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0. Introduction.

In this paper we shall construct parametrices and prove solvability
and hypoellipticity for some classes of pseud0-differential operators whose
characteristic set is a closed manifold of codimension 2 in the cotangent
space.

We shall consider a pseud0-differential operator L(x, D) with double
characteristics ;

L(x, D)=(P\circ Q)(x, D)+R(x, D) ,

where P, Q and R are pseud0-differential operators whose principal part
are essentially transformed into the pseud0-differential operator of the
following type (M) D_{n}– ix_{n}^{k} a(x, D’) (with a (x, \xi’)\neq 0) by a canonical
transformation.

Theory of the local solvability of pseud0-differential operators with
simple characteristics was extensively studied in [1] and [14]. The de-
scription of their condition was based on the classical Hamilton-Jacobi
theory of characteristics and bicharacteristics. However, the case of mul-
tiple characteristics is much more complicated. The good example of
pseud0-differential operators with double characteristics are pseud0-differen-
tial operators whose principal symbols are written by the product of those
of the type (M).

Investigation of the operator whose principal part is the product of
abstract first order evolutional equations was first made in Treves [18]
when k=1 . Furthermore, for general odd integer k, Gilioli-Treves [7]
obtained the necessary and sufficient conditions of local solvability for the
differential operator R^{2} whose principal part is the product of the differen-
tial operators of the type (M) with a(x,D’)=aD’. However, when the
base space is a manifold, their conditions was not intristic for coordinate
systems and in particular, it is not clear how to microlocalize the pseud0-
differential operator in their argument. As a matter of fact, in the special
case when k=1 and the base space is more general manifold, Boutet de
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Monvel-Treves [2], [3], Boutet de Monvel [4] and Sj\"ostrand [15] showed
the condition for denoting the principal symbol by the desired form and
got the fairly intristic condition for existence of parametrices. In order to
transform the principal symbol into the product of pseud0-differential op-
erators of the type (M) essentially, they imposed the condition for L ; the
principal symbol is equivalent to the square of the distance function to
the characteristic set of L. But, their condition and the widing number
of L, which they used, are not useful when k is a general integer.

Our approch is different. We seek the necessary and sufficient condi-
tion in order to transform the many pseud0-differential operators into those
of type (M) by only one canonical transformation at the same time. In
this argument our main tools will be the Hamilton-Jacobi theory. For
sake of construction of parametrices of L we use the vector valued pseud0-
differential operators ([11], [15], [17]), in particular Sj\"ostrand [15] method is
also useful for us. The simplest example of L was studied by [7] and
their condition of local solvability inspired us.

A forthcoming paper [19], we show that the condition of Theorem 1.2
is necessary and sufficient condition for existence of parametrices.

1. Formulation of problem and results.

Let X be a paracompact C^{\infty} manifold of dimension n and let T^{*}(X)\backslash 0

be the contangential space minus the zero section. Let P(x, D) be a prop-
erly supported classical pseud0-differential operator on X, which in every
local coordinate system U\subset X has a symbol of the form

(1. 1) p(x, \xi)\sim\sum_{f=0}^{\infty}p_{m-f}(x, \xi) ,

where p_{m-f} are an element of C^{\infty}(R^{n}\cross(R^{n}\backslash \{0\})) and positively homogeneous
of degree m-j. Then p_{m}(x, \xi) is independent of a local coordinate system U.
Therefore we denote the principal symbol of P by p_{m}(x, \xi)\in C^{\infty}(T^{*}(X)\backslash 0\rangle

with same notation. We denote by S_{c}^{m}(X) the space of symbols with asymp-
totic expansion (1. 1). L_{c}^{m}(X) is the space of pseud0-differential operators
defined by the symbols of S_{c}^{m}(X) .
The characteristic set of P is written by \sum ;

\sum=\{(x, \xi)\in T^{*}(X)\backslash 0;p_{m}(x, \xi)=0\} .

For arbitrary C^{\infty}(T^{*}(X)\backslash 0) functions f and g we write the Poisson
bracket for f and g by
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\{f, g\}(x, \xi)=\sum_{f=1}^{n}(\frac{\partial f}{\partial\xi_{f}}\frac{\partial g}{\partial x_{f}}-\frac{\partial f}{\partial x_{f}}\frac{\partial g}{\partial\xi_{f}})(x, \xi) .

We also denote the Hamilton field of f by

H_{f}= \sum_{f=1}^{n}(\frac{\partial f}{\partial\xi_{f}}\frac{\partial}{\partial x_{f}}-\frac{\partial f}{\partial x_{f}}\frac{\partial}{\partial\xi_{f}}) .

Let q^{1}(x, \xi) and q^{2}(x, \xi) be the real and imaginary part of p_{m}(x, \xi)

respectively. For each sequence I=(i_{1}, \cdots, i_{s}), where i_{1}=1 or 2, we then
define the function

C_{I}(x, \xi)=\{q^{i_{1}}, \{\cdots, \{q^{i_{s}}, q^{1}\}\cdots\}\}(x, \xi) .

Let |I| be the length of I;|I|=s. For (x, \xi)\in\sum we put l(x, \xi)=|I_{0}| if
C_{I}(x, \xi)=0 for |I|<|I_{0}| and C_{I_{0}}(x, \xi)\neq 0 .

Using these notations, we shall introduce the following class of pseud0-
differential operators.

DEFINITION 1. 1. Let \sum be a connected closed conic submanifold of
T^{*}(X)\backslash 0 and codim \sum=2 . Then we denote the class ofproperly supported
classical pseudO-differential operators which satisfy the following three con-
ditions by M^{m,k}( \sum, X)

i) P(x, D) belongs to L_{c}^{m}(X) .
ii) The characteristic set of P is equal to \sum .
iii) The function l(x, \xi) defifined by p_{m}(x, \xi) is equal to k on \sum .

Furthermore M^{m,0}( \sum, X)=L_{c}^{m}(X) and if k is odd we defifine \sigma(P) for any
P \in M^{m,k}(\sum, X) as \sigma(P)=1 if sup (C_{I_{1}}(x, \xi), C_{I_{2}}(x, \xi))>0 and \sigma(P)=-1 if
sup (C_{I_{1}}(x, \xi) , C_{I_{2}}(x, \xi))\leq 0 . Here I_{1}=(1, \cdots, 1, 2) , I_{2}=(2, \cdots, 2) , |I_{f}|=k and
supremum is taken over \sum .

In the above definition we assume the connectness of \sum , but this is
not essential. We remark that \sum is non-involutive manifold by iii).

In this paper we consider the following double characteristic pseud0-
differential operator,

(1. 2) L(x, D)=(P\circ Q)(x, D)+R(x, D) .
Here P \in M^{m_{1},k}(\sum, X) , Q \in M^{m_{2},k}(\sum, X) , R \in M^{m_{1}+m_{2}-1,f}(\sum, X) . In the follow-
ing theorem we write A\equiv B for operators A, B;\mathscr{D}’(X)arrow \mathscr{D}’(X) if A–B is
an integral operator with a C^{\infty}-kernel. We also write diag (V)=\{(\rho, \rho) ;
\rho\in V\}\subset(T^{*}(X)\backslash 0)\cross(T^{*}(X)\backslash 0) for any conic subset V of T^{*}(X)\backslash 0 . Our
main theorem is the following

THEOREM 1. 2. Let L(x, D) be the double characteristic pseudO-differen-
tial operator defifined by (1. 2). Let k be an odd integer and j=k-1. We
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assume that (Hp_{m_{1}})^{l}q_{m_{2}}(x, \xi)=0 on \sum for l=1, \cdots , k –1 and (Hp_{n\iota_{1}})^{l}r_{m_{1}+m_{2}-2}

(x, \xi)=0 on \sum for l=1, \cdots , k –2 when k>1 . Furthermore
i) Whm \sigma(P)=1 and \sigma(Q)=-1 , whatever the positive integer n, the

function
(1. 3) (H)^{k-1}m_{1}(r_{m_{1}+m_{2}-1}+i\lambda\{p_{m_{1}}, q_{m_{2}}\})(x, \xi)

does not vanish at any point of \sum , where \lambda=(1-n(k+1))/k or -n(k+1)/k
and H_{p_{m_{1}}}^{o} is the identity,

ii) When \sigma(P)=-1 and \sigma(Q)=1 , for every positive integer n the
function (1. 3) does not vanish on \sum , where \lambda=(1+(n-1)(k+1))/k or (n-
1)(k+1)/k.

Then there exists properly supported linear operator F;\Delta^{Ci\prime}(X)arrow \mathscr{D}’(X)

which is continuous H_{s}^{1oc}(X)arrow H_{s+m_{1}+m_{2}-2k/(k+1)}^{1oc}(X) for all s\in R such that
F\circ L(x, D)\equiv L(x, D)\circ F\equiv I and WF’(F)=diag(T^{*}(X)\backslash 0) .

Here I is the identity in \mathscr{D}’(X) .
COROLLARY 1. 3. Let L(x, D) be a pseudO-differmtial operator satis-

fying the conditions of Theorem. Then L(x, D) is locally solvable on X
and strictly hypoelliptic, i.e. , for every u\in 6\overline{\Delta}’(X)WF(u)=WF(Lu) . MoreO-
ver, if u\in \mathscr{D}’(X) such that Lu\in H_{s}^{1oc}(X) then u belongs to H_{s+m_{1}+m_{2}-2k/(k+1)}^{1oc}(X) .
For any compact set K of X the following estimate holds for all u\in C_{0}^{\infty}(K)

||u||_{m_{1}+m_{2}-2k/(k+1)}\leq C_{K}(||Lu||_{0}+||u||_{m_{1}+m_{2}-2}) .
REMARK 1. 4. When k=1, this type of psmdO-differmtial operator

was studied by Boutet de Monvel and Treves [2], [3] and Sjb\"ostrand [15].
In this case our condition i) and ii ) are equivalent to that of [2], [15].

REMARK 1. 5. i) The condition, (Hp)^{l}m_{1}q_{m2}(x, \xi)=0 on \sum for l=1,
\ldots , k –1, (Hp)^{l}m_{1}r_{m_{1}+m_{2}-1}(x, \xi)=0 on \sum for l=1, \cdots , k –2 have many equiva-
ler\iota t conditions which are denoted in Proposition 2. 2.

ii) In (1. 3) H_{p_{m_{1}}}^{k-1} is exchangeable. If s_{k-1}(x, \xi) is equal to one of p_{m_{1}} ,
\overline{p}_{m_{1}} , q_{m_{2}},\overline{g}_{m_{\wedge}}.’ then the condition i) is equivalent to the following; for any
(x, \xi)\in\sum and every positive integer n

H_{s_{1}}\cdots H_{s_{k-1}}(r_{m_{1}+m_{I}-1}+i\lambda\{p_{m_{1}}, q_{m_{2}}\})(x, \xi)\neq 0 ,

where \lambda=(1-n(k+1))/k or -n(k+1)/k and s_{f}(j\leq k-2) is equal to one of
p_{m_{1}},\overline{p}_{m_{1}} , q_{m_{2}},\overline{q}_{m_{2}}, r_{m_{1}+m_{2}-1},\overline{r}_{m_{1}+m_{2}-1} . If s_{k-1}(x, \xi)=\overline{r}_{m_{1}+m_{2}-1}(x, \xi), then \lambda=2 (1 – n
(k+1))/k or -2n(k+1)/k. The latter case we need use the canonical trans-

formation in [14], by which we may assume c(x, \xi’) in (2. 14) is real.
iii) Let A(x, D), B(x, D) be elliptic pseudO-differmtid operators with
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the principal symbol a(x, \xi) and b(x, \xi) respectively. If L(x, D) satisfifies the
condition i) then by the proof of Proposition 2. 2 it follows that (ALB) (x,
D) satisfifies the same condition i) for (ap_{m_{1}})(x, \xi), (q_{m_{2}}b)(x, \xi) and (ar_{m_{1}+m_{2}-1}

b)(x, \xi) when (x, \xi)\in\sum .
iv) If L(x, D) satisfifies the condition i) thm so does the adjoint op-

erator L^{*}(x, D) .
REMARK 1. 6. Assume that L(x, D)=(P’\circ Q’)+R’ , where P’(x, D)\in

M^{mf,k}( \sum, X), Q’(x, D) \in M^{m\ell,k}(\sum, X), R’(x, D) \in M^{m1+m4-1}(\sum, X)(m_{1}+m_{2}=m_{1}’

+m_{2}’), \sigma(P’)=1 and \sigma(Q’)=-1 . Furthermore (H\nu_{m_{1}})^{l}p_{mf}’(x, \xi)=(Hpm_{1})^{l}q_{mq}’(x,
\xi)=0 and (Hp)^{n}m_{1}r_{m_{\acute{1}}+mg-1}’(x, \xi)=0 , where (x, \xi)\in\sum , l=1, \cdots , k-1 and n=1,
\ldots , k-2. Then the condition i) in Theorem 1. 2 is invariant, i.e. , when
(x, \xi)\in\sum(1.3) is equal to

(Hp_{m\acute{1}}’)^{k-1}(r_{mI+m\not\leq-1}’+i\lambda\{p_{m\acute{1}}’, q_{m\ell}’\}) .

When k is odd and \sigma(P)\sigma(Q)=1 , we can also construct a parametrix-
like object and obtain certain informations on local solbability and hypoel-
lipticity. Under different conditions we can construct parametrices of L(x,

D) when k is even (Theorem 4. 1 and 4. 3). These results are stated in
Section 4.

2. Reduction to a micro-local situation.

In this section, we transform L(x, D) into a pseud0-differential operator
whose principal symbol is a product of thoes of type (M).

The following proposition, proved in [19], is the starting point of our
discussion.

PROPOSITION 2. 1. Let P be an elment of M^{m,k}( \sum, X) . Then there
exists a homogeneous canonical transformation \chi from an open conic neigh-
bourhood of \rho\in\sum to an open conic neighbourhood of \chi(\rho)\in T^{*}(R^{n})\backslash 0 such
that

(p_{m}\circ\chi^{-1})(x, \xi)=(\xi_{n}-ix_{n}^{k}\xi_{n-1})\overline{Q}(x, \xi) .

Here \xi_{n-1}\neq 0 and \overline{Q}(x, \xi) is a non-vanishing positively homogeneous function
of degree m-1 . Moreover if k is odd, then the sign of \xi_{n-1} is equal to
the sign of C_{I_{1}}(\rho) or C_{I_{2}}(\rho) . Here either C_{I_{1}}(\rho) or C_{I_{2}}(\rho) is non-zero and
these have the same sign if C_{I_{1}}(\rho)\neq 0 , C_{I_{2}}(\rho)\neq 0 and k is odd.

For an odd integer k if C_{I_{1}}(x, \xi)>0 or C_{I_{2}}(x, \xi)>0 for some (x, \xi)\in\sum

then sup (C_{I_{1}}(x, \xi), C_{I_{2}}(x, \xi))>0 . Here supremum is taken over \sum . It
implies that the sign of \xi_{n-1} is equal to that of \sigma(P) if k is odd.

If k=1, then for any pair P, Q \in M^{m,1}(\sum, X) we can find one and same
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canonical transformation \chi such that p_{m}\circ\chi-1 and q_{m}\circ\chi^{-1} are written by the
product of non-vanishing function and the polynomial of degree 1 with
respect to \xi_{n}. However, for general k this is not true. The necessary and
sufficient condition is given by the following

PROPOSITION 2. 2. Let P_{f}(x, D) be an element of M^{m_{f\prime}k_{f}}( \sum, X), j=
1 , \cdots , N. We assume k_{1}\geq\cdots\geq k_{N} . Then the following statemmts are
equivalent.

A) For any j with k_{f}>1 and l(1\leq l\leq k_{f}-1) there exists a sequence
J_{l}=(j(1), \cdots,j(l)) such that for any (x, \xi)\in\sum

(2. 1) (H_{p_{f(1)}}\cdots H_{p_{f(l)}})p_{f,m_{f}}(x, \xi)=0 ,

where p_{f(i)} (i=1, \cdots, l-- 1) is an element in {p_{n,m_{n}}(x, \xi) ; k_{n}\geq k_{f}\rangle . Further-
more if k_{f}=k_{1} , thmp_{f(l)}=p_{1,m_{1}}(x, \xi) and if k_{f}<k_{1} , then p_{f(l)}=p_{i,m_{i}}(x, \xi) with
k_{i}>k_{f} .

B) For all j with k_{f}>1 and l(1\leq l\leq k_{f}-1) we have

((H_{p1m_{1}},)^{l}p_{f,m_{f}})(x, \xi)=0 , (x, \xi)\in\sum

C) For any j with k_{f}>1 , l(1\leq l\leq k_{f}-1) and any (x, \xi)\in\sum , we have

(2. 2) ((H_{p_{1}}\cdots H_{p_{l}})p_{f,m_{f}})(x, \xi)=0 .

Here p_{m}(x, \xi)(m=1, \cdots, l) is an arbitrary element of \{p_{n,m_{n}} ; k_{n}\geq k_{f}\} .
D) There exists a homogeneous canonical transfomation from an

open conic neighbourhood of \rho\in\sum to an open conic neighbourhood of \chi(\rho)\in

T^{*}(R^{n})\backslash 0 such that for all j=1 , \cdots , N
(p_{f,m_{f}}\circ\chi^{-1})(x, \xi)=(\xi_{n}-ix_{n^{f}}^{k}a_{f}(x, \xi’))Q_{f}(x, \xi) .

Here a_{f}(x, \xi’) and Q_{f}(x, \xi) are positively homogeneous of degree 1 and m_{f}

-1 respectively and \xi’=(\xi_{1^{ }},\cdots, \xi_{n-1}) . Moreover Rea_{f}(x, \xi’) and Q_{f}(x, \xi) are
non-vanishing.

In the above statement D) if k_{f} is odd, then the sign of Rea_{f}(x, \xi’) is
the same of that of \sigma(P_{f}) .

PROOF. First we shall show that the statement D) implies the state-
ment C). We write p_{m}(x, \xi)=(\xi_{n}-ix_{n}^{l_{m}} b_{m}(x, \xi’))R_{m}(x, \xi) and q_{m}(x, \xi)=(\xi_{n}-

ix_{n}^{l_{m}} b_{m}(x, \xi’)) . Then by the induction with respect to l we see that

(H_{p_{1}}\cdots H_{p_{l-1}}p_{l})(x, \xi)=(R_{1}\cdots R_{l})(H_{q_{1}}\cdots H_{q_{l-1}}q_{l})(x, \xi)

(2. 3) + \sum_{|I|<l}A_{I}(x, \xi)(H_{q_{i(1)}}\cdots H_{q_{i(k-1)}}q_{t(k)})(x, \xi)

+ \sum_{m=1}^{l}A_{m}(x, \xi)q_{m}(x, \xi) .
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Here I=(i(1), \cdots, i(k)), 1\leq i(m)\leq l and A_{I}(x, \xi), A_{m}(x, \xi) are some positively
homogeneous functions. Similary if k \leq\min(l_{i(k)}, l_{i(k-1)})+1 , then by the
induction with respect to k it follows that

(H_{q_{i_{(1)}}}\cdots H_{q_{i_{(}k-1)}}q_{i(k)})(x, \xi)

=il_{i_{(}k-1)}\cdots(l_{i(k-1)}-k+2)x_{n}^{l_{i(k-1)^{-k+1}}}b_{i(k-1)}(x, \xi’)

(2. 4)
-il_{i(k)}\cdots(l_{i(k)}-k+2)x_{n}^{l_{i(k_{)}}-k+1}b_{i(k)}(x, \xi’)

+A(x, \xi)x_{n}^{l_{i_{(1)}}-k+2}+B(x, \xi)x_{n}^{l_{i_{(2)}}-k+2} .

Here A(x, \xi), B(x, \xi) are positively homogeneous of degree 1 respectively.
By (2. 3) and (2. 4) it implies (2. 2). The implications of C) to B) and B)
to A) being clear, we prove that A) implies D).

Assume (2. 1). By Proposition 2. 1, there exists a homogeneous ca-
nonical transformation \chi_{f} from an open conic neighbourhood of \rho\in\sum to
an open conic neighbourhood of \chi_{f}(\rho)\in T^{*}(R^{n})\backslash 0 such that

(2. 5) (p_{f,m_{f}}\circ\chi_{f}^{-1})(y, \eta)=(\eta_{n}-i^{k_{f}}y_{n}\eta_{n-1})\check{O}_{f}(\sim y, \eta) .
Here \eta_{n-1}\neq 0 and (\underline{\tilde{)}}_{f}(y, \eta) is a non-zero positively homogeneous function of
degree m_{f}-1 . We show that the required canonical transformation \chi is
\chi_{1} . We denote the canonical transformation \chi_{f^{\circ}}\chi_{1}^{-1} from a conic neigh-
bourhood of \chi_{1}(\rho) to a conic neighbourhood of \chi_{f}(\rho) by

(y_{1}(x, \xi), \cdots , y_{n}(x, \xi), \eta_{1}(x, \xi), \cdots , \eta_{n}(x, \xi)).
Here y_{i}(x, \xi) and 7)_{i}(x, \xi) are positively homogeneous of degree 0 and 1
respectively, i=1, \cdots , n. Then (p_{f,m_{f}}\circ\chi_{1}^{-1})(x, \xi) is equal to

(2. 6) (\eta_{n}(x, \xi)-i(y_{n}(x, \xi))^{k_{f}}\eta_{n-1}(x, \xi))\tilde{Q}_{f}(x, \xi) .

Since \chi_{f}(\sum)=\{(y, \eta)\in T^{*}(R^{n})\backslash 0 ; y_{n}=\eta_{n}=0\} and \chi_{1}(\sum)=\{(x, \xi)\in T^{*}(R^{n})\backslash 0 ;
x_{n}=\xi_{n}=0\} , we see that y_{n}(x’, 0, \xi’, 0)=\eta_{n}(x’, 0, \xi’, 0)=0 . Therefore by the
definition of a canonical transformation we obtain

(2. 7) \{y_{n}, \eta_{n}\}(x’, 0, \xi’, 0)=(\frac{\partial y_{n}}{\partial\xi_{n}}\frac{\partial\eta_{n}}{\partial x_{n}}-\frac{\partial y_{n}}{\partial x_{n}}\frac{\partial\eta_{n}}{\partial\xi_{n}})(x’, 0, \xi’, 0)=-1 .

First we shall assume k_{f}=1 . Then we have by (2. 7) \partial Y)_{n}/\partial\xi_{n}(x’, 0, \xi’ ,
0)\neq 0 or \partial y_{n}/\partial\xi_{n}(x’, 0, \xi’, 0)\neq 0 . The implicit function theorem (c.f[13])
implies

(2. 8) (\eta_{n}-iy_{n}\eta_{n-1})(x, \xi)=(\xi_{n}-iA_{f}(x, \xi’))Q_{f}’(x, \xi) .

Here Q_{f}’(x, \xi) is non-zero positively homogeneous of degree 0 and A_{f}(x, \xi’)

is positively homogeneous of degree 1. Comparing the null sets of the
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both sides in (2. 8), we get A_{j}(x’, 0, \xi’)=0 . Hence we can write A_{f}(x, \xi’)

=x_{n}a_{f}(x, \xi’) . We have by (2. 8) that
2i\eta_{n-1}=\{\eta_{n}-iy_{n}\eta_{n-1}, \eta_{n}+iy_{n}\eta_{n-1}\}(y’, 0, \eta’, 0)

(2. 9) =|Q_{f}’|^{2}\{\xi_{n}-ix_{n}a_{f}, \xi_{n}+ix_{n} a_{f}\}(x, 0, \xi’, 0)

=2i(|Q_{f}’|^{2}Rea_{f})(x’, 0, \xi’, 0) .

Thus Rea_{f}(x, \xi’)\neq 0 and the sign of Rea_{f}(x, \xi’) is equal to that of \sigma(P_{f}) .
Hence we have D) by setting Q_{f}=\overline{Q}_{f}Q_{f}’ .

Now let k_{f}=k_{1}(j=1, \cdots, N_{1}) . From the assumption (2. 1)

\{p_{1,m_{1}},p_{f,m_{f}}\}

=\{(\xi_{n}-ix_{n}^{k_{1}}\xi_{n-1})\tilde{Q}_{1} , (\eta_{n}-i^{k_{f}}y_{n}\eta_{n-1})\overline{Q}_{f}\}(x’, 0, \xi’, 0)

=(\overline{Q}_{1}\overline{Q}_{f}\partial\eta_{n}/\partial x_{n})(x’, 0, \xi’, 0)=0

By (2. 7) it follows that \partial\eta_{n}/\partial\xi_{n}(x’, 0, \xi’, 0)\neq 0 . Thus by the implicit func-
tion theorem we can write for any j(1\leq j\leq N_{1})

B_{f}(x, \xi)=(\eta_{n}-i^{k_{f}}y_{n}\eta_{n-1})(x, \xi)

=(\xi_{n}-ix_{n}A_{1}^{f}(x, \xi’))Q_{f}’(x, \xi) ,

where the first equality is definition and A_{1}^{f}(x, \xi’), Q_{f}’(x, \xi) are positively
homogeneous of degree 1, 0 respectively. Moreover Q_{f}’(x, \xi) is non-zero
function. We shall show that A_{1}^{f}(x’, 0, \xi’)=0 . Apply (2. 3) to H_{p_{1_{m_{1}}}},p_{f,m_{f}}

as q_{1}(x, \xi)=\xi_{n}-ix_{n}^{k_{1}}\xi_{n-1} , R_{1}(x, \xi)=Q_{1}(x, \xi) , q_{2}(x, \xi)=\xi_{n}-ix_{n}A_{1}^{f}(x, \xi’) and R_{2}(x,
\xi)=\tilde{Q}_{f}Q_{f}’(x, \xi) . Then by (2. 1), (2. 4) it implies that i(\overline{Q}_{1}\overline{Q}_{f}Q_{f}’)A_{1}^{f}(x’, 0, \xi’ ,
0)=0. Therefore for any j(1\leq j\leq N_{1}) we can write

B_{f}(x, \xi)=(\xi_{n}-ix_{n}^{2}A_{2}^{f}(x, \xi’))Q_{f}’(x, \xi) ,

where A_{2}^{f}(x, \xi’) is positively homogeneous of degree 1. Inductively we
assume that for all j(1\leq j\leq N_{1}) we can write

B_{f}(x, \xi)=(\xi_{n}-ix_{n}^{l}A_{l}^{f}(x, \xi’))Q_{f}’(x, \xi) ,

where l<k_{1} . Set P_{f(i)}(x, \xi)=(\xi_{n}-ix_{n}^{l}b_{i}(x, \xi’))R_{i}(x, \xi) (i=1, \cdots, l-1) . We
apply (2. 3) to H_{p_{f(1)}}\cdots H_{lj_{(}l-1)}Hv_{1,m_{1}}p_{f,m_{f}} as R_{i}=R_{i}(x, \xi), q_{i}=\xi_{n}-ix_{n}^{l}b_{i}(x,
\xi’) (i=1, \cdots, l-1), R_{l}=\overline{Q}_{1}(x, \xi), q_{l}=(\xi_{n}-ix_{n}^{k_{1}}\xi_{n-1}), R_{l+1}=\tilde{Q}_{f}Q_{f}’(x, \xi) and q_{l+1}

=(\xi_{n}-ix_{n}^{l} Ad(x, \xi’)) . Then by (2. 1) and (2. 4) it implies that

il ! (R_{1}\cdots R_{l-1}\overline{Q}_{1}\overline{Q}_{f}Q_{f}’A_{l}^{f})(x’, 0, \xi’, 0)=0 .

Thus we can write for all j(1\leq j\leq N_{1})
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B_{f}(x, \xi)=(\xi_{n}-ix_{n}^{l+1}A_{l+1}^{f}(x, \xi’))Q_{f}’(x, \xi) .

By the induction with respect to l we obtain the statement D) except
Rea_{f}\neq 0 .

let k_{f}=k_{N_{1}+1}(j=N_{1}+1, \cdots, N_{2}) . Since for any j(j=N_{1}+1, \cdots, N_{2}) and
l<k_{f} we assume p_{f(l)}=p_{i,m_{i}}(x, \xi) with k_{i}>k_{f}, in this case p_{i,m_{i}}(x, \xi)(i=1 ,
\ldots , N_{1}) acts p_{f,m_{f}}(x, \xi)(j=N_{1}+1, \cdots, N_{2}) like as p_{1,m_{1}}(x, \xi) does p_{t,m_{i}}(x, \xi)(i=

1 , \cdots , N_{1}) . Repeating the same argument as that when j=1, \cdots , N_{1} we can
show that for all j(j=N_{1}+1, \cdots, N_{2})

B_{f}(x, \xi)=(\xi_{n}-ix_{n^{f}}^{k}a_{f}(x, \xi’))Q_{f}’(x, \xi) .

Here a_{f}(x, \xi’) and Q_{f}’(x, \xi) are positively homogeneous of degree 1 and 0
respectively and Q_{f}’(x, \xi)\neq 0 . Similarly we can prove the statement D)
when k_{f}<k_{N_{2}} without Rea_{f}\neq 0 .

We shall show that Rea3 {x,\xi’)\neq 0 . If we put q_{J}(x, \xi)=\xi_{n}-ix_{n}^{k_{f}} a_{f}(x,
\xi’), by (2. 3) and (2. 4) we have

(2. 10) ((H_{B_{f}})^{k_{f}}\overline{B}_{f})(x’, 0, \xi’, 0)=((Q_{f}’)^{k_{f}}\overline{Q}_{f}’)((H_{q_{f}})^{k_{f}}\overline{q}_{f})(x’, 0, \xi’, 0) .

Since ((H_{q_{f}})^{k_{f}}\overline{q}_{f})(x’, 0, \xi’, 0)=2ik_{f}!Rea_{f}(x’, 0, \xi’), (2. 10) gives that

\eta_{n-1}(x’, 0, \xi’, 0)=((Q_{f}’)^{k_{f}}\overline{Q}_{f}’Rea_{f})(x’, 0, \xi’, 0) .

This shows that Rea_{f}(x, \xi’) is non-zero. If we set \overline{Q}_{f}Q_{f}’=Q_{f}, \chi=\chi_{1} then
we have the statement D).

If k_{f} is odd, then the sign of \eta_{n-1} is equal to that of \sigma(P_{f}) . We shall
consider the Poisson bracket such that {B_{f}, \{\overline{B}_{f}, \{\cdots, \{\overline{B}_{f}, \{B_{f},\overline{B}_{f}\}\}\cdots\}\} where
the numbers of B_{f} and \overline{B}_{f} in the bracket are (k_{f}+1)/2 respectively. By
(2. 3) and (2. 4) we see that

\eta_{n-1}(x’, 0, \xi’, 0)=|Q_{f}’|^{k_{f}+1}(Rea_{f})(x’, 0, \xi’, 0) .
This shows that the sign of Rea_{f} is equal to that of \sigma(P_{f}) . This completes
the proof.

Now we shall compute the full symbol of operator L(x, D) . To do
so we use the following terminology. For the operators A and B form
\overline{\Lambda}^{6\prime}(X_{1}) to \overline{\Lambda}^{a\prime}(X_{2}), where X_{f} are paracompact C^{\infty}-manifolds, A\equiv B at (\rho_{1}, \rho_{2})

\in(T^{*}(X_{1}\cross X_{2})\backslash 0) means that there exists an open conic neighbourhood V_{f}

of \rho_{f} in T^{*}(X_{f}) such that WF’(A-B)\cap(V_{1}\cross V_{2})=\phi. It is well-known
(c.f Section 6 in [15]) that for any canonical transformation \chi from a conic
neighbourhood \rho to a conic neighbourhood of \chi(\rho)\in T^{*}(R^{n})\backslash 0 there exists
a Fourier integral operator U belongs to I^{o}(R^{n}\cross X, \Gamma’), where \Gamma is a closed
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conic subset of the graph of \chi containing (\rho, \chi(\rho)) as a interior point and
\Gamma’=\{(x, \xi, y,-\eta) ; (x, \xi, y, \eta)\in\Gamma\} . It satisfies that

(2. 11) UU^{*}\equiv I at (\chi(\rho), \chi(\rho)) and U^{*}U\equiv I at (\rho, \rho) .

Moreover for all P\in L_{c}^{n\iota}(R^{n}) with the principal symbol p_{m}, we have UPU^{*}

\in L_{c}^{m}(R^{n}) and it’s principal symbol is equal to p_{m}\circ\chi-1 in a conic neighbour-
hood of \chi(\rho) .

Now we shall consider the operator

L(x, D)=(P\circ Q)(x, D)+R(x, D) .

where P \in M^{m_{1},k}(\sum, X), Q \in M^{m_{2},k}(\sum, X), R \in M^{m_{1}+m_{2}-1,k-1}(\sum, X) . Here we
suppose that k is odd. Moreover H_{p_{m_{1}}}^{l}q_{m_{-}}.=0 on \sum for l=1, \cdots , k –1 and
H_{p_{m_{1}}}^{l}r_{m_{1}+m_{2}-1}=0 on \sum for l=1 , \cdots , k –2 when k>1 . From (2. 11) we get

\tilde{L}(x, D)=ULU^{*}\equiv UPU^{*}UQU^{*}+URU^{*} at (\chi(\rho), \chi(\rho)) ,

where \chi is the canonical transformation denoted in Proposition 2. 2. From
Proposition 2. 2 we have

(2. 12) UPU^{*}(x, \xi)\sim e(x, \xi)((\xi_{n}-ix_{n}^{k}a(x, \xi’))+p_{0}(x, \xi)+p_{-1}(x, \xi)) ,

(2. 13) UQU^{*}(x, \xi)\sim f(x, \xi)((\xi_{n}-ix_{n}^{k}b(x, \xi’))+q_{0}(x, \xi)+q_{-1}(x, \xi)) ,

(2. 14) UPU^{*}(x, \xi)\sim g(x, \xi)((\xi_{n}-ix_{n}^{k-1}c(x, \xi’))+r_{0}(x, \xi)+r_{-1}(x, \xi)) .

Here e, f and g are non-zero positively homogeneous of degree m_{1}-1 ,
m_{2}-1 and m_{1}+m_{2}-2 respectively, p_{0}, q_{0} and r_{0} are positively homogeneous
of degree 0 and p_{-1} , q_{-1} and r_{-1} belong to S_{c}^{-1}(X) . Moreover a, b and c

are positively homogeneous of degree 1 and if k is odd, the sign of Rea
and Reb are equal to \sigma(P) and \sigma(Q) respectively. Using this fact we get
the following

Lemma 2. 3. There exists a properly supported elliptic pseudO-differen-
that operator E, which belongs to L^{m_{1}+m_{2}-2}(R^{n}), such that the principal
symbol of E is equal to (ef) (x, \xi) and

\tilde{I_{-}}(x, D)\equiv E(x, D)\circ M(x, D) at (\chi(\rho), \chi(\rho)) .

Here M(x, D) is a classical pseudO-differential operator belonging to L_{c}^{2}(R^{n})

such that in a conic neighbourhood of \chi(\rho)

M(x, \xi)\sim\xi_{n}^{2}-ix_{n}^{k}(a+b)(x, \xi’)\xi_{n}-x_{n}^{2k} (ab) (x, \xi’)

-kx_{n}^{k-1}\{\{x,\xi’)-ix_{n}^{k-1}(e^{-1}f^{-1}gc)(x, \xi)

+x_{n}^{k}A(x, \xi)+B(x, \xi)\xi_{n}+C(x, \xi) ,
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where A and B are positively homogeneous of degree 1 and 0 respectively
and C(x, \xi)\in S_{c}^{o}(R^{n}) .

PROOF. Let h(x, \xi) be C^{\infty}(R^{n}\cross R^{n}) non-zero function which is equal
to (ef) (x, \xi) when (x, \xi) belongs to some conic neighbourhood of \chi(\rho) and
|\xi|>1 . By using h(x, \xi) we define a pseud0-differential operator E(x, D).
Now we shall seek an operator M(x, D) with a symbol

M(x, \xi)\sim\sum_{f=0}^{\infty}M_{2-f}(x, \xi) ,

where M_{2-f}(x, \xi) is positively homogeneous of degree 2-j. By the com-
position formula for pseud0-differential operators (c.f[12]), we have

(E \circ M)(x, \xi)\sim\sum_{\alpha,f}((iD_{\xi})^{\alpha}h)(D_{x}^{\alpha}M_{2-f})(x, \xi) .

From (2. 12) and (2. 13) we first get

M_{2}(x, \xi)=\xi_{n}^{2}-ix_{n}^{k}(a+b)(x, \xi’)\xi_{n}-x_{n}^{2k} (ab) (x, \xi’) .
Since hM_{1}+ \sum_{|\alpha I=1}((iD_{\xi})^{\alpha}h)(D_{x}^{\alpha}M_{2})=(ef)

(-kx_{n}^{k-1}b(x, \xi’)-ix_{n}^{k-1}(e^{-1}f^{-1}gc)(x, \xi)+

x_{n}^{k}A_{1}(x, \xi)+B_{1}(x, \xi)) if |\xi|>1 , where A_{1} and B_{1} are positively homogeneous
of degree 1 and 0 respectively. Hence, we can write

M_{1}(x, \xi)=-kx_{n}^{k-1}b(x, \xi’)-ix_{n}^{k-1}(e^{-1}f^{-1}gc)(x, \xi)

+x_{n}^{k}A(x, \xi)+B(x, \xi)\xi_{n} .
Since h(x, \xi)\neq 0 , we obtain M_{2-f}(x, \xi) in turn by the induction with respect
to j. This completes the proof.

3. The proof of Theorem 1. 2.

In this section, by using a discussion of vector valued pseud0-differen-
tial operators we shall prove Theorem 1. 2.

For any pair of Hilbert spaces H_{1} and H_{2} we denote by \mathscr{S}. (H_{1}, H_{2})

the Banach space of bounded linear operators from H_{1} to H_{2} . We define
S^{m} (R^{n-1} ; H_{1}, H_{2}) as the space of C^{\infty} functions p(x’, \xi’) on R^{n-1}\cross R^{n-1} with
values in \mathscr{S}. (H_{1}, H_{2}) such that for all K\underline{5}R^{n-1} and multi-indices \alpha and \beta

there is a constant C, depending on K, \alpha and \beta such that

(3. 1) ||D_{x}^{\alpha} , D_{\xi}^{\beta},p(x’, \xi’)||_{\mathscr{H}(H_{1},H_{2}\rangle}\leq C(1+|\xi’|)^{m-|\beta|} for (x’, \xi’)\in K\cross R^{n-1} .
Let L^{m} (R^{n} ; H_{1}, H_{2}) be the space of vector valued pseud0-differential opera-
tors C_{0}^{\infty} (R^{n-1} ; H_{1})arrow C^{\infty}(R^{n-1} ; H_{2}), given by

P(x’, D’)u= \int e^{i<x’-y’,\xi’>}p(x’, \xi’)u(y’)d\xi’dy’ j
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where p(x’, \xi’)\in S^{m}(R^{n-1} ; H_{1}, H_{2}) and u\in C_{0}^{\infty}(R^{n-1} ; H_{1}) . \backslash In particular, in
this section we shall take as H_{1} or H_{2} the space V_{\xi}^{k}, (R), given by the norm

||u||_{r_{\xi}^{k},(R)}^{2}= \sum_{\alpha\leq 2}(1+|\xi’|^{2})^{(2-a+\beta)/(k+1)}||y^{\beta}D^{\alpha}u||_{L^{2}(R)}^{2}\beta\leq(2-\alpha)k) .

In this case the norm in (3. 1) depends on \xi’ , but all the calculi remain
valid because we have the inequality

||u||_{V}\iota_{(R)}\leq||u||_{V_{\xi}^{k},(R)}\leq(1+|\xi’|)^{2}||u||_{V^{k}(R)} .
Here V^{k}(R) is a Hilbert space normed by

||u||_{V^{k}(R)}^{2}= \sum_{\alpha\leq 2}||y^{\beta}D^{\alpha}u||_{L^{2}(R)}^{2}\beta\leq(2-a)k
.

For instance if P\in L^{m} (R^{n-1};^{H_{1}}k(R) then P\in L^{m+2}(R_{n-1} ; H_{1}, V^{k}(R)) .
As to the wave front sets of vector valued pseud0-differential operators,

we have the following
PROPOSITION 3. 1. Let P\in L^{m} (R^{n-1} ; H_{1}, H_{2}), where H_{1} and H_{2} are equd

to V_{\xi}^{k}, (R) or L^{2}(R) . Then, considering P as an operator C_{0}^{\infty}(R^{n})arrow\Delta’\sigma(R^{n}),
we have

i) If (x, \xi, y, \eta)\in WF’(P) and |\xi’|+|\eta’|\neq 0 , then (x’, \xi’)=(y’, \eta’),
ii) If m=-\infty , then WF’(P)\subset\{((x’, x_{n}, 0, \xi_{n}), (y’, y_{n}, 0, \eta_{n}))\in T^{*}(R^{n}\cross

R^{n})\backslash 0\} .
The above i) is Proposition 4. 4 in [15] and ii) is easily shown from

the proof of the same proposition.
By Lemma 2. 3, we shall investigate the pseud0-difierential operator

M(x, D) with the symbol

\xi_{n}^{2}-ix_{n}^{k}(a+b)(x, \xi’)\xi_{n}-x_{n}^{2k} (ab) (x, \xi’)-kx_{n}^{k-1}b(x, \xi’)
(3. 2)

+x_{n}^{k-1}\tilde{c}(x, \xi)+x_{n}^{k}A(x,\hat{\sigma})+B(x, \xi)\xi_{n}+C(x, \xi) ,

where \tilde{c}=-i(e^{-1}f^{-1}gc)(x, \xi) . Now we extend a, b and \tilde{c} on R^{n}\cross R^{n-1} as
the C^{\infty}(R^{n}\cross R^{n-1}) functions preserving a homogeneity when |\xi’|>1 . The
functions \tilde{c}, A, B and C are also extended over R^{n}\cross R^{n} as the C^{\infty}(R^{n}\cross R^{n})

functions preserving a homogeneity if |\xi|>1 . Extended symbols a, b,\tilde{c}, A,
B and C satisfy the following condition. For all multi-indices \alpha, \beta

|D_{x}^{\alpha}D_{\theta}^{\theta}p(x, \theta)|\leq C(1+|\theta|)^{m-|\nu|} , (x, \theta)\in R^{n}\cross R^{N} ,

where N=n-1 or n and m=0 or 1. Then we have the following
Lemma 3. 2. Let p(x, \xi) be an element of S^{m}(R^{n}\cross R^{n}) such that m\leq 1

and for all multi-indices \alpha, \beta
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(3. 3) |D_{x}^{\alpha}D_{\xi}^{9}p(x, \xi)|\leq C(1+|\xi|)^{m-|\beta|}(x, \xi)\in R^{n}\cross R^{n} .

Then for dl multi-indecies \mu, \nu apd l\leq 2k the operator norm of x_{n}^{l}\circ(D_{x}^{\mu} ,

D_{\xi}^{\nu},p)(x, \xi’, D_{n}) in \mathscr{L}(V_{\xi}^{k},(R), L^{2}(R)) is bounded by C(1+|\xi’|)^{m-|\nu|-(k+l+2)/(k+1)}

if p(x, \xi’, 0)\equiv 0 . IJ^{\cdot}p\{x,\xi’ ,0) \not\equiv.0 , then the norm is bounded by C(1+
|\xi’|)^{m-|\nu|-(l+2)/(k+1)} .

PROOF. It is known in Proposition 3. 1 of [8] that if p(x, \xi) satisfies
the condition (3. 3) and m\leq 0 , then the operator norm of p(x, \xi’, D_{n}) in
\mathscr{L}(L^{2}(R), L^{2}(R)) is bounded by

(3. 4) C \sum_{\alpha+\beta\leq 2} \triangleright\sup

(1+|\xi_{n}|)^{\beta}|D_{x_{n}}^{\alpha}D_{\xi_{n}}^{\beta}p(x, \xi)| .

By Taylor’s formula we can write p(x, \xi)=p(x, \xi’, 0)+p_{1}(x, \xi)\xi_{n}, where
p_{1}(x, \xi) bel\‘Ongs to S^{m-1}(R^{n}\cross R^{n}) and satisfies the condition (3. 3). By
a simple computation it follows that

x_{n}^{l}(D_{x}^{\mu},D_{\xi}^{\nu},p)(x, \xi’, D_{n})=(D_{x}^{\mu},D_{\xi}^{\nu},p)(x, \xi’, 0)\cdot x_{n}^{l}

+, \sum_{l\leq l}(-1)^{l-l’}
(\begin{array}{l}ll,\end{array}) (D_{x}^{\mu},D_{\xi}^{\nu},D_{\xi_{n}}^{l-l’}p_{1})(x, \xi’, D_{n})\cdot(x_{n}^{l’}D_{n}) .

It is clear that
||(D_{x}^{\mu},D_{\xi’}^{\nu}p)(x, \xi’, 0)\cdot x_{n}^{l}u||_{L^{2}(R)}

(3. 5)
\leq C(1+|\xi’|)^{m-|\nu|-(l+2)/(k+1)}||u||_{r_{\xi}^{k},(R)} .

From (3. 4), (1+|\xi|)^{-\beta}\leq(1+|\xi_{n}|)^{-\beta} and (1+|\xi|)^{m-1-|\nu|-(l-l’)}\leq(1+|\xi’|)^{m-1-|\nu|-(l-l’\rangle}

we get the following inequality;

||(D_{x}^{\mu},D_{\xi}^{\nu},D_{n}^{l-l’}p_{1})(x, \xi’, D_{n})(x_{n}^{l’}D_{n}u)||_{L^{2}(R)}

(3. 6)
\leq C(1+|\xi’|)^{m-|\nu|-(k+l+2+k(l-l’))/(k+1)}||u||_{V_{k}^{\xi’}(R)} .

This completes the proof.
We define the properly supported pseud0-differential operator M_{0}(x, D)

with the symbol
\xi_{n}^{2}-ix_{n}^{k}(a+b)(x’, 0, \xi’)\xi_{n}-x_{n}^{2k} (ab) (x’, 0, \xi’)

(3. 7)
-kx_{n}^{k-1}b(x’, 0, \xi’)+x_{n}^{k-1}\tilde{c}(x’, 0, \xi’, 0) .

Then we have the following

LEMMA 3. 3. Let M(x, D) be the properly supported pseudO-differential
operator with the symbol (3. 2) and M_{0}(x, D) be the properly supported pseudO-
differential operator with the symbol (3. 7). Then there exists a properly
supported pseudO-differmtial operator M.(x, D) such that
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i) M.(x, \xi’, D_{n}) belongs to S^{o} (R^{n-1};V_{\xi}^{k}, (R), L^{2}(R)).
ii) (M-M_{0})(x, \xi)=M_{*}(x, \xi) in a small conic neighbourhood of \chi(\mu) .
iii) For any \epsilon>0 there exists a conic neighbourhood V’ of (x_{0}’, \xi_{0}’),

where \chi(\rho)=(x_{0}’, 0, \xi_{0}’, 0), such that

||M_{\epsilon}(x, \xi’, D_{n})||_{g(V_{\xi}^{k},(R),L^{2}(R))}\leq\epsilon ,

when (x’, \xi’)\in V’ and |\xi’| is sufficiently large.
PROOF. Let \varphi(x) be a C_{0}^{\infty}(R^{n}) function such that supp \varphi\subset\{x\in R^{n}. ; |x

-(x_{0}’, 0)|<1\} and \varphi(x)=1 in a neighbourhood of (x_{0}’, 0) . We define M.(x,
D) with the symbol

-i((a+b)(x, \xi’)-(a+b)(x’, 0, \xi’))x_{n}^{k}\xi_{n}-\varphi(x/\delta)

\cross ((ab) (x, \xi’) -(ab) (x’, 0, \xi’) ) x_{n}^{2k}-k(b(x, \xi’)

(3. 8)
-b(x’, 0, \xi’))x_{n}^{k-1}+x_{n}^{k-1}(\tilde{c}(x, \xi)-\tilde{c}(x’, 0, \xi’, 0))

+x_{n}^{k}A(x, \xi)+B(x, \xi)\xi_{n}+C(x, \xi) ,

where \delta is a positive number. We shall show that M.(x, \xi’, D_{n}) belongs
to S^{o} (R^{n-1};V_{\xi}^{k}, (R), L^{2}(R)). It is clear that the vector valued pseud0-dif-
ferential operators defined by the first, second and third terms of (3. 8\rangle

belong to L^{0} (R^{n-1};V_{\xi}^{k}, (R), L^{2}(R)). By Talor’s formula, we get \tilde{c}(x, \xi)-

\tilde{c}(x’, 0, \xi’, 0)=\tilde{c}_{0}(x, \xi)\xi_{n}+x_{n}\tilde{c}_{1}(x, \xi), where \tilde{c}_{0}(x, \xi) and \tilde{c}_{1}(x, \xi) are positively
homogeneous of degree 0 and 1 respectively. From Lemma 3.2 it follows
that x_{n}^{k-1}\tilde{c}_{0}(x, \xi’, D_{n})D_{n}+x_{n}^{k}\tilde{c}_{1}(x, \xi’, D_{n})+x_{n}^{k}A(x, \xi’, D_{n})+B(x, \xi’, D_{n})D_{n}+

C(x, \xi’, D_{n}) belongs to S^{o} (R^{n-1};V_{\xi}^{k}, (R), L^{2}(R)). ii) is clear by the definition
of M\’e(x, \xi). We shall prove iii). By Taylor’s formula we obtain

(3. 9) \varphi(x/\delta)x_{n}^{2k}((ab)(x, \xi’) -(ab) (x’, 0, \xi’))=x_{n}\varphi(x/\delta)x_{n}^{2k}f(x, \xi’) ,

where f(x, \xi’) is positively homogeneous of degree 2. Since sup |\varphi(x/\delta)x_{n}|

<\epsilon if \delta is sufficiently small, the operator defined by (3. 9) has a small norm
in \mathscr{L} ( V_{\xi}^{k}, (R), L^{2}(R)) if \delta is sufficiently small. We can write
(3. 10) x_{n}^{k}((a+b)(x, \xi’)-(a+b)(x’, 0, \xi’))D_{n}=x_{n}^{k+1}(a_{1}+b_{1})(x, \xi’)D_{n}

(3. 11) x_{n}^{k-1}(b(x, \xi’)-b(x’, 0, \xi’))=x_{n}^{k}b_{1}(x, \xi’) ,

where a_{1} and b_{1} are positively homogeneous of degree 1. By the defini-
tion of the norm V_{\xi}^{k}, (R) we see that the norms of the operators defined
by (3. 10) and (3. 11) are estimated by (1+|\xi’|)^{-1J(k+1_{)}} . From Lemma 3. 2
we have

||x_{n}^{k}((\tilde{c}_{1}+A)(x, \xi’, D_{n}))||_{4(7_{\xi}^{k},(R),L^{2}(R))}\leq C(1+|\xi’|)^{-1/(k+1)}-
,
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||x_{n}^{k-1}\overline{c}_{0}(x, \xi’, D_{n})D_{n}||_{4(V_{\xi}^{k},(R),L^{2}(R))}\leq C(1+|\xi’|)^{-k/(k+1)} ,

||B(x, \xi’, D_{n})D_{n}+C(x, \xi’, D_{n})||_{4(V_{\xi}^{k},(R),L^{2}(R))}\leq C(1+|\xi’|)^{-1/(k+1)}-,

which complete the proof of lemma.
We can show the following

PROPOSITION 3.4. Let L(x, D) be the properly supported pseudO-dif-
ferential operator defifined by (1. 1), where k is odd and \sigma(P)\sigma(Q)<0 . Sup-
pose that L(x, D) satisfifies the condition i) or ii) in Theorem 1.2, then
M_{0}(x, \xi’, D_{n}) in (3. 7) generated by L is an isomorphic operator from V_{\xi}^{k}, (R)
to L^{2}(R) then (x’, \xi’) belongs to a small conic neighbourhood of (x_{0}’, \xi_{0}’) and
|\xi’| is sufficiently large.

PROOF. We make a change of variables. We put

t=|\xi’|^{1/(k+1)}x_{n},\tilde{u}(t)=|\xi’|^{2/(k+1)-1/2(k+1\rangle}u(|\xi’|^{-1/(k+1)}t)\wedge
’

\tilde{f}(t)=|\xi’|^{-1/2(k+1)}f(|\xi’|^{-1/(k+1)}t) .

Then the equation M_{0}(x’, x_{n}, \xi’, D_{n})u(x_{n})=f(x_{n}) transforms

M_{0} (x’, t, \xi’/|\xi’| , D_{t}) \tilde{u}(t)

=(D_{t}-it^{k}a (x’, 0, \xi’/|\xi’| )) (D_{t}-it^{k}b(x’, 0, \xi’/|\xi’|))u(t)

+t^{k-1}\tilde{c} (x’, 0, \xi’/|\xi’| , 0) \overline{u}(t)=\tilde{f}(t) .

The linear mapping u(x_{n})arrow\tilde{u}(t) and f(x_{n})arrow\tilde{f}(t) are isomorphic from V_{\xi}^{k}, (R)
to V^{k}(R) and from L^{2}(R) to L^{2}(R) respectively. From this fact we have
only to show that M_{0}(x’, t, \xi’/|\xi’|, D_{t}) is isomorphic from V^{k}(R) to L^{2}(R)

if (x’, \xi’) belongs to a small conic neighbourhood of (x_{0}’, \xi_{0}’) and |\xi’| is
sufficiently large. We apply Proposition A. 3 in Appendix to M_{0}(x’, t, \xi’/

|\xi’| , D_{t}) . We use the nonation of (2. 1 ), (2. 13) and (2. 14). From (2. 3)
and (2. 4) we get

(3. 12) (H_{p_{m_{1}}}^{k-1}r_{m_{1}+m_{2}-1})(\rho)=-itk-1) ! (e^{k-1}g\tilde{c})(x’, 0, \xi’, 0) ,

(3. 13) (H_{p_{m_{1}}}^{k}q_{m_{2}})(\rho)=ik ! (e^{k}f(a-b))(x’, 0, \xi’, 0) ,

where \rho\in\sum and \chi(\rho)=(x’, 0, \xi’, 0) . By (3. 1 ), (3. 13) it implies that

\frac{\tilde{c}}{a-b}(x’, 0, \xi’, 0)=ik(H_{p_{m_{1}}}^{k-1}r_{m_{1}+m_{2}-1})/(H_{p_{m_{1}}}^{k}q_{m_{2}})(\rho) .

Therefore if L(x, D) satisfies the condition i) or ii) of Theorem 1.2, by
Proposition A. 3 in Appendix it implies that M_{0}(x’, t, \xi’/|\xi’|, D_{t}) is isomor-
phic from V^{k}(R) to L^{2}(R) . This completes the proof.
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Now we shall construct a local parametrix, which means the following.

PROPOSII 1ON 3.5. Let \overline{M}(x’, D’) be M_{0}(x’, D’)+M.(x’, D’), where M. (x’,
D’) is a vector valued pseudO-differential operator defifined by the symbol
M.(x, \xi’, D_{n}) . Then there exists a vector valued pseudO-differential operator
E_{0}(x’, D’)\in L^{0} (R^{n-1};L^{2}(R),V_{\xi}^{k}, (R)) such that

(3. 4) I-E_{0}\overline{M}\in L^{-\infty}(R^{n-1} ; V_{\xi}^{k}, (R), V_{\xi}^{k}, (R)) ,

(3. 5) I-\overline{M}E_{0}\in L^{-\infty}(R^{n-1} ; L^{2}(R), L^{2}(R))\iota

PROOF. Since ||M.(x, \xi’, D_{n})||_{4(V_{\xi}^{k},(R),L^{2}(R))}<\epsilon, if \epsilon is small enough, it
implies by Proposition 3.4 that \overline{M}(x, \xi’, D_{n}) has a uniformally bounded
inverse operator E_{0}^{0}(x, \xi’, D_{n}) in a conic neighbourhood of (x_{0}’, \xi_{0}’) when |\xi’|

is sufficiently large. We show that E_{0}^{0}(x’, \xi’) is actually a symbol. Dif-
ferentiation of the equation M(x’, \xi’)E_{0}^{0}(x’, \xi’)=I gives

M(x’, \xi’)(D_{x}^{\alpha},D_{\xi}^{\beta},E_{o}^{o})(x’, \xi’)

= \sum C_{\alpha’,\beta’}(D_{x}^{\alpha’}D_{\xi}^{\beta’},M)(x’, \xi’)(D_{x}^{\alpha-\alpha’},D_{\xi’}^{\beta-\beta’}E_{o}^{o})(x’, \xi’) ,

when |\xi’| is large. Here the summantion extended over multi-indices \alpha’

and \beta’ with \alpha’\leq\alpha, \beta’\leq\beta not both zero. If we multiply it from the left
by E_{0}^{0}(x’, \xi’) it follows by the induction with respect to |\alpha+\beta| that E_{0}^{0}(x’,
\xi’)\in S^{0} (R^{n-1};L^{2}(R) ,V_{\xi}^{k}, (R)). The construction of E_{0}(x’, D’) is therefore for-
mally same as that of a parametrix of an elliptic operator in the scalar
case (c.f Proposition 2.5.1 in [12]). This completes the proof.

Now we shall start the direct proof of Theorem 1.2. Let \overline{\Psi’}, \psi be
properly supported pseud0-differential operators such that the symbols of
\overline{\psi} , \psi belong to S^{o}(R^{n}\cross R^{n}) and these supports are contained in a small
conic neighbourhood of \chi(\rho) . Furthermore these symbols are equal to 1
in a small conic neighbourhood of \chi(\rho) . Set

E=\overline{\psi}\circ E_{0}(x’, D’)\circ\psi .
Then we have the following

PROPOSITION 3.6.
i) WF’(E)\subset diag(T^{*}(R^{n})\backslash 0) and (\chi(\rho), \chi(\rho))\in WF’(E) .
ii) For all s\in RE is continuous as H_{s}^{1oc}(R^{n})arrow H_{s+2_{l}’(k+1)(R^{n})}^{1oc} .
PROOF. Let \overline{\psi}_{1} , \psi_{1} be properly supported pseud0-differential operators

in L^{o}(R^{n}) such that \tilde{\psi}_{1}(x, \xi)=1 and \psi_{1}(x, \xi)=1 in supp (\tilde{\psi}(x, \xi)) and supp
(\psi(x, \xi)) respectively. These supports are contained in a small conic neigh-
bourhood of \chi(\rho) . From (3. 14), (3. 15) and ii) of Proposition 3.1 it follows
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that
(3. 16) \overline{\psi}_{1}E_{0}\psi_{1}\overline{M}\equiv\overline{M}\overline{\varphi}_{1}E_{0}\psi_{1}\equiv I at (\chi(\rho), \chi(\rho)) .
Let ((x, \xi), (y, \eta))\in WE’(\overline{\psi}_{1}E_{0}\psi_{1}) and (x, \xi), (y, \eta) belong to small conic neigh-
bourhood of \chi(\rho) . If (x, \xi)\neq(y, \eta), then from i) of Proposition 3.1, it implies
that x_{n}\neq 0 or \xi_{n}\neq 0 or y_{n}\neq 0 or \eta_{n}\neq 0 when |\xi’|+|\eta’|\neq 0 . On the other
hand if |\xi’|+|\eta’|=0 then \xi_{n}\neq 0 or \eta_{n}\neq 0 . Therefore we may assume (x9
\xi) or (y, \eta) is an elliptic point of \overline{M}(x, D) . This implies that ((x, \xi), (y, \eta))\in

WF’(\tilde{\psi}_{1}E_{0}\psi_{1}\overline{M})\cup WF’(\overline{\dot{M}}\overline{\psi}_{1}E_{0}\psi_{1}), which contradicts to (3. 16). Since supp
\overline{\psi} and supp \psi are sufficiently small, we get WF’(E)\subset diag(T^{*}(R^{n})\backslash 0) . It
is clear that (\chi(\rho), \chi(\rho))\in WF’(E), because \overline{M}E\equiv E\overline{M}\equiv I at (\chi(\rho), \chi(\rho)) . We
have

L^{0} (R^{n-1} ; L^{2}(R), V_{\xi}^{k}, (R))\subset L^{-2/(k+1)}(R^{n-1} ; L^{2}(R), L^{2}(R)) and (WF(\tilde{\psi})\cup WF

(\psi))\cap\{(x, \xi)\in T^{*}(R^{n})\backslash 0;\xi’=0\}=\phi. It implies ii) by proposition A. 2 in [16].
This complies the proof.

Since \overline{M}\equiv M at (\chi(\rho), \chi(\rho)) and WF’(E)\subset diagV where V is small
conic neighbourhood of \chi(\rho), we see that ME\equiv\overline{M}E and EM\equiv E\overline{M} at (\chi(\rho),
\chi(\rho)) . Let us F_{\chi(\rho)}=E\circ E’, where E’ is a parametrix of E(x, D) define in
Lemma 2.3. Then

F_{\chi(\rho)}\tilde{L}(x, D)\equiv\tilde{L}(x, D)F_{\chi(\rho)}\equiv I at (\chi(\rho), \chi(\rho)) .

For any point \rho\in\sum we shall define the operator F_{\rho}=U^{*}F_{\chi(\rho)}U. If \rho\not\in\sum ,
then since \rho is an elliptic point of L(x, D), we can define the operator
F_{\rho}=L_{\rho}’, where L_{\rho}’ is a local parametrix of L at \rho . Let \psi_{f}\in L^{0}(X), j\in J, be
a locally finite collection of properly supported pseud0-differential operators
such that for \rho_{f}\in T^{*}(X)\backslash 0 we have

\sum\psi_{f}\equiv I , WF’(\psi_{f})\subset V_{\rho_{f}} ,

where V_{\rho_{f}} is a small conic neighbourhood of \rho_{f} . Set F= \sum\psi_{j}F_{\rho_{f}} , then it
is clear that WF’(F)\subset diag(T^{*}(X)\backslash 0) . If F_{\rho}L\equiv LF_{\rho}\equiv I at (\rho’, \rho’) then F_{\rho}\equiv

F_{\rho’} at (\rho’, \rho’), which implies WF’(F)=diag(T^{*}(X)\backslash 0) . To complete the
proof of Theorem 1.2, we may assume that F is properly supported after
adding operator with C^{\infty} kernel. Therefore F is a desired operator in
Theorem 1.2.

4. Other results.

In this section we shall state theorems when k is even case or k is
odd and \sigma(P)\sigma(Q)=1 . First we shall show a theorem when k is even.
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THEOREM 4.1. Let k be an even integer and P(x, D), Q(x, D) and
R(x, D) be elements of M^{m_{1},k}( \sum, X), M^{m_{2},k}( \sum, X) and L^{m_{1}+m_{2}-1}(X) respec-
tively. We consider the operator L(x, D)=(P\circ Q)+R . Assume that L(x,
D) satisfifies the following condition A) or B)

A) R(x, D) belongs to M^{m_{1}+m_{2}-1,f}(j\geq k) ; otherwise R(x, D) bdongs to
L^{m_{1}+m_{2}-2}(X) .

B) R(x, D) belongs to M^{m_{1}+m_{2}-1,k-1}( \sum, X) and H_{p_{m_{1}}}^{k-1}(r_{m_{1}+m_{2}-1}-i\{p_{m_{1}} ,
q_{m_{2}}\})=0 on \sum .
Here when R(x, D) \in M^{m_{1}+m_{2}-1,l}(\sum, X) we assume that P, Q and R satisf y
the conditions of Proposition 2.2. Then there exists a properly supported
operator F;\mathscr{D}’(X)arrow \mathscr{D}’(X) which is continuous ; H_{s}^{1oc}(X)arrow H_{s+m_{1}+m_{2}-2k/(k+1)}^{1oc}

(X) for all s\in R such that

FL\{x,D)\equiv L(x, D)F\equiv L WF’(F)=diag(T^{*}(X)\backslash 0) .

PROOF. When L(x, D) satisfies the condition A) then M_{0}(x, \xi’, D_{n}) of
(3. 7) is equal to

(D_{n}-ix_{n}^{k}a(x’, 0, \xi’))(D_{n}-ix_{n}^{k}b(x’, 0, \xi’)) .

If L satisfies the condition B) then M_{0}(x, \xi’, D_{n}) is equal to

(D_{n}-ix_{n}^{k}b(x, 0, \xi’))(D_{n}-ix_{n}^{k}a(x, 0, \xi’)) .

From Lemma A. 3 in Appendix M_{0}(x, \xi’, D_{n}) is isomorphic from V_{\xi}^{k}, (R) to
L^{2}(R) . Thus the proof of this theorem is similar to that of Theorem 1.2.

COLLORARY 4.2. Let L(x, D) be the operator treated in Theorem 4.1.
Then L(x, D) is locally solvable at every point of X and strictly hypoel-
liptic. For any compact set of X the following estimate holds for all u\in

C_{0}^{\infty}(K)

||u||_{m_{1}+m_{Z}-2k/(k+1)}\leq C(K)(||Lu||_{0}+||u||_{m_{1}+m_{2}-2}) .

In the next case, we assume that k is odd and \chi(P)\chi(Q)=1 , which
implies that the index of M_{0}(x, \xi’, D_{n}) is equal to \pm 2 (see Proposition A. 2).
Therefore using the analogeous argument of Section 5 in [15], we can
easily verify the following theorem. To avoid confusion we omit the
proof. In the following theorem adjoints will be taken with respect to L^{2}

inner product on C_{0}^{\infty}(X) defined by some strictly positive density on X.
THEOREM 4.3. We assume P(x, D) \in M^{m_{1},k}(\sum, X) , Q(x, D) \in M^{m_{2},k}(\sum ,

X) and R(x, D) belongs to M^{m_{1}+m_{2}-1,f}( \sum, X) or L_{c}^{m_{1}+m_{2}-2}(X) . Here k is odd
and j\geq k-1 . Let L(x, D)=P\circ Q+R, where P, Q and R satisfy the condi-
tion A) in Proposition 2.2. Then we have the following.
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i) If \sigma(P)=1 , \sigma(Q)=1 then there exist properly supported operators
F, F^{+}: \mathscr{D}’(X)arrow \mathscr{D}’(X) such that F is continuous : H_{s}^{1oc}(X)arrow H_{s+m_{1}+m_{2}-2k/(k+1)}^{1oc}

(X), F^{+} is continuous: H_{s}^{1oc}(X)arrow H_{s}^{1oe}(X) for all s\in R,

p++FL\equiv I, LF\equiv I, (F^{+})^{*}\equiv F^{+} ,
WF’(F)=diag(T^{*}(X)\backslash 0) and WF’(F^{+})= diag(\sum) ,

ii) If \sigma(P)=-1 and \sigma(Q)=-1 , then there exist properly supported
operators F, F^{-}; z^{\sigma\prime}(X)arrow \mathscr{D}’(X) such that F is continuous H_{s}^{1oc}(X)arrow H_{s+m_{1}+}^{1oc}

m_{2}-2k/(k+1)(X), F^{-} is continuous: H_{s}^{1oc}(X)arrow H_{s}^{1oc}(X) for all s\in R,
FL\equiv I, F^{-}+LF\equiv I, (F^{-})^{*}\equiv F^{-},\cdot

WF’(F)=diag(T^{*}(X)\backslash 0) and WF’(F^{-})= diag(\sum) .
From this theorem we can obtain the information with respect to

local solvability and hypoellipticity.
COLLORARY 4.4. If \sigma(P)=1 and \sigma(Q)=1 , then the operator L(x, D)

is locally solvable at every point of X. If \sigma(P)=-1 and \sigma(Q)=-1 , then
L(x, D) is strictly hypoelliptic. Moreover for all compact set of X there
exists a constant C(K) such that for all u\in C_{0}^{\infty}(K) we have

||u||_{m_{1}+m_{2}-2k/(k+1)}\leq C(K)(||Lu||_{0}+||u||_{m_{1}+m_{2}-2}) .
REMARK. In Cardoso and Treves [5], they considered the operator

L(x, D), which essentially satisfifies the condition ii) in Theorem 4.3. In
their case they proved non-solvability of L. The above Collorary 4.3 does
not contradict to the result of Gilioli and Treves [8]. In their case, the
characteristic set has two component. \sigma(P) and \sigma(Q) are positive in one
component and \sigma(P) and \sigma(Q) are negative in the other component.

Appendix.

In the present Appendix, we investigate the index of the following
ordinary differential operator

(A. 1) L(t, D_{t})=(D_{t}-iat^{k})(D_{t}-- ibt^{k})+ct^{k-1} .
Here a, b and c are complex numbers. We assume Rea\neq 0 and Reb\neq 0

throughout this Appendix. We shall regard L(t, D_{t}) as an operator on the
Hilbert space V^{k}(R), which is normed by

||u||_{V^{k}(R)}^{2}= \sum_{\alpha\leq 2}||t^{\beta}D_{t}^{\alpha}u||_{L^{2}(R)}^{2}\beta\leq(2-\alpha)k
.

In this situation, we note the following
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PROPOSITION A. 1.
i) L(t, D_{t}) is a continuous operator from V^{k}(R) to L^{2}(R) .
ii) L(t, D_{t}) is a Neotherian operator from V^{k}(R) to L^{2}(R) .
iii) If u\in L^{2}(R) and Lu\in.\mathscr{S}(R) , thm u belongs to \mathscr{S}(R) .
The statement i) is clear by definition, ii) and iii) are the special case

of Theorem 2.1 in [8] and Proposition 1.10 in [10] respectively. By ii)
we can take of the index of L(t, D_{t}):V^{k}(R)arrow L^{2}(R), which we denote by
ind (L).

PROPOSITION A. 2. Let L(t, D_{t}) be an ordinary differential operator
defifined in (A. 1). Then we have

ind (L)=0 if k is even and
ind (L)=Rea/|Rea|+Reb/|Reb| if k is odd.

PROOF. In view of Proposition A. 1 iii) it su fHcies to show that the
operator ct^{k-1} is a compact operator from V^{k}(R) to L^{2}(R) . Let A(r)\in C^{\infty}(R)

be a monotonously increasing function such that A(r)=1 if r<1 , A(r)=r
if r>2 . The transformation tarrow s=tA(|t|^{k}) being a diffeomorphism from R
to R, so we denote its inverse transformation by t=\varphi(s) . For an\dot{y}f(t)\in

L^{2}(R) and u(t)\in V^{k}(R) we put i_{1}(f)=A^{-1/2}(\varphi(s))f(\varphi(s)) and i_{2}(u)(s)=A^{3/2}(\varphi

(s))u(\varphi(s)), respectively. Since the operator i_{1} and i_{2} are isomorphisms from
L^{2}(R) to L^{2}(R) and V^{k}(R) to H^{2}(R) respectively. Here H^{2}(R) is a usual
Sobolev space. Hence we show that the multiplication operator T(s)=
i_{1}\circ(ct^{k-1})\circ i_{2}^{-1} is compact operator from H^{2}(R) to L^{2}(R) . By a simple com-
putation we get

(A. 2) T(s)=|c||s|^{-1} if |s|>2^{k} .
Let \chi(s) be a C_{0}^{\infty}(R) function such that supp \chi\subset\{s;|s|<1\} and \chi=1 in
a neighbourhood of 0. For arbitrary \epsilon>0 , the operator \chi(\epsilon s)T is con-
tinuous operator from H^{2}(R) to H^{2}(B_{*}), where B_{*}=\{s;|s|\leq 1/\epsilon\} . By Rel-
lich’s theorem, we see that for any \epsilon>0, \chi(\epsilon s)T is a compact operator
from H^{2}(R) to L^{2}(R) . From (A. 2) it is clear that ||(1-\chi(\epsilon s))T||_{4(ff(R),L^{2}(R))}

arrow 0 as \epsilonarrow 0 . Therefore T is a compact operator from H^{2}(R) to L^{2}(R) .
This completes the proof.

When the index of L is zero, we can give a detailed information
about L.

PROPOSITION A. 3. Let L(t, D_{t}) be an ordinary differential operator
defifined in (A. 1). Then we have

i) When k is even and c=0, then L(t, D_{t}) is isomorphism from V^{k}(R)

to L^{2}(R) .
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ii) We assume that k is odd and (Rea) (R )<0 . If L(t, D_{t}) satisfifies
the following condition A) or B), then L(t, D_{t}) is isomorphic from V^{k}(R)

to L^{2}(R) .
A) If Rea>0 , there is no positive integer n such that

\frac{c}{a-b}=1-n(k+1) or -n(k+1) ,

B) If Reb>0 , there is no positive integer n such that

\frac{c}{a-b}=(n-1)(k+1) or 1+(n-1) (k+1) .

PROOF. i) is clear from iii) of Proposition A. 1. We shall verify ii).

Since L(t, D_{t}) is a Notherian operator, the range of L is closed is L^{2}(R).
Thus if we show that the dense set C_{0}^{\infty}(R) of L^{2}(R) is contained in the
range of L, we have that L(t, D_{t}) is isomorphism, because the index of L
is equal to 0 and the domain of L is V^{k}(R) . In Gilioli and Treves [7]
(pp. 371-374), they proved that if L(t, D_{t}) satisfies the condition A) or B)

then for arbitrary f\in C_{0}^{\infty}(R) there exists u\in C^{2}(R)\cap L^{2}(R) such that L(t,
D_{t})u=f. By iii) of Proposition A. 1 it follows that u belongs to V^{k}(R) .
This completes the proof.
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