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0. Introduction

In this paper we shall consider local solvability and hypoellipticity of
the following operator :

(0.1) P=(9,+at*A) (0, +btrA)—ct: A .

Here A is a selfadjoint operator in a Hilbert space H, a,b,c are complex
numbers and % a positive odd integer. Namely we shall prove the following

THEOREM. Assume that Re a>0 and Re b<0, then the following
are equivalent :

(1) P is locally solvable at t=0;

(i) P is hypoelliptic at t=0;

(iii) for no integer n, c/la—b)=1—n(k+1) or —n(k+1).

The case when A= D, and H= L*R") or when A positive-definite
and k=1 under more general set-up were considered by Gilioli and Treves
or Treves [6] respectively (see also [2] and [5]). For the case in which
k is even, refer to Menikoff [4].

In the sufficiency proof for local solvability was based on the theory
of ordinary differential operators of Fuchs’ type (see also [1]). However,
in the present paper we shall assert that it can be proved in the framework
of abstract theory in [6].

1. Preliminary

In order to describe the situation more precisely we here explain our
notations and list up some results in and which we must use.

Let A be a densely defind linear operator on H. We shall assume
that A is selfadjoint and that (/—E(0)) A and E(0) A are unbounded. Here
we denote the spectral resolution of A by E(1). (cf. Yosida [7]) For some
¢>0, we define an orthogonal decomposition of H;

H,=(I-E@)H, H,=(E@E)—E(—e))H, H. =E(—<H.
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Then we have A=A, +A+A_, H=H, ®H,®H_. Since A, and —A_
are positive-definite operators with bounded inverses respectively in H, and
H_, we can introduce the scale of “Sobolev space” (H.) and (H.) for
— o0 s + oo, defined by A, and — A_. Furthermore we define H* =
=(H,)®H.®(H_Y. Then as in [6], we use the following function spaces.
We denote by C*(J; H*) the space of H%-valued C=-functions in .J.
Here J is an open interval in R. If K is any compact subset of J, we
denote by Cy(K; H*) the subspace of C*(J; H*) consisting of functions
vanishing outside K. Being a closed linear subspace of C*(J; H*) with
the natural C~-topology, it is a Fréchet space. By Cy(J; H*) we denote
the inductive limit of Cy(K ; H*) as K ranges over all compact subsets of
J. Its dual space is denoted by Z'(J; H™™).

DEFINITION 1.1. P is locally solvable at t =0 if there exists an open
interval J containing t=0 such that for every feCy(J; H™) there is
ue2'(J; H*) satisfying Pu=f in J.

We say that P is locally solvable in a subset S of R if P is so at
every point of S.

P is hypoelliptic in J if, for any ue2'(J; H), PucC=(J; H>) implies
ueC*(J; H”).

We say that P is hypoelliptic at t=0 if there exists an open interval
J containing t=0 such that P is so in J.

Let us write, for convenience, P= P(c)= XY —cZ with a parameter ¢
where

X=0,+at*A,
Y=20,+btA,
Z=t"1A.

For our purpose we shall apply the following “Concatenation method”
which was constructed by [3].
ProrosiTION 1.2. With the above notations, we have

(1.1) (tX+ p) P(c) = P(c") (¢ X+ p—2),

where ¢’=c+(k+1)(a—b) and p=k+2+c/(a—b).
We shall use an algebraic lemma in order to prove that (iii) implies (ii).
LEMMA 1.3 ([6]). Let E be an abelian group and F a subgroup of
E,P,Q, U,V four endomorphisms of E which map into itself having the
following properties :

(1. 2) UP=QV,
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(1. 3) VY (F)NPYF)CF.
Then Q~'(F)CF implies P~'(F)CF.

2. Proof of the Theorem

This section consists of two parts. In part a) we give a slight extension
of subelliptic estimate in [6; Theorem II. 2.1] and its results. In part b)
we shall bring the proof to completion.

a) Here we shall consider the special case where A is positive-definite
on H and has a bounded inverse A™' and we denote by ||-||, (,) the norm
and the inner product respectively. Under these hypotheses we shall prove
the following ‘

ProprosITION 2.1. Suppose that

(2.1) —0°<2/k Re(cd), where 6 =a—b.
Then for a suitable constant C>0, if ueCy(J; H™),

(2.2) S(uu,nu et Aulp+ [ AYE w?) de< ClS(Pu, ” dtl .
Proor: First by our hypothesis (2.1), we see

23)  [(luli+ 2 Aul) de<C

S (Pu, u) dtl, for all ueCy(J; H™).
In fact if we set X+=0,—at*A=—X%*, then we have
—Re {SS(Pu, u)dr) =Re {as (Y, X*u) dt} +Re(cd) S(t"“Au, u)dt.
Here we note that
[(vu, Xru) de = ({1l —a 12 Au)}
+ S{—a(u,, £ Au)+b(t Au, w)) dt .

By literal repetition of the arguments of [6; II.2] where (2.1) is used, we
can get (2.3). Secondly integration by parts leads to

(2. 4) SHA‘/("“)uHZdt — —2Re S(u,, AV 1) dp
<Sl|u,]|2dt+ SI[AZ/"‘“) tu|dt .

Repeating the above consideration we have, for every integer j>1,
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(2. 5), SIIAJ'/““‘” PP de< 3 og, |22 + SHA”*”/("“’ £ ulde.

Indeed, by (2.4) we may assume j>2. Therefore by induction hypothesis,
suppose (2.5);,_;. Then we have

S“Aj/(k+l)tj—lu”2dt
=s(A(j—1)/(lc+1) t"zu, AGHD/ R+ 43 u) dt
<1/2 g”A(J—l)/(Ic+1) tj_zullzdt+ 1/2S”A(j+1)/(lc+1) tjullzdt

<1/25|lu,]]2dt+ 1/2S||Af/<k+1> 91| *dt + 1/2S|1A<J+1>/<k+l>tfunza't.

Hence we get (2.5), which means that the left hand side in (2.4) dominated
by left in (2.3). Therefore we complete the proof of [Proposition 2.1l
In the next part b) the following proposition is useful. If P satisfies

(2.2), by the same way as [6; II.3], we see
ProrosiTION 2.2. P is hypoelliptic in J with loss of 2%/(k+1) deriva-

tives.
b) If we write

P = P(I- E(e))+ P(E(e)— E(—¢)) + P(E(—))
=P, +P+P_,

we can easily find that local solvability of P in H implies one of P,, P_ in
H., H_ respectively. Thus if we replace D, in [3; Section 3] by A, or
—A_, by the same consideration we can prove that (i) implies (iii). Since
the proof that (ii) implies (i) follows from abstract theory [6; IL.5], it is
sufficient to prove that (iii) implies (ii). In order to do so, we use

1.3 as follows:
U=tX+p, P=P), Q=Pc+(k+1)s), V=tX+p—2 and
E=9'(J; H>*), F=C~(J; H™).

Here (1.2) follows from [Proposition 1.2, Furthermore we shall check
whether (1.3) is satisfied. By direct computation we observe that

Y(eX+p—2)—tP(c) = X+tXY—¢t[X, Y]+ (p—2) Y—tXY +ctZ

=(p—1) a,+(a+(;¢—2)b+c+k5> tZ.
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Since (1.1) implies a+(g—2)b+ c+kd=(k+1+c/d)a=(p—1)a, it follows
from the above equality that

Y(X+p—2)—tPc)=(p—1) X .
Therefore we get at once
tY(tX + p—2)—£P(c) = (p—1) X
=(p—1) X+ p—2)—(p—1)(p—2).
Thus if (p—1)(z—2)#0, we have
{1/(—1) (e—2)} {— Y (eX + p—2)+ £P(0)+ (u—1) (e X + p—2)} = 1.

Hence (1.3) holds. Recalling [Proposition 1.2 we have (g—1)(z—2)=(c/d6+
k+1)(c/d+k). Therefore by Lemma 1.3 if (c/o+%+1)(c/6+k)# 0, hypoel-
lipticity of P(c+(k+1)d) in H implies one of P(c) in H. Here we note
that we actually apply the above argument to P,.

If we iterate the above discussion by replacing ¢ + (j—1)(k + 1)§ with
c+jlk+1)d for j=1,2, - J successively, we derive the following: if we
assume that

(2. 6) (clo—1+j(k+1)) (c/o+j(k+1))#0 for j=1,2, - J,

then hypoellipticity of P, (c+ J(k+1)6) in H, implies that of P.(c). On
the other hand we find that if

J>—k[(2(k+1))—Rec/(5(k+1)),

P, (c+J(k+1)0d) is hypoelliptic at £=0 in H,. In fact under the hypothesis,
we can easily check that

—[0P<(2/R)Re ((c+J(k+1)3)3).

Therefore we only need to apply [Proposition 2.2 putting P.(c+J(k+1)4)
and H, in place of P and H respectively. By our hypothesis (iii) ensuring
(2.6), we see that if for no integer n>1, c/la—bd)=1—n(k+1) or —n(k+1),
then P, is hypoelliptic at £=0 in H,.

Finally we may write

P_=(3,+(—b) t"(—A_)> (3, +(—a) t’“(—A-))——(——(c+k5)> #(—A.) in H_.

'Here if we note that Re(—4)>0 and Re(—a)<0, we see that P_ in H_ is
the same type as P, in H,. Therefore the same consideration as above,
we have: suppose that for no integer #<0, c/la—b)=1—n(k+1) or
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—n(k+1), then P_ is hypoelliptic at t=0 in H_. Note also that hypoel-
lipticity of P, in H, follows from the boundedness of A,. Thus we com-
plete the proof of Theorem.
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