Metrics induced by capacities and
boundary behaviors of quasiconformal mappings
on open Riemann surfaces

By Hiroshi TANAKA¥
(Received June 16, 1975)

Introduction.

M. Nakai (cf. [4]) proved that every quasiconformal mapping between
two open Riemann surfaces can be homeomorphically extended to their
Royden compactifications. It is well-known (cf. [2]) that the Royden com-
pactification is not metrizable. In this paper we shall study the homeo-
morphic extensibility of quasiconformal mappings between two open Rie-
mann surfaces to their metrizable compactifications. To do so we shall
introduce a new metric d=d, on an open Riemann surface R induced by
the Kuramochi capacity on R. Our main results are the followings:

(i) Let R be an open Riemann surface. If each Kuramochi kernel
g, with pole 4 on the Kuramochi boundary of R is unbounded, then the
completion of R with respect to d is compact.

(ii) Let R, and R, be two open Riemann surfaces. If both R, and
R, satisfy the assumption in (i), then every quasiconformal mapping from
R, onto R, can be homeomorphically extended over their completions with
respect to d.

1. Metrics induced by capacities.

Let R be an open Riemann surface. We say that a closed curve in
R joining a€R and bER means a continuous mapping 7: 2=2(¢) of [0, 1]
into R such that 2(0)=a and 2z(1)=b. We write 7={2(¢); 0=t<1} for
simplicity. We denote by I', ,=I",,(R) the family of all closed curves in
R joining a and b.

A non-negative finite real-valued function @ on the family of all
compact subsets on R is said to be a capacity in the sense of G. Choquet
if it satisfies the following properties :

(a) If KiCK,, then O(K,)<O(K,).

(b) P(KiUK)+O(KiNK)=0(K)+D(K,).
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(c) Given a compact subset K of R and any ¢>0, there is an open
set G in R such that any compact subset K’ with KCK'CG implies
O(K")<P(K)+e.

DerFINITION 1. For a, beR, we set

p(a, b)=inf {@(1); rel’, ,(R)}.

ProrosITION 1.

(i) p is a pseudometric on R, i.e.,

(1) 0=Zp(a, b)< oo, a=b=pp(a, b)=0.
(2) pla, b)=p(b,a).
(3) pla,b)=pla, o)+ plc b)

(ii) pla, b)=inf {@(K); where K runs over all continua in R contain-
ing both a and b}. ‘

Proor. The proof of (i) follows immediately from the properties
(a), (b) and (c) of capacity. ' '

~ (ii) Let a and & any points in R. We denote by v(q,b) the right
hand side in (i). Since any closed curve is a continuum, we obtain that
v(a, b)<pla,b). For any e>0, there is a continuum E in R containing
both a and b such that @(E)<v(a, b)+¢. Since E is a connected compact
set, we can find a domain G (=a connected open set) on R such that
EcG and any compact set F with ECFCG implies O(E)XO(F)<O(E)+e.
Since G is connected and contains both a and b, there is a closed curve
7 in G joining both a and &. If we set F=EU7, then we obtain that

(e, H) < O(1) < D(EUT)<O(E)+e<v(a, b)+2.
Since ¢ is arbitrary, we complete the proof.
Some special metrics induced by capacities

DEFINITION 2 ([1]).. Let R be a hyperbolic Riemann surface. Let 2
be a fixed point in R. For a compact subset K of R—{z}, we denote by
®,(K) the harmonic measure of dK with respect to R—K at 2. For a, be
R—{z}, we set ‘ '

p(a, b) = H.(a, b) = inf {0,(7); 7€l ,(R—{2}). |
It is known that this pg(a, b) is a metric on R—{z}. Furthermore

the topology induced by g is compatible with the original topolegy on
R—{z}.

DerFINITION 3. Let R be a hyperbolic::Riemann surface and let C=Cp
be the Green capacity on R. For a, beR, let

pla, by=0P(a, b)=Pr(a, b)=inf {C(1); 1€l (R)}.
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DEFINITION 4. Let R be an open Riemann surface. Let K, be a
closed disk in R and let Ry=R—K, Let C be the Kuramochi capacity
on R, (cf. [2]). For a, beR,, let

pla, b)=d(a, b)=dx (a, b)=inf {C(7); 7€, ,(R)}.

By elementary properties of Green capacity and Kuramochi capacity,
we obtain the following lemma.

LemMma 1. (i) Let R be a hyperbolic Riemann surface and G be a
domain on R. Then

Pr(a, b) ._S_‘PG(a, b) for a,beG.

(ii) Let R be an open Riemann surface. Let K, be a closed disk in
R and let R,=R—K,. Then

dr,(a,b) < Pz (a,b) for abe R,.

¢

(iii) Lét R be an open Riemann surface. Let K, K be closed disks

in R with K,CK;. Set Ry=R—K, and Ri=R—K;. Then
dRo (a, b) é dRO’ (aa b) fO?’ a, be RC,)

2. The metric O. o .
LEMMA 2. Let U={|z|<1}. Then Py(a, b)=Cu<[Q, ‘%H) for
a, beU. “

Proor. We may assume that a+#b. ,

(1) Suppose a=0. Let 7 be any curve in I'y,(U). Then it follows
from Hilfssatz 19.1 in. [3] that Cy([0, |5|])<Cy(7). Hence we see that £,(0,
b)=Cy([0, |5]]). |

(ii) Suppose a is arbitrary. Then we can find a linear transforma-

tion w="T(2) of U onto itself such that 7(0)=0 and T(b)= '%

Py is invariant under conformal mappings, it follows from (i) that

b—a ):@([0’ 16:—;)”)

1—ab
COROLLARY (Schwartz lemma). Every analytic ‘mapping f: U—U is
distancedecreasing, i.e., satisfies ' "

Oy (fla), fB) = Py(a,b) (a,bel)
and the equality is valid if and only if f is an automorphism of U.

. Since

eola b= po(T(a), T(8) = 0, (0

ProprosITION 2. (i) 0, is a metric on U.
(i1) The metric Py is compatible with the topology on U.
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Proor. By properties of capacity and we have (i).
Furthermore it follows from that (ii) is valid.

For a, beU, we set

1 1+7r
o(a, b)=7log 1=,
where r= -Ib:_d%._ The function o(a, b) is called a non-euclidean metric
on U.
Prorosition 3. For a fixed acU, we have
p [/ (a’ b) _ _4_
M olat) ~

uniformly in £€aU.

b—a
Tl
b tends to a boundary point £€dU, then r tends to 1. Thus it follows
from [3] that

Proor. For a fixed aeU and an arbitrary beU, let r=

bola,b) =2 log 1o +0(1) as r—1.

Hence we have

Pg(a,b)=%log +0(1) as r—1.

l1—7r

Since o(a, b)=—l—log +O(1), we complete the proof.
2

l—7r
COROLLARY. For t (0<t<1), we set D,={|la|<t}. Then, for any

4L (0<y,<1) and c>—::—z, there exists t,(t,<t,<1) such that

cloa,b)<Pya,b)<ca(a,b)

for any a€eD, and bGD—D,Z.

LEMMA 3. Let R be an open Riemann surface and K, be a closed disk
on R. Let U be an open disk on R with UNK,=0. Let K be a compact
subset of U such that U—K is connected. Let {K,},2, be a family of
compact subsets of K. Then the following properties are equivalent each
other.

(a) Cy(K,)—0 as n—>oo.

(b) Cq(K,)—0 as n—oo for any hyperbolic domain G on R with
UcG.

(¢) C(K,)—0 as n—>oo,
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Proor. Let u, (resp. v,) be the harmonic measure of 9K, with respect
to U—K, (resp. G—K,). Then it is easy to see that C,(K,) (resp. Ce(K,),
C(K,)—0 as n—co if and only if u, (resp. v,, 1z,)" converges to zero
locally uniformly in U—K (resp. G—K, Ry—K) as n—o0. Since Cg(K,)<
Cy(K,), C(K,)SCp (K,) and v,<1z, in U=K(n=1,2, ), we complete the
proof.

THEOREM 1. Suppose R is a hyperbolic Riemann surface. Then
(1) Pg is a metric on R.
(i1) The metric Pg is compatible with the topology on R.

Proor. We set =0, in the following. Since @ is a pseudometric,
it is sufficient to prove that @(a, b)=0 implies a=5. If this were not the
case, then we could find @ and & in R such that @(a,b)=0 and a+b.
Then we can find a parametric disk U on R with center at a such that
beU. Since a#b, Py(a, b)>0. On the other hand, since ©(a, b)=0, there
is a subfamily {7,}.>, of I',, such that C.(7,)—0 as n—>oc0. Let {=¢(z) be
a local parameter on U such that ¢(a)=0 and ¢(U)={|{|<1}. For each
n, we can find a subcurve 7, of 7, on ¢ '(|{|<|¢(b)|) which connects a
and a point of ¢7*(|¢(d)]). Then 0<Py(a, b)<Cy(r.). Since Cr(r))SCk(T,)
—0 as n—oo, it follows from that Cy(r.)—>0 as n—>oo. This is
a contradiction. Thus P(a, )=0 implies a=>.

(ii) Let {a.},2, be a sequence in R which tends to a€R as n—>oo.
Let U be a parametric disk in R with center at a. Then there is an 7,
such that a,eU if n=n, Since 0=Z0Pz(a, a,)<Py(a, a,—0 as n—>co by
[Proposition 1, we see that @x(a, a,)—>0 as n—>co0. Conversely suppose a is
a point in R and {a,}.,2; is a sequence in R such that 0(a, a,)—>0 as n—oo.
- Then there are a parametric disk U with center at a which corresponds
to a unit disk {|{|<1} and a subsequence {a,,}:2: of {a,},2: such that each
a,, does not belong to U. Let {=¢(z) be a local parameter on U such
that ¢(a)=0 and ¢(U)={|{|<1}. Since P(a, a,)—0 as n—>co, we can find
7m€l04,(n=1,2, ) such that Cg(r,)—0 as n—>oo. For each #n,, we can
find a subcurve 77, of 7, which connects a and a point b,, of ¢~'(|¢]=
1/2) on ¢7'(|{|=1/2). Since Cx(1},,)<Cg(7,,)—0 as k—oo, it follows from
that Cy(7},,)—>0 as k—oco. On the other hand, we obtain that
0<Py1)(0, 1/2)=0y(a, b,,)=Cy(7,,). This is a contradiction. Therefore a,

—>a as n—>o00,

1) See p.163 in [2] for the definition.
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3. The metric d and quasiconformal mappings.

Let R be an open Riemann surface. Let K, be a closed disk in R and
let Ry=R—K, Let C be the Kuramochi capacity on R, (cf. [2]).

THEOREM 2. (i) d is a metric on R,.
(i) The metric d is compatible with the topology on R,

Proor. (i) Suppose d(a, b)=0 for some two distinct points a and b
of R, Then there exists a parametric disk U with center at a such that
beU. Let {=¢(z) be a local parameter on U such that ¢(a)=0 and ¢(U)
={|¢|<1}. Since d(a, b)=0, there is a sequence {7,},2, in I, ,(R,) such
that C (7,)—>0 as n—>o0. For each n, we can find a subcurve 7/ of 7, which
connects a and a point b, of ¢ '(|{|=|¢(B)]) on ¢7(|L]|Z|g(B)]). Since
C(7.)~0 as n—co, it follows from that 0< 0,,(0, ¢(b))=Py(a, b,)
SCy(1})—0 as n—>o0. This is a contradiction. Thus d is a metric.

The proof of (ii) can be proved by an analogous argument to the one
of (ii) in [Theorem 1l.

We refer to for the definition and properties of quasiconformal
mapping. Let R, R, be open Riemann surfaces and ¢ be a quasiconformal
mapping of R, onto R,, We denote by BCD(R,) the family of all bounded
continuous Dirichlet functions on R;(i=1, 2) (cf. [2]). For fe BCD(R,), we
denote by | f|l%, the Dirichlet integral of f on R;(i=1,2). As for quasi-
conformal mappings and Dirichlet functions, the following theorem is well-
known.

THEOREM 3 (cf. [4]). Let ¢ be a quasiconformal mapping of R, onto
R,. Then

VK@) [ f % = 1 fo¢7" Iz, = K(#) [ f1IZ,
for each fe BCD(R,), where K(§) is the maximum dilatation of ¢.

Let K, be a closed disk in R, and K;=¢(K;). Then the following
theorem follows from and Satz 17.6 in [2].

Tueorem 4. 1/K(¢) C(E)=C'(¢(E)=K(9) C(E)
Jor any compact subset E of R,—K,, where C' is the Kuramochi capacity
on R,—Kj,

Proor. Let E be an arbitrary compact subset of R;—K, Let F be

any regular compact subset? of R,—K, such that ECF. We set

2) We say that a compact set is regular if its relative boundary consists of a finite num-
ber of analytic arcs,
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f= ?"F on Ri—K, and =0 on K,¥
Then f€e BCD(R,) and fo¢'€ BCD(R,). Since fo¢™'=1 on ¢(F)(D¢(E)) and
=0 on K], we see that
137115, < NLfod7 112, < K(9) 1 £ 113 < K@) 13113, -

Hence we obtain that C'(¢(E)<C'(¢(F))<K(¢)C(F). Since F is arbitrary,
we obtain that C'(¢(E)<K(¢)C(E). On the other hand, since ¢ is a
quasiconformal mapping and K(¢™')=K(¢), we see that C(E)<K(¢) C'(¢(E)).
This completes the proof.

CoOROLLARY. For any Borel subset A of R,—K,, we have
1/K($)C(A)=C'(¢(A)=K($)C(A).

We denote by d, (resp. d;) the metric defined in Definition 4 with
respect to R,—K, (resp. R,—K}). By the aid of we obtain the
following theorem.

THEOREM 5. 1/K(¢)d(a, b)=d,(¢(a), 6(b))=<K(d)d\(a, b) for any a, be

~K,.

CoRrROLLARY. Let R be an open Riemann surface and let K, be a closed
disk in R. If ¢ is a quasiconformal mapping of R onto itself such that
¢(Ko)=K,, then

1/K(¢)d(a, b) = d(¢(a), $(b) = K(¢) d(a, b)
Sfor any a,be R—K,.

By a discussion similar to that in the proof of we have
the following.

ProrosITION 4. Let R, and R, be hyperbolic Riemann surfaces. If
¢: Ri—R, is an onto quasiconformal mapping, then
1/K (@) Pz, (a, b) < Pr, ($(a), (b)) < K(9) P, (a, b)
for any a, beR,.
COROLLARY. Let R be a hyperbolic Riemann surface. If ¢ is a
quasiconformal mapping of R onto itself, then
1/K(¢) Pz (a, b) = Pr($(a), ¢(5)) < K(P) £r(a, b)
for any a, beR.

DEFINITION 5. Let A be a non-empty subset of R, - We define the
diameter §(A) of A with respect to d by sup d(a, ). Furthermore we set
5 (ﬁ): 0 a,b€4

3) See p. 185 in [2] for the definition of X7,
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LeMmMa 4. If F is-a connected-closed $nbset of R, then 6(F Y<C(F).

| 4 ;l-completl(ons of open Riemann surfaces.’ _

Let R be an’ opep. Rienann surface. Let K, be a cloded disk in R
and let Ry=R— K We denote by R} (resp. R3) the Kuramochi compacti-
fication (resp. the Royden compactlﬁcatlon) of R. The Kuramochi boundary
(resp the 3Rtjydeﬁ bOundary) of R is denoted by 4y (resp. 4,) (cf. [2]). For
a subset A of R:" we denote by A" (resp. A?) the closure of A in R
(resp. R%). Let Rf and R} be two compactifications of R. If there is
a continuous- miapping ‘= of R} onto R; whose. restriction to R is the
identity and #'(R)=R, then s called a canonical . mapping of R onto
Rz and Ry 1s called a quotlent space of R1 It is known (cf. [2]) that R%
1s a quotlent space of Ry

- W denote bf4; “the set- of “all Kuramoch1 boundary points & such
that the Kuramochi kernel §, with pole b is bounded. The set AlﬂAB is
denoted by dy (cf.42]). =By -definition, we see-that-dsCdp.

DEFINITION 6. We denote by UHM the class of all open Riemann
surfaces w1th‘\’ d5#0. SRR :

It i known tHat O@ﬂ U}ﬂ,‘,’ 0.

THEOREM 6. Suppose R is an open Riemann surface with R¢ Ugy.
If D is an open disk in R with DDK,, then R—D is totally bounded
with respect to d.

< Proor: (i) For bed, let F,(b)={z€R,; §,(z)=n} (n=1,2,--). First
we shall prove that U F, ()" (n=1,2,--) is a neighborhood of 4, in Rj.

Let n be fixed. If thlS were not the case, then we could find ¢€4, such
that U(§)— U Fn(b) #0 for any nelghborhood U(E) of & in Ri. Let n be

the canon1cal mappmg b? R% onto R}t, and let n(E) By Let {V;(bo)} ;21 be
a sequence of open neighborhoods of &, in R% such that V(b)> V;4+1(bo)

and’ ‘jﬁi‘v‘"—,(bo)‘zv={b;,}. Set U,=x"(V,(&) for each j. Let b be any fixed
=1

point of 4,. Since U,—F,(®)” 0 for each j, there is z;€(U;— —~FE,®")NR,
(=V,;(by) N Ry— F, (b)) for- éach j.* Then §y(z;)<n for each j. Since a—§(a)
is lower semicontinuous on R%—K, we obtain that §,(b)<n. Since:d is
arbitrary, it: follows from:the symmetry of the Kuramochi kernel and a
demination principle (cf. Folgesatz 17.2 in [2]) that §, <n on R, Thus
4;#0 and this contradicts R¢ Uy, Hence we see that U F, (b)l’ is. a

bed,

neighborhood of 4, in R} for each n.
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(i) For each n and b€d,, we can find an open subset G,(b) of R}
with F,.,(6)°CG,(b)CF,(b)®. By (i), we see that U G,(b) is an open
v ved,

k
covering of 4,. Hence we can find b, ---, b,€4, such that U G,(b;) is a
=1

neighborhood of 4, in R}. It is easy to see that Llj F,(b,)" is a neighbor-
. . . J=1
hood of 4y in R}. Since d(F, ' (b)<C(F, (bj)) 1/nY, we complete the proof

COROLLARY. If R is an open Riemann surface with R& Upmg then
the completion of R—D with respect to d is compact.

Let R be an open Riemann surface and K, be a closed disk in R.
Let D be an open disk in R with DDK,. Since the completion of R—D
with respect to d does not depend on the choice of K, (Lemma 1), we
denote it by (R—D)j. Furthermore we set Rf=(R—D)fUD. .If R does
not belong to Uy then it follows from the above corollary that R; 1is
a compactification of R. We note that if R={|z|<1}, then R} is homeo-
morphic to {|z|=1}.

- THEOREM 7. If R is an open Riemann surface 'wzth RE UHM, then
+ 1S a quotient space of Rj.

'Proor. Let E, and E, be regular closed subsets of R with E2NE,”
#0. Let & be a point of E°nE> It follows from the proof of [Theorem|
6 that, for any 7, there exists a, b€, such that F (b)D is a neighborhood
of € in R5. Then F,(b)NE;#0 (i=1,2). Let 2, be a point of F,(b)NE,
(i=1,2). Then 0=d(z, 2,)<C(F,(b))=1/n. Since 7 is arbitrary, we obtain
that inf {d(z, 2;); z1€E), € E,} =0, that is, E2NES2+0 (E? is the closure
of E, in R}). Thus it can be seen that R} is a quotient space of Rj.

THEOREM 8. If Re€0q, then R} is homeomorphic to the Kerékjdrit?-
Stoilow’s compactification Ryg of R.

Proor. First we note that R} is compact by the of Theo-
rem 6. Let e be any point of dzg=R%s—R. Let {G,},2; be a determining
sequence of e. Then each G, is a domain on R with compact relative

boundary 4G, in R and G,,Ud3G,nCG, (n=1,2,-), N G,=0. Since
n=1
5(G, UG,)<C(G,U3G,)—0 as n—>oo, N G,UdG,? is a single point in R,
n=1

where G, UdG,? is the closure of G,UdG, in R}. Thus we denote it by
7(e). For each z€R we set n(2)=2z. Then we can show that = is a con-
tinuous mapping of Rig¢ onto R}. Let e, and e, be any points of dxg with

4) By the aid of Folgesatz 17. 22 in we can prove the equality.
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e;#e¢,, Then we can find two domains £, and £, on R such that

(1) 0, and 0£2; are compact in R,
(2) the closure 2% of 2, in R}y is a neighborhood of e; in Ry
(i=1,2),

(3) 255N 2,%5=0.
Since 0<d(0%2;, 02,)= inf {d(2,,2,) ; 21€0%1, 2,€05,} <d(a, b) for any a€f, and
bef,, we have n(e)#n(e). Hence we see that = is a homeomorphism of
R3s onto R}.

Combining and we obtain the following

theorem.

THEOREM 9. Let R, and R, be two open Riemann surfaces which do
not belong to Uny. If ¢ is a quasiconformal mapping of R, onto R,, then
& can be homeomorphically extended to a mapping from (R)): onto (R,);.
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