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0. Introduction

In this paper we shall consider local solvability and hypoellipticity of
the following operator :

(0. 1) P=(\partial_{t}+at^{k}A)(\partial_{t} +bt^{k}A)-ct^{k} A ‘

Here A is a selfadjoint operator in a Hilbert space H, a, b, c are complex
numbers and k a positive odd integer. Namely we shall prove the following

THEOREM. Assume that Re a>0 and Re b<0, thm the following
are equivalmt :

(i) P is locally solvable at t=0 ;
(ii) P is hypoelliptic at t=0 ;
(iii) for no integer n, c/(a-b)=1-n(k+1) or -n(k+1).
The case when A=D_{x} and H=L^{2}(R^{1}) or when A positive-definite

and k=1 under more general set-up were considered by Gilioli and Treves
[3] or Treves [6] respectively (see also [2] and [5]). For the case in which
k is even, refer to Menikoff [4].

In [3] the sufficiency proof for local solvability was based on the theory
of ordinary differential operators of Fuchs’ type (see also [1]). However,
in the present paper we shall assert that it can be proved in the framework
of abstract theory in [6].

1. Preliminary

In order to describe the situation more precisely we here explain our
notations and list up some results in [6] and [3] which we must use.

Let A be a densely defind linear operator on H. We shall assume
that A is selfadjoint and that (I–E(0)) A and E(0) A are unbounded. Here
we denote the spectral resolution of A by E(\lambda) . (cf. Yosida [7]) For some
\epsilon>0 , we define an orthogonal decomposition of H ;

H_{+}=(I-E(\epsilon))H,\cdot H_{*}=(E(\epsilon)-E(-\epsilon))H , H_{-}=E(-\epsilon)H
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Then we have A=A_{+}+A_{*}+A_{-} , H=H_{+}\oplus H.\oplus H_{-} . Since A_{+} and -A_{-}

are positive-definite operators with bounded inverses respectively in H_{+} and
H_{-} , we can introduce the scale of “Sobolev space” (H_{+})^{s} and (H_{-})^{s} for
-\infty\leq s\leq+\infty , defined by A_{+} and - A_{-} . Furthermore we define H^{s}=

=(H_{+})^{s}\oplus H_{e}\oplus(H_{-})^{s} . Then as in [6], we use the following function spaces.
We denote by C^{\infty}(J;H^{\infty}) the space of H^{\infty}-valued C^{\infty} functions in J.
Here J is an open interval in R. If K is any compact subset of J, we
denote by C_{0}^{\infty}(K;H^{\infty}) the subspace of C^{\infty}(J;H^{\infty}) consisting of functions
vanishing outside K. Being a closed linear subspace of C^{\infty}(J;H^{\infty}) with
the natural C^{\infty}-topology, it is a Fr\‘echet space. By C_{0}^{\infty}(J;H^{\infty}) we denote
the inductive limit of C_{0}^{\infty}(K;H^{\infty}) as K ranges over all compact subsets of
J. Its dual space is denoted by \mathscr{D}’(J;H^{-\infty}) .

DEFINITION 1. 1. P is locally solvable at t=0 if there exists an opm
interval J containing t=0 such that for every f\in C_{0}^{\infty}(J;H^{\infty}) there is
u\in C\Lambda’\hat{J}(J ; H^{-\infty}) satisfying Pu=f in J.

We say that P is locally solvable in a subset S of R if P is so at
every point of S.

P is hypoelliptic in J if for any u\in \mathscr{D}’(J;H^{-\infty}), Pu\in C^{\infty}(J;H^{\infty}) implies
u\in C^{\infty}(J;H^{\infty}) .

We say that P is hypoelliptic at t=0 if there exists an opm interval
J containing t=0 such that P is so in J.

Let us write, for convenience, P=P(c)=XY-cZ with a parameter c
where

X=\partial_{t}+at^{k}A ,

Y=\partial_{t}+bt^{k}A ,

Z=t^{k-1}A .
For our purpose we shall apply the following “Concatmation method”

which was constructed by [3].
PROPOSITION 1. 2. With the above notations, we have

(1. 1) (tX+\mu)P(c)=P(c’)(tX+\mu-2) .
where c’=c+(k+1) (a-b) and \mu=k+2+c/(a-b) .

We shall use an algebraic lemma in order to prove that (iii) implies (ii).
Lemma 1. 3 ([6]). Let E be an abelian group and F a subgroup of

E, P, Q, U, V four endomorphisms of E which map into itself having the
following properties:

(1. 2) UP=QV ,
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(1. 3) V^{-1}(F)\cap P^{-1}(F)\subset F

Then Q^{-1}(F)\subset F implies P^{-1}(F)\subset F.

2. Proof of the Theorem

This section consists of two parts. In part a) we give a slight extension
of subelliptic estimate in [6; Theorem II. 2.1] and its results. In part b)

we shall bring the proof to completion.
a) Here we shall consider the special case where A is positive-definite

on H and has a bounded inverse A^{-1} and we denote by ||\cdot|| , (,) the norm
and the inner product respectively. Under these hypotheses we shall prove
the following

PROPOSITION 2. 1. Suppose that

(2. 1) -|\delta|^{2}\leq 2/k Re (c\overline{\delta}) , where \delta=a-b .
Then for a suitable constant C>0 , if u\in C_{0}^{\infty}(J;H^{\infty}) ,

(2. 2) \int(||u_{t}||^{2}+||t^{k}Au||^{2}+||A^{1/(k+1)}u||^{2})dt\leq C|\int(Pu, u)dt| .

PROOF: First by our hypothesis (2.1), we see

(2. 3) \int(||u_{t}||^{2}+||t^{k}Au||^{2})dt\leq C|\int(Pu, u)dt| , for all u\in C_{0}^{\infty}(J ; ^{H^{\infty}})

In fact if we set X^{+}=\partial_{t}-aet^{k}A=-X^{*} , then we have

-Re \{\overline{\delta}\int(Pu, u)dt\}={\rm Re}\{\overline{\delta}\int(Yu, X^{+}u)dt\}+{\rm Re}(c\overline{\delta})\int(t^{k-1}Au, u)dt .

Here we note that

\int(Yu, X^{+}u)dt=\int\{||u_{t}||^{2}-ab||t^{k}Au||^{2}\}dt

+ \int\{-a (u_{t},tkAu) b {tkAu,u_{t})} dt .

By literal repetition of the arguments of [6; II.2] where (2.1) is used, we
can get (2.3). Secondly integration by parts leads to

(2. 4) \int||A^{1/(k+1)}u||^{2}dt=-2{\rm Re}\int ( u_{t} , A^{2/(k+1)} tu) dt

\leq\int||u_{t}||^{2}dt+\int||A^{2/(k+1)}tu||^{2}dt .

Repeating the above consideration we have, for every integer j\geq 1 ,
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(2. 5)_{f} \int||A^{j/(k+1)}t^{f-1}u||^{2}dt\leq J^{\rho}||u_{t}||^{2}dt+\int||A^{(j+1)/(k+1)}t^{f}u||^{2}dt .

Indeed, by (2.4) we may assume j\geq 2 . Therefore by induction hypothesis,
suppose (2. 5)_{f-1} . Then we have

\int||A^{f/(k+1)}t^{j-1}u||^{2}dt

= \int(A^{(f-1)/(k+1)}t^{f-2}u, A^{(f+1)/(k+1)}t^{f}u)dt

\leq 1/2\int||A^{(f-1)/(k+1)}t^{f-2}u||^{2}dt+1/2\int||A^{(f+1)/(k+1)}t^{f}u||^{2}dt

\leq 1/2\int||u_{t}||^{2}dt+1/2\int||A^{j/(k+1)}t^{f-1}u||^{2}dt+1/2\int||A^{(f+1)/(k+1)}t^{f}u||^{2}dt .

Hence we get (2.5)_{k} which means that the left hand side in (2.4) dominated
by left in (2.3). Therefore we complete the proof of Proposition 2.1.

In the next part b) the following proposition is useful. If P satisfies
(2.2), by the same way as [6; II.3] , we see

PROPOSITION 2. 2. P is hypoelliptic in J with loss of 2k/(k+1) deriva-
tives.

b) If we write

P=P(I-E(\epsilon))+P(E(\epsilon)-E(-\epsilon))+P(E(-\epsilon))

=P_{+}+P.+P_{-} ,

we can easily find that local solvability of P in H implies one of P_{+} , P_{-} in
H_{+} , H_{-} respectively. Thus if we replace D_{x} in [3; Section 3] by A_{+} or
-A_{-} , by the same consideration we can prove that (i) implies (iii). Since
the proof that (ii) implies (i) follows from abstract theory [6; II.5], it is
sufficient to prove that (iii) implies (ii). In order to do so, we use Lemma
1. 3 as follows :

U=tX+\mu , P=P(c) , Q=P(c+(k+1)\delta) , V=tX+\mu-2 and

E=\mathscr{D}’(J;H^{-\infty}) , F=C^{\infty}(J;H^{\infty}) .
Here (1.2) follows from Proposition 1.2. Furthermore we shall check
whether (1.3) is satisfied. By direct computation we observe that

Y(tX+\mu-2)-tP(c)=X+tXY-t[X, Y]+(\mu-2)Y-tXY+ctZ

=(\mu-1)\partial_{t}+(a+(\mu-2)b+c+k\delta)tZ .
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Since (1. 1) implies a+(\mu-2)b+c+k\delta=(k+1+c/\delta)a=(\mu-1)a, it follows
from the above equality that

Y(tX+\mu-2)-tP(c)=(\mu-1)X

Therefore we get at once
tY(tX+\mu-2)-t^{2}P(c)=(\mu-1)tX

=(\mu-1)(tX+\mu-2)-(\mu-1)(\mu-2) .
Thus if (\mu-1)(\mu-2)\neq 0 , we have

\{1/(\mu-1)(\mu-2)\}\{-tY(tX+\mu-2)+t^{2}P(c)+(\mu-1)(tX+\mu-2)\}=1

Hence (1.3) holds. Recalling Proposition 1.2 we have (\mu-1)(\mu-2)=(c/\delta+

k+1)(c/\delta+k) . Therefore by Lemma 1. 3 if (c/\delta+k+1)(c/\delta+k)\neq 0 , hypoel-
lipticity of P(c+(k+1)\delta) in H implies one of P(c) in H. Here we note
that we actually apply the above argument to P_{+} .

If we iterate the above discussion by replacing c+(j-1)(k+1)\delta with
c+j(k+1)\delta for j=1,2, \cdots J successively, we derive the following: if we
assume that

(2. 6) (c/\delta-1+j(k+1))(c/\delta+j(k+1))\neq 0 for j=1,2, \cdots J,\cdot

then hypoellipticity of P_{+}(c+J(k+1)\delta) in H_{+} implies that of P_{+}(c) . On
the other hand we find that if

J \geq-k\int(2(k+1))-Re c/(\delta(k+1)) ,

P_{+}(c+J(k+1)\delta) is hypoelliptic at t=0 in H_{+} . In fact under the hypothesis,
we can easily check that

-|\delta|^{2}\leq(2/k) Re ((c+J(k+1)\delta)\overline{\delta}) .

Therefore we only need to apply Proposition 2.2 putting P_{+}(c+J(k+1)\delta)

and H_{+} in place of P and H respectively. By our hypothesis (iii) ensuring
(2.6), we see that if for no integer n\geq 1 , c/(a-b)=1-n(k+1) or -n(k+1),
then P_{+} is hypoelliptic at t=0 in H_{+} .

Finally we may write

P_{-}=(\partial_{t}+(-b)t^{k}(-A_{-}))(\partial_{t}+(-a)t^{k}(-A_{-}))-(-(c+k\delta))t^{k-1} (–A-) in H_{-} .

Here if we note that Re(–b)>0 and Re(-a)<0 , we see that P_{-} in H_{-} is
the same type as P_{+} in H_{+} . Therefore the same consideration as above,
we have: suppose that for no integer n\leq 0 , c/(a-b)=1-n(k+1) or
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-n(k+1), then P_{-} is hypoelliptic at t=0 in H_{-} . Note also that hypoel-
lipticity of P_{\text{\’{e}}} in H_{*} follows from the boundedness of A_{\text{\’{e}}} . Thus we com-
plete the proof of Theorem.
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