplus_{A}[\sum n\oplus

Hom(_{\Gamma\Gamma}\Lambda,\Gamma)] . Hence \Lambda is left \Lambda-injective. (2). Since \Lambda is left \Lambda injective
and right \Gamma-flat, \Lambda(\cong {}_{A}Hom(_{A}\Lambda_{ A},\Lambda)) is left \Gamma-injective. Next, put \Omega=[Hom

(_{\Gamma l^{7}}\Lambda,\Lambda)]^{o} . Since \Gamma\Gamma<\oplus_{\Gamma}\Lambda, \Lambda is right \Omega-f.g. projective. Then Hom (_{\Gamma\Gamma}\Lambda,\Lambda)

is left \Omega injective, as \Lambda is left \Gamma injective.

By Theorem 4. 1 and Proposition 4. 1, we obtain
THEOREM 4. 2 If \Gamma is a QF-ring and if \Lambda is an H-separable exten-

sion of \Gamma_{} then \Lambda is also a QF-ring.
PROOF. Since \Gamma is left as well as right self injective, \Lambda is left as well

as right self injective. Moreover, \Lambda is right \Gamma-finitely generated, since
\Gamma\Gamma<\oplus_{I’}\Lambda . Then \Lambda is right artinean, since \Gamma is so. Hence \Lambda is a QF-ring.
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