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Introduction.

M. Nakai (cf. [4]) proved that every quasiconformal mapping between
two open Riemann surfaces can be homeomorphically extended to their
Royden compactifications. It is well-known (cf. [2]) that the Royden com-
pactification is not metrizable. In this paper we shall study the home0-
morphic extensibility of quasiconformal mappings between two open Rie-
mann surfaces to their metrizable compactifications. To do so we shall
introduce a new metric d=d_{R} on an open Riemann surface R induced by
the Kuramochi capacity on R. Our main results are the followings:

(i) Let R be an open Riemann surface. If each Kuramochi kernel
\tilde{g}_{b} with pole b on the Kuramochi boundary of R is unbounded, then the
completion of R with respect to d is compact.

(ii) Let R_{1} and R_{2} be two open Riemann surfaces. If both R_{1} and
R_{2} satisfy the assumption in (i), then every quasiconformal mapping from
R_{1} onto R_{2} can be homeomorphically extended over their completions with
respect to d.

1. Metrics induced by capacities.

Let R be an open Riemann surface. We say that a closed curve in
R joining a\in R and b\in R means a continuous mapping \mathcal{T} : z=z(t) of [0, 1]
into R such that z(0)=a and z(1)=b. We write \mathcal{T}=\{z(t);0\leqq t\leqq 1\} for
simplicity. We denote by \Gamma_{a,b}=\Gamma_{a,b}(R) the family of all closed curves in
R joining a and b.

A non-negative finite real-valued function \Phi on the family of all
compact subsets on R is said to be a capacity in the sense of G. Choquet
if it satisfies the following properties:

(a) If K_{1}\subset K_{2}, then \Phi(K_{1})\leqq\Phi(K_{2}) .
(b) \Phi(K_{1}\cup K_{2})+\Phi(K_{1}\cap K_{2})\leqq\Phi(K_{1})+lp(K_{2}) .
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(c) Given a compact subset K of R and any \epsilon>0, there is an open
set G in R such that any compact subset K’ with K\subset K’\subset G implies
\Phi(K’)<\Phi(K)+\epsilon .

DEFINITION 1. For a, b\in R, we set
\mu(a, b)=\inf\{\Phi(\gamma);\gamma\in\Gamma_{a,b}(R)\} .

PROPOSITION 1.
(i) \mu is a pseudometric on R, i.e. ,

(1) 0\leqq\mu(a, b)<\infty , a=b–\Rightarrow, \mu(a, b)=0 .
(2) \mu(a, b)=\mu(b, a) .
(3) \mu(a, b)\leqq\mu(a, c)+\mu(c, b) .

(ii) \mu(a, b)=\inf\{\Phi(K) ; where K runs over all continua in R contain-
ing both a and b}.

PROOF. The proof of (i) follows immediately from the properties
(a), (b) and (c) of capacity.

(ii) Let a and b any points in R. We denote by \nu(a, b) the right
hand side in ( i). Since any closed curve is a continuum, we obtain that
\nu(a, b)\leqq\mu(a, b) . For any \epsilon>0 , there is a continuum E in R containing
both a and b such that \Phi(E)<\nu(a, b)+\epsilon . Since E is a connected compact
set, we can find a domain G ( =a connected open set) on R such that
E\subset G and any compact set F with E\subset F\subset G implies \Phi(E)\leqq\Phi(F)<\Phi(E)+\epsilon .
Since G is connected and contains both a and b, there is a closed curve
\gamma in G joining both a and b. If we set F=E\cup\gamma, then we obtain that

\mu(a, b)\leqq\Phi(\gamma)\leqq\Phi(E\cup\gamma)<\Phi(E)+\epsilon<\nu(a, b)+2\epsilon .

Since \epsilon is arbitrary, we complete the proof.

Some special metrics induced by capacities

DEFINITION 2 ([1]). Let R be a hyperbolic Riemann surface. Let z
be a fixed point in R. For a compact subset K of R-\{z\} , we denote by
\omega_{z}(K) the harmonic measure of \partial K with respect to R-K at z. For a, b\in

R-\{z\} , we set
\mu(a, b)=H_{z}(a, b)=\inf\{\omega_{z}(\gamma);\gamma\in\Gamma_{a,b}(R-\{z\}) .

It is known [1] that this \mu(a, b) is a metric on R-\{z\} . Furthermore
the topology induced by \mu is compatible with the original topology on
R-\langle z\} .

DEFINITION 3. Let R be a hyperbolic Riemann surface and let C=C_{R}

be the Green capacity on R. For a, b\in R , let
\mu(a, b)=\rho(a, b)=\rho_{R}(a, b)=\inf\{C(\gamma);\gamma\in\Gamma_{a,b}(R)\} .
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DEFINITION 4. Let R be an open Riemann surface. Let K_{0} be a
closed disk in R and let R_{0}=R-K_{0} . Let \hat{C} be the Kuramochi capacity
on R_{0} (cf. [2]). For a, b\in R_{0}, let

\mu(a, b)=d(a, b)=d_{R_{0}}(a, b)=\inf\{\tilde{C}(\gamma);\gamma\in\Gamma_{a,b}(R_{0})\} .
By elementary properties of Green capacity and Kuramochi capacity,

we obtain the following lemma.
LEMMA 1. (i) Let R be a hyperbolic Riemann surface and G be a

domain on R. Thm
\rho_{R}(a, b)\leqq\rho_{G}(a, b) for a, b\in G .

(ii) Let R be an open Riemann surface. Let K_{0} be a closed disk in
R and let R_{0}=R-K_{0} . Then

d_{R_{0}}(a, b)\leqq\rho_{R_{0}}(a, b) for a, b\in R_{0} .
(iii) Let R be an open Riemann surface. Let K_{0}, K_{0}’ be closed disks

in R with K_{0}\subset K_{0}’ . Set R_{0}=R-K_{0} and R_{0}’=R-K_{0}’ . Thm

d_{R_{0}}(a, b)\leqq d_{R_{0}’}(a, b) for a, b\in R_{0}’ .

2. The metric \rho .
LEMMA 2. Let U=\{|z|<1\} . Thm\rho_{U}(a, b)=C_{U}([0, | \frac{b-a}{1-ab}|]) for

a, b\in U.
PROOF. We may assume that a\neq b .
(i) Suppose a=0. Let \gamma be any curve in \Gamma_{0,b}(U) . Then it follows

from Hilfssatz 19.1 in [3] that C_{U}([0, |b|])\leqq C_{U}(\gamma) . Hence we see that \rho_{U}(0,
b)=C_{U}([0, |b|]) .

(ii) Suppose a is arbitrary. Then we can find a linear transforma-
tion w=T(z) of U onto itself such that T(0)=0 and T(b)=| \frac{b-a}{1-\sigma b}| . Since
\rho_{U} is invariant under conformal mappings, it follows from (i) that

\rho_{U}(a, b)=\rho_{U}(T(a), T(b))=\rho_{U}(0 , | \frac{b-a}{1-ab}|)=C_{U}([0, | \frac{b-a}{1-ab}|]) .

COROLLARY (Schwartz lemma). Every analytic mapping f:Uarrow U is
distancedecreasing, i.e. , satisfies

\rho_{U}(f(a),f(b))\leqq\rho_{U}(a, b) (a, b\in U)

and the equality is valid if and only if f is an automorphism of U.
PROPOSITION 2. (i) \rho_{U} is a metric on U.
(ii) The metric \rho_{U} is compatible with the topology on U.
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PROOF. By properties of capacity and Lemma 2, we have (i).
Furthermore it follows from Lemma 2 that (ii) is valid.

For a, b\in U, we set

\sigma(a, b)=\frac{1}{2}\log\frac{1+r}{1-r}

where r=| \frac{b-a}{1-ab}| . The function \sigma(a, b) is called a non-euclidean metric

on U.
PROPOSITIOn 3. For a fixed a\in U, we have

\lim_{barrow\xi}\frac{\rho_{U}(a,b)}{\sigma(a,b)}=\frac{4}{\pi^{2}}

unifomly in \xi\in\partial U.
PROOF. For a fixed a\in U and an arbitrary b\in U, let r=| \frac{b-a}{1-ab}| . If

b tends to a boundary point \xi\in\partial U, then r tends to 1. Thus it follows
from [3] that

\rho_{U}(a, b)=\frac{2}{\pi^{2}}\log\frac{8}{1-r}+O(1) as rarrow 11

Hence we have

\rho_{U}(a, b)=\frac{2}{\pi^{2}}\log\frac{1}{1-r}+O(1) as rarrow 1t

Since \sigma(a, b)=\frac{1}{2}\log\frac{1}{1-r}+O(1) , we complete the proof.

COROLLARY. For t(0<t<1), we set D_{t}=\{|a|<t\} . Thm, for any

t_{1}(0<t_{1}<1) and c> \frac{4}{\pi^{2}}, there exists t_{2}(t_{1}<t_{2}<1) such that

c^{-1}\sigma(a, b)\leqq\rho_{U}(a, b)\leqq c\sigma(a, b)

for any a\in D_{t_{1}} and b\in D-\overline{D}_{t_{2}} .

LEMMA 3. Let R be an open Riemann surface and K_{0} be a closed disk
on R. Let U be an open disk on R with U\cap K_{0}=\emptyset . Let K be a compact
subset of U such that U-K is connected. Let \{K_{n}\}_{n=1}^{\infty} be a family of
compact subsets of K. Then the following properties are equivalmt each
other.

(a) C_{U}(K_{n})arrow 0 as narrow\infty .
(b) C_{G}(K_{n})arrow 0 as narrow\infty for any hyperbolic dmain G on R with

U\subset G .
(c) \tilde{C}(K_{n})arrow 0 as narrow\infty .
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PROOF. Let u_{n} (resp. v_{n}) be the harmonic measure of \partial K_{n} with respect
to U-K_{n} (resp. G-K_{n}). Then it is easy to see that C_{U}(K_{n}) (resp. C_{G}(K_{n}),
\overline{C}(K_{n}))-0 as narrow\infty if and only if u_{n} (resp. v_{n} , 1_{\tilde{K}_{n}})^{1)} converges to zero
locally uniformly in U-K (resp. G–K, R_{0}-K ) as narrow\infty . Since C_{G}(K_{n})\leqq

C_{U}(K_{n}),\tilde{C}(K_{n})\leqq C_{R_{0}}(K_{n}) and v_{n}\leqq 1_{\tilde{I},f_{n}} in U-K(n=1,2, \cdots) , we complete the
proof.

THEOREM 1. Suppose R is a hyperbolic Riemann surface. Then
(i) \rho_{R} is a metric on R.
(ii) The metric \rho_{R} is compatible zvith the topology on R.
PROOF. We set \rho=\rho_{R} in the following. Since \rho is a pseudometric,

it is sufficient to prove that \rho(a, b)=0 implies a=b. If this were not the
case, then we could find a and b in R such that \rho(a, b)=0 and a\neq b .
Then we can find a parametric disk U on R with center at a such that
b\in U. Since a\neq b , \rho_{U}(a, b)>0 . On the other hand, since \rho(a, b)=0, there
is a subfamily \{\gamma_{n}\}_{n=1}^{\infty} of \Gamma_{\iota,b}, such that C_{R}(\gamma_{n})arrow 0 as narrow\infty . Let \zeta=\psi(z) be
a local parameter on U such that \psi(a)=0 and \psi(U)=\{|\zeta|<1\} . For each
n, we can find a subcurve \gamma_{n}’ of \gamma_{n} on \psi^{-1}(|\zeta|\leqq|\psi(b)|) which connects a
and a point of \psi^{-1}(|\psi(b)|) . Then 0<\rho_{U}(a, b)\leqq C_{U}(\gamma_{n}’) . Since C_{R}(\gamma_{n}’)\leqq C_{R}(\gamma_{n})

arrow 0 as narrow\infty , it follows from Lemma 3 that C_{U}(\gamma_{n}’)arrow 0 as narrow\infty . This is
a contradiction. Thus \rho(a, b)=0 implies a=b.

(ii) Let \{a_{n}\}_{n=1}^{\infty} be a sequence in R which tends to a\in R as narrow\infty .
Let U be a parametric disk in R with center at a. Then there is an n_{0}

such that a_{n}\in U if n\geqq n_{0} . Since 0\leqq\rho_{R}(a, a_{n})\leqq\rho_{U}(a, a_{n})arrow 0 as narrow\infty by
Proposition 1, we see that \rho_{R}(a, a_{n})arrow 0 as narrow\infty . Conversely suppose a is
a point in R and \{a_{n}\}_{n=1}^{\infty} is a sequence in R such that \rho(a, a_{n})arrow 0 as narrow\infty .
Then there are a parametric disk U with center at a which corresponds
to a unit disk \{|\zeta|<1\} and a subsequence \{a_{n_{k}}\}_{k=1}^{\infty} of \{a_{n}\}_{n=1}^{\infty} such that each
a_{n_{k}} does not belong to U. Let \zeta=\psi(z) be a local parameter on U such
that \psi(a)=0 and \psi(U)=\{|\zeta|<1\} . Since \rho(a, a_{n})arrow 0 as narrow\infty , we can find
\gamma_{n}\in\Gamma_{a,a_{n}}(n=1,2, \cdots) such that C_{R}(\gamma_{n})arrow 0 as narrow\infty . For each n_{k} , we can
find a subcurve \gamma_{n_{k}}’ of \gamma_{n_{k}} which connects a and a point b_{n_{k}} of \psi^{-1}(|\zeta|=

1/2) on \psi^{-1}(|\zeta|\leqq 1/2) . Since C_{R}(\gamma_{n_{k}}’)\leqq C_{R}(\gamma_{n_{k}})arrow 0 as karrow\infty , it follows from
Lemma 3 that C_{U}(\gamma_{n_{k}}’)-0 as karrow\infty . On the other hand, we obtain that
0<\rho_{\psi(U)}(0,1/2)=\rho_{U}(a, b_{n_{k}})\leqq C_{U}(\gamma_{n_{k}}’) . This is a contradiction. Therefore a_{n}

arrow a as narrow\infty .

1) See p. 163 in [2] for the definition.
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3. The metric d and quasiconformal mappings.

Let R be an open Riemann surface. Let K_{0} be a closed disk in R and
let R_{0}=R-K_{0} . Let \hat{\acute{C}} be the Kuramochi capacity on R_{0} (cf. [2]).

THEOREM 2. ( i) d is a metric on R_{0}.
(ii) The metric d is compatible with the topology on R_{0} .
PROOF. ( i) Suppose d(a, b)=0 for some two distinct points a and b

of R_{0} . Then there exists a parametric disk U with center at a such that
b\in U. Let \zeta=\psi(z) be a local parameter on U such that \psi(a)=0 and \psi(U)

=\{|\zeta|<1\} . Since d(a, b)=0, there is a sequence \{\gamma_{n}\}_{n=1}^{\infty} in \Gamma_{a,b}(R_{0}) such
that \hat{C}(\gamma_{n})arrow 0 as narrow\infty . For each n, we can find a subcurve \gamma_{n}’ of \gamma_{n} which
connects a and a point b_{n} of \psi^{-1}(|\zeta|\leqq|\psi(b)|) on \psi^{-1}(|\zeta|\leqq|\psi(b)|) . Since
\tilde{C}(\gamma_{n}’)arrow 0 as narrow\infty , it follows from Lemma 3 that 0<\rho_{\phi(U)}(0, \psi(b))=\rho_{U}(a, b_{n})

\leqq C_{U}(\gamma_{n}’)arrow 0 as narrow\infty . This is a contradiction. Thus d is a metric.
The proof of (ii) can be proved by an analogous argument to the one

of (ii) in Theorem 1.
We refer to [4] for the definition and properties of quasiconformal

mapping. Let R_{1} , R_{2} be open Riemann surfaces and \phi be a quasiconformal
mapping of R_{1} onto R_{2} . We denote by BCD(R_{i}) the family of all bounded
continuous Dirichlet functions on R_{i}(i=1,2) (cf. [2]). For f\in BCD(R_{i}) , we
denote by ||f||_{R_{i}}^{2} the Dirichlet integral of f on R_{i}(i=1,2) . As for quasi-
conformal mappings and Dirichlet functions, the following theorem is well-
known.

THEOREM 3 (cf. [4]). Let \phi be a quasiconformal mapping of R_{1} onto
R_{2} . Then

1/K(\phi)||f||_{R_{1}}^{2}\leqq||f\circ\phi^{-1}||_{R_{2}}^{2}\leqq K(\phi)||f||_{R_{1}}^{2}

for each f\in BCD(R_{1}), where K(\phi) is the maximum dilatation of \phi .
Let K_{0} be a closed disk in R_{1} and K_{0}’=\phi(K_{0}) . Then the following

theorem follows from Theorem 3 and Satz 17.6 in [2].

THEOREM 4. 1/K(\phi)\tilde{C}(E)\leqq\tilde{C}’(\phi(E))\leqq K(\phi)\tilde{C}(E)

for any compact subset E of R_{1}-K_{0}, where \tilde{C}’ is the Kuramochi capacity
on R_{2}-K_{0}’ .

PROOF. Let E be an arbitrary compact subset of R_{1}-K_{0}. Let F be
any regular compact subset^{2)} of R_{1}-K_{0} such that E\subset F. We set

2) We say that a compact set is regular if its relative boundary consists of a finite num-
ber of analytic arcs,



Metrics induced by capacities and boundary behaviors of quasiconformal mappings 151

f=\tilde{p}^{x^{f’}} on R_{1}-K_{0} and =0 on K_{0}^{3)}.
Then f\in BCD(R_{1}) and f\circ\phi^{-1}\in BCD(R_{2}) . Since f\circ\phi^{-1}=1 on \phi(F)(\supset\phi(E)) and
=0 on K_{0}’, we see that

||\overline{p}^{x^{\prime(F)}}||_{R_{l}}^{2}\leqq||f\circ\phi^{-1}||_{R_{2}}^{2}\leqq K(\phi)||f||_{R_{1}}^{2}\leqq K(\phi)||\tilde{p}^{z^{F}}||_{R_{*}}^{2} .
Hence we obtain that \tilde{C}’(\phi(E))\leqq\tilde{C}’(\phi(F))\equiv<K\langle\phi) C\sim_{J(F)} . Since F is arbitrary,
we obtain that \tilde{C}’(\phi(E))\leqq K(\phi)\tilde{C}(E) . On the other hand, since \phi^{-1} is a
quasiconformal mapping and K(\phi^{-1})=K(\phi), we see that \tilde{C}(E)\leqq K(\phi)\tilde{C}’(\phi(E)) .
This completes the proof.

COROLLARY. For any Borel subset A of R_{1}-K_{0}, we have
1/K(\phi)\tilde{C}(A)\leqq\tilde{C}’(\phi(A))\leqq K(\phi)\tilde{C}(A) .

We denote by d_{1} (resp. d_{2}) the metric defined in Definition 4 with
respect to R_{1}-K_{0} (resp. R_{2}-K_{0}’). By the aid of Theorem 4, we obtain the
following theorem.

THEOREM 5. 1/K(\phi)d_{1}(a, b)\leqq d_{2}(\phi(a), \phi(b))\leqq K(\phi)d_{1}(a, b) for any a, b\in

R_{1}-K_{0}.
COROLLARY. Let R be an \psi en Riemann surface and let K_{0} be a closed

disk in R. If \phi is a quasiconformal mapping of R onto itself such that
\phi(K_{0})=K_{0}, thm

1/K(\phi)d(a, b)\leqq d(\phi(a), \phi(b))\leqq K(\phi)d(a, b)

for any a, b\in R-K_{0} .
By a discussion similar to that in the proof of Theorem 4, we have

the following.
PROPOSITION 4. Let R_{1} and R_{2} be hyperbolic Rimann surfaces. If

\phi:R_{1}arrow R_{2} is an onto quasiconformal mapping, thm

1/K(\phi)\rho_{R_{1}}(a, b)\leqq\rho_{R_{2}}(\phi(a), \phi(b))\leqq K(\phi)\rho_{R_{1}}(a, b)

for any a, b\in R_{1} .
COROLLARY. Let R be a hyperbolic Riemann surface. If \phi is a

quasiconfomal mapping of R onto itself then
1/K(\phi)\rho_{R}(a, b)\leqq\rho_{R}(\phi(a), \phi(b))\leqq K(\rho)\rho_{R}(a, b)

for any a, b\in R .
DEFINITION 5. Let A be a non-empty subset of R_{0}. We define the

diameter \delta(A) of A with respect to d by \sup_{a,\iota\epsilon A}d(a, b). Furthermore we set
\delta(\emptyset)=0 .
3) See p. 185 in [2] for the definition of \chi F.
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Lemma 4. If F is a con\overline{n}ected closed s
‘

nbset o^{\backslash }fR_{0}, then \delta(F)\leqq\hat{C}\acute{(}F) .

4. \bm{d}-completions of open Riemann surfaces.

and
LetRbe_{\wedge}.apope_{R}Rienannsurface.LetK_{0}beac1odeddiskinRletR_{0}=R-K_{0}.WedenotebyR_{N}^{*}(resp.R_{D}^{*})theKuramochicompacti-\}\{

fifi\dot{c}ation (resp. th\acute{e}^{J\wedge}Royden compactification) of R. The Kuramochi boundary
(resp. the R^{-}oyden^{4}boundary)

\backslash \backslash
of R is denoted by \Delta_{N} (resp. \Delta_{D}) (cf. [2]). For

a st18^{\backslash }\grave{S}etA^{\cdot}} of R, we denot^{Je} by \overline{A}^{N} (resp. \overline{A}^{D}) t\dot{h}e closure of A in R_{N}^{*}

(resp. R_{D}^{*}). Let R_{1}^{*} and R_{2}^{*} be two compactifications of R. If there is
acontinuouS In\grave{a}pping \pi of R_{1}^{*} onto R_{2}^{*} whose restriction to R is the
identity and \pi^{-1}(R)=R, then \tau is called \dot{\eta}

a canonical mapping of R_{1}^{*} onto
R_{2}^{*} and R_{2}^{*} is called a quotient space of R_{1}^{*} . It is known (cf. [2]) that R_{N}^{*}

i\dot{s}.a’..quoti;-en\dot{t} space of R_{D}^{*}:
\vee\cdot\cdot\sim?:W.\grave{e}\cdot- denoie^{r^{-}}b\oint^{1_{-}}(\cdot\Delta_{B}’-‘-\hat{t}he set of all Kuramochi boundary points b such

that the Kuramochi kernel \tilde{g}_{b} with pole b is bounded. The set \Delta_{1}\cap\Delta_{B} is
denoted-by \Delta_{S} (cf. jf2]). - By A\prime efiniti\Theta n , we see that \Delta_{S}\subset\Delta_{B} .

DEFINITION 6. We denote by U_{HM} the class of all open Riemann
surf-aces^{\tau^{\iota}}wit\grave{h}^{\grave{l}}\Delta_{\overline{B}}\overline{.}\neq\emptyset :

\Lambda^{\cdot}\backslash \cdot . :It is.kn^{-}o\ddot{w}n that O_{G}\cap U_{HM}^{\cdot}=\emptyset- .
THEOREM 6. Suppose R is an open_{\backslash } Rimann surface with R\not\in U_{HM} .

If D is an open \check{d}i\dot{sk} in Rwi\dot{t}hD\supset K_{0}\lrcorner., then R-D is totally bounded
with respect to d.
J PR\vec{U}^{\backslash }OF^{J}. ( i) For b\in\Delta_{1} , let F_{n}(b)=\{z\in R_{0} ; \tilde{g}_{b}(z)\geqq n\}(n=1,2, \cdots) . First

we shall prove that \cup\overline{F_{n}(b)}^{D}(n=1,2, \cdots) is a neighborhood of \Delta_{D} in R_{D}^{*} .

Let n be fixed. If thisb\in\Delta_{1} were not the case, then we could find \xi\in\Delta_{D} such
that U(\xi)-\cup\overline{F_{n}(b)}^{D}\neq\emptyset for any neighborhood U(\xi) of \xi in R_{D}^{*} . Let \pi be

the canonica1mappingb|ib\epsilon\Delta_{1\backslash }R_{D}^{*} onto R_{N}^{*} and let \pi(\xi)=^{\grave{\iota}}b_{0}^{\downarrow)}. Let \{V_{f}(b_{0})\}_{f=1}^{\infty} be
a sequence of open neighborhoods of b_{0} in R_{N}^{*} such that V_{f}(b_{0})\supset V_{f+1}(b_{0})

ahd \infty\bigcap_{f=1}J\overline{V_{f}(b_{0})}^{N}=\{b_{0}\} . Set U_{f}=\pi^{-1}(V_{f}(b_{0})) for each j. Let b be any fixed

point of \Delta_{1} . Since U_{f}-\overline{F_{n}(b)}^{D}\neq\emptyset for each j, there is z_{f}\in(U_{f}-\overline{F_{n}(b)}^{D})\cap R_{0}

(=V_{f}(b_{0})\cap R_{0}-F_{n}(b))f\grave{o}^{1}r{}^{t}each’j. Then\tilde{g}_{b}(z_{f})\leqq

.
n for each j. Since aarrow\tilde{g}_{b}(a)

is lower semicontinuous on R_{N}^{*}-K_{0}, we obtain that \tilde{g}_{b}(b_{0})\leqq n . Since is
arbitrary, it: follows from \cdot\alpha_{\backslash }the symmetry of the Kuramochi kernel and a
domination principle (cf. Folgesatz 17.2 in [2]) that \tilde{g}_{b_{0}}\leqq n on R_{0}. Thus
\Delta_{B}\neq\emptyset and this contradicts R\not\in U_{HM}. Hence we see that \bigcup_{b\in\Delta_{1}}\overline{F_{n}(b)}^{D} is a

neighborhood of \Delta_{D} in R_{D}^{*} for each n.
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(ii) For each n and b\in\Delta_{1} , we can find an open subset G_{n}(b) of R_{D}^{*}

with \overline{F_{n+1}(b)}^{D}\subset G_{n}(b)\subset\overline{F_{n}(b)}^{D} . By (i), we see that \bigcup_{b\in\Delta_{1}}G_{n}(b) is an open

covering of \Delta_{D}. Hence we can find b_{1} , \cdots , b_{k}\in\Delta_{1} such that \bigcup_{f=1}^{k}G_{n}(b_{f}) is a

neighborhood of \Delta_{D} in R_{D}^{*} . It is easy to see that \cup k\overline{F_{n}(b_{f})}^{N} is a neighbor-
j=1

hood of \Delta_{N} in R_{N}^{*}. Since \delta(F_{n}(b_{f}))\leqq\tilde{C}(F_{n}(b_{f}))=1/n^{4)} , we complete the proof.

COROLLARY. If R is an open Riemann surface with R\not\in U_{HM}, thm
the completion of R-D with respect to d is compact.

Let R be an open Riemann surface and K_{0} be a closed disk in R.
Let D be an open disk in R with D\supset K_{0}. Since the completion of R–D
with respect to d does not depend on the choice of K_{0} (Lemma 1), we
denote it by (R-D)_{d}^{*} . Furthermore we set R_{f}^{*},=(R-D)_{pf}^{*}\cup D. If R does
not belong to U_{HM}, then it follows from the above corollary that R_{d}^{*} is
a compactification of R. We note that if R=\langle|z|<1 }, then R_{l}^{*}, is home0-
morphic to \{|z|\leqq 1\} .

THEOREM 7. If R is an open Riemann surface with R\not\in U_{HM}, thm
R_{l}^{*}, is a quotient space of R_{D}^{*} .

PROOF. Let E_{1} and E_{2} be regular closed subsets of R with \overline{E}_{1}^{D}\cap\overline{E}_{2}^{D}

X

\neq\emptyset . Let \xi be a point of \overline{E}_{1}^{D}\cap\overline{E}_{2-}^{D} It follows from the proof of Theorem
6 that, for any n, there exists a, b\in\Delta_{1} such that \overline{F_{n}(b)}^{D} is a neighborhood
of \xi in R_{D}^{*}.. Then F_{n}(b)\cap E_{i}\neq\emptyset(i=1,2) . Let z_{i} be a point of F_{n}(b)\cap E_{i}

(i=1,2). Then 0\leqq d(z_{1}, z_{2})\leqq\overline{C}(F_{n}(b))=1/n . Since n is arbitrary, we obtain
that inf \{d(z_{1}, z_{2}) ; z_{1}\in E_{1}, z_{2}\in E_{2}\}=0 , that is, \overline{E}_{1}^{d}\cap\overline{E}_{2}^{ae}\neq\emptyset(\overline{E}_{i}^{\prime f} is the closure
of E_{i} in R_{d}^{*} ). Thus it can be seen that R_{d}^{*} is a quotient space of R_{D}^{*} .

THEOREM 8. If R\in 0_{G} , then R_{d}^{*} is homeomorphic to the Ker\ell kj\acute{a}rt^{\acute{r}_{-}}

Stoilow’s compactification R_{KS}^{*} of R.
PROOF. First we note that R_{l}^{*}, is compact by the Corollary of TheO-

rem 6. Let e be any point of \Delta_{KS}=R_{KS}^{*}-R . Let \{G_{n}\}_{n=1}^{\infty} be a determining
sequence of e. Then each G_{n} is a domain on R with compact relative

boundary \partial G_{n} in R and G_{n+1} \cup\partial G_{n+1}\subset G_{n}(n=1,2, \cdots),\bigcap_{n=1}G_{n}=\emptyset . Since

\delta(G_{n}\cup\partial G_{n})\leqq\tilde{C}(G_{n}\cup\partial G_{n})arrow 0 as n arrow\infty,\bigcap_{n=1}\overline{G_{n}\cup\partial G_{n}}^{d} is a single point in R_{a}^{*} ,

where \overline{G_{n}\cup\partial G_{n}}^{d} is the closure of G_{n}\cup\partial G_{n} in R_{d}^{*} . Thus we denote it by
\pi(e) . For each z\in R we set \pi(z)=z. Then we can show that \pi is a con-
tinuous mapping of R_{KS}^{*} onto R_{d}^{*} . Let e_{1} and e_{2} be any points of \Delta_{KS} with

4) By the aid of Folgesatz 17. 22 in [2] we can prove the equality.
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e_{1}\neq e_{2} . Then we can find two domains \Omega_{1} and \Omega_{2} on R such that
(1) \partial\Omega_{1} and \partial\Omega_{2} are compact in R,
(2) the closure \overline{\Omega}_{i}^{KS} of \Omega_{i} in R_{KS}^{*} is a neighborhood of e_{i} in R_{XS}^{A_{1}}

(i=1,2),
(3) \overline{\Omega}_{1}^{KS}\cap\overline{\Omega}_{2}^{KS}=\emptyset .

Since 0<d( \partial\Omega_{1}, \partial\Omega_{2})=\inf\langle d(z_{1},z_{2});z_{1}\in\partial\Omega_{1}, z_{2}\in\hat{o}\Omega_{2}\rangle\leqq d(a, b) for any a\in\Omega_{1} and
b\in\Omega_{2}, we have \pi(e_{1})\neq\pi(e_{2}) . Hence we see that \pi is a homeomorphism of
R_{KS}^{*} mto R_{ei}^{*} .

Combining Theorem 5 and Theorem 6, we obtain the following
theorem.

THEOREM 9. Let R_{1} and R_{2} be two open Riemann surfaces which do
not belong to U_{HM}. If \phi is a quasiconformal mapping of R_{1} onto R_{2}, then
\phi can be homeomorphically extended to a mapping from (R_{1})_{l}^{*}, onto (R_{2})_{l}^{*}, .

References

[1] N. BOBOC and G. MOCANU: Sur la notion de m\’etrique harmonique sur une
surface riemannienne hyperbolique, Bull. Math, de la Soc. Math. Phys.,
5 (52), 1961.

[2] C. CONSTANTINESCU and A. CORNEA : Ideale Rdnder Riemannscher Fldchen,
Springer Verlag, 1963.

[3] J. HERSCH: Longueurs extr\’emales et th\’eorie des fonctions, Comment. Math.
Helv., 29 (1955).

[4] L. SARIO and M. NAKAI: Classification theory of Riemann surfaces, Springer
Verlag, 1970.

Department of Mathematics
Hokkaido University


	Introduction.
	1. Metrics induced by ...
	2. The metric \rho .
	THEOREM 1. ...

	3. The metric d and quasiconformal ...
	THEOREM 2. ...
	THEOREM 3 ...
	THEOREM 4. ...
	THEOREM 5. ...

	4. \bm{d} -completions ...
	THEOREM 6. ...
	THEOREM 7. ...
	THEOREM 8. ...
	THEOREM 9. ...

	References

