Positive approximants of normal operators

Takashi SEKIGUCHI

(Received October 15, 1975)

1. Introduction. We consider the problem of approximation for a given bounded linear operator on a fixed Hilbert space by positive operators where positivety means non-negative semi-definite. Study of this problem was initiated by P. R. Halmos [4], who proved that the distance of an operator to the set of all positive operators is completely determined. The results proved by him can be formulated as follows.

Let A be a bounded linear operator on a Hilbert space \mathscr{K} . Put A = B + iC where B and C denote the real part Re A and the imaginary part Im A of A respectively.

(1) Put

$$\delta = \inf \left\{ \|A - P\| : P \ge 0 \right\}.$$

Then

$$\delta = \inf \left\{ r \ge 0 : r^2 \ge C^2, B + (r^2 - C^2)^{\frac{1}{2}} \ge 0 \right\}.$$

(2) Define another norm ||| ||| by

$$|||A||| = ||(\operatorname{Re} A)^2 + (\operatorname{Im} A)^2||^{\frac{1}{2}}.$$

Then

$$\frac{1}{2} \|A\| \leq \|A\| \leq \|A\|$$

and

$$\delta = \inf \left\{ \|A - P\| : P \ge 0 \right\}.$$

(3) Put

$$\mathscr{P}(A) = \left\{ P \ge 0 : \|A - P\| = \delta \right\}$$

and

$$\mathcal{P}_n(A) = \left\{ P \ge 0 : \||A - P|| = \delta \right\}.$$

Then both $\mathscr{P}(A)$ and $\mathscr{P}_n(A)$ are convex sets and $\mathscr{P}(A) \subseteq \mathscr{P}_n(A)$. The operators in $\mathscr{P}(A)$ and $\mathscr{P}_n(A)$ are called positive approximants and positive near-approximants respectively.

(4) The operator P_0 defined by

$$P_0 = B + (\delta^2 - C^2)^{\frac{1}{2}}$$

is maximum in both $\mathcal{P}(A)$ and $\mathcal{P}_n(A)$, that is, $P_0 \in \mathcal{P}(A)$ and $P \leq P_0$ for any operator P in $\mathcal{P}_n(A)$.

In the present paper we consider the problem raised by R. Bouldin [2], that is, a necessary and sufficient condition for that $\mathscr{P}(A)$ coincides with $\mathscr{P}_n(A)$ in the case A is a normal operator. Since both $\mathscr{P}(A)$ and $\mathscr{P}_n(A)$ are weakly compact convex sets, these sets are the convex closures of respective extremal points. By this result we show that the set of all extremal points of $\mathscr{P}(A)$ is either finite or uncountable in the case A is a normal operator.

In this paper operators are bounded linear operators on a complex Hilbert space \mathscr{H} . Put $B=\operatorname{Re} A$ and $C=\operatorname{Im} A$ for a given operator A. B_+ and B_- denote the positive and the negative parts of a Hermitian operator B respectively. $\operatorname{Ran}(A)$ denotes the range of an operator A. $A|_{\mathscr{H}}$ denotes the restriction of A on an A-reducing subspace \mathscr{M} . $\{A\}'$ and $\{A\}''$ denote the commutant and the double commutant of A respectively. The dimension of a subspace \mathscr{M} is denoted by dim \mathscr{M} . \mathscr{M}^{\perp} denotes the orthogonal complement of \mathscr{M} . N^- denotes the closure of a set \mathscr{V} .

2. Positive approximants and positive near approximants. Put

 $\mathscr{H}_0 = \operatorname{Ran}(P_0)^- \cap \operatorname{Ran}(\delta^2 - C^2)^-$

then $\operatorname{Ran}(P_0-P)^-$ is included in \mathscr{H}_0 for any operator P in $\mathscr{P}_n(A)$ since $(B-P)^2+C^2\leq \delta^2$ and $0\leq P\leq P_0$. In the case A is a normal operator, \mathscr{H}_0 is an A-reducing subspace, hence \mathscr{H}_0 is a reducing subspace for each operator P in $\mathscr{P}_n(A)$.

THEOREM 2.1. Let A be a normal operator. If the operator $(\text{Im } A)|_{\mathscr{X}_0}$ is non-scalar, then there exists a positive operator P such that

(a) $P \notin \mathscr{P}(A)$ and $P \in \mathscr{P}_n(A)$,

(b) $P|_{\mathbb{Z}_0}$ does not commute with $(\text{Im } A)|_{\mathbb{Z}_0}$.

PROOF. Obviously $C|_{\mathscr{X}_0}$ is scalar if dim \mathscr{K}_0 is zero or one. Hence it can be assumed that dim $\mathscr{K}_0 \ge 2$. Let $E(\sigma)$ denote the spectral measure of A. $\sigma(A)$ and $\sigma_p(A)$ denote the spectrum and the point spectrum of A respectively. Put

$$\Gamma_{\delta} = \left\{ z : |z| = \delta , \text{ Re } z \leq 0 \right\} \cup \left\{ z : |\text{Im } z| = \delta \right\}$$

and

T. Sekiguchi

$$\sigma'(A) = \sigma(A) - \Gamma_{\delta}.$$

Obviously $\mathscr{K}_0 = \operatorname{Ran}(E(\sigma'(A)^{-}))$ holds. Suppose $C|_{\overline{x}_0}$ is non-scalar. Im σ denotes $\{\operatorname{Im} z : z \in \sigma\}$ for a set σ included in $\sigma(A)$. The set $\operatorname{Im} \sigma'(A)$ contains more than two points. There exist non-empty and sufficiently small closed sets σ_1 and σ_2 included in $\sigma'(A)$ such that

- (i) both σ_1 and σ_2 are connected sets,
- (ii) both σ_1 and σ_2 have positive distances from the set Γ_{δ} ,
- (iii) Im $\sigma_1 \cap \text{Im } \sigma_2 = \phi$.

By condition (i), Im σ_i is either a one point set or a closed interval for i=1, 2.

- (1) Im σ_i is a closed interval,
- (2) σ_i is a segment paralell to the real axis,
- (3) σ_i is a one point set $\{\lambda_i\}$ (then $\lambda_i \in \sigma_p(A)$).

Put $\mathcal{M}_i = \operatorname{Ran}(E(\sigma_i))$ for i=1, 2. In the case condition (1) it can be assumed that $\sigma_p(C|_{\mathcal{M}_i}) = \phi$ and moreover dim \mathcal{M}_i is countably infinite. In fact if dim \mathcal{M}_i is uncountable, then choose a subspace \mathcal{M}'_i instead of \mathcal{M}_i where \mathcal{M}'_i is the minimal C-reducing subspace generated by a non-zero vector in \mathcal{M}_i . dim \mathcal{M}'_i is countably infinite and the set Im $\sigma(C|_{\mathcal{M}'_i})$ contains more than two points and connected since $\sigma_p(C|_{\mathcal{M}'_i}) = \phi$. Similarly in the case condition (2) it can be assumed that $\sigma_p(B|_{\mathcal{M}_i}) = \phi$ and dim \mathcal{M}_i is countably infinite. In the case condition (3) it can be assumed that dim $\mathcal{M}_i = 1$. The proof is reduced to the following cases.

Case. I. Both σ_1 and σ_2 satisfy condition (1). Put Im $\sigma_i = [\alpha_i, \beta_i]$ for i=1, 2. Without loss of generality, it can be moreover assumed that

(1-1)
$$0 < \alpha_i < \beta_i \text{ or } \alpha_i < \beta_i < 0 \text{ for } i=1, 2,$$

- (1-2) $\beta_i \alpha_i = \varepsilon_1 > 0$ for i = 1, 2,
- (1-3) all numbers $|\alpha_1|$, $|\alpha_2|$, $|\beta_1|$ and $|\beta_2|$ are distinct.

Put $a_i = \beta_i$ and $b_i = \alpha_i$ if $0 < \alpha_i < \beta_i$, and put $a_i = |\alpha_i|$ and $b_i = |\beta_i|$ if $\alpha_i < \beta_i < 0$ for i=1, 2, then $a_i = ||C|_{\mathscr{M}_i}||$ and $b_i = \inf \{||C|_{\mathscr{M}_i} x|| : x \in \mathscr{M}_i, ||x|| = 1\}$ for i=1, 2. Put $\mathscr{M} = \mathscr{M}_1 \oplus \mathscr{M}_2$ where the symbol \oplus means orthogonal direct sum. The operators $B|_{\mathscr{M}}$, $C|_{\mathscr{M}}$ and $P_0|_{\mathscr{M}}$ can be represented as matrices of operators on $\mathscr{M} = \mathscr{M}_1 \oplus \mathscr{M}_2$:

$$B|_{\mathscr{M}} = \begin{bmatrix} B_1 & 0 \\ 0 & B_2 \end{bmatrix}, \qquad C|_{\mathscr{M}} = \begin{bmatrix} C_1 & 0 \\ 0 & C_2 \end{bmatrix}$$

and

$$P_0|_{\mathcal{A}} = \begin{bmatrix} B_1 + (\delta^2 - C_1^2)^{\frac{1}{2}} & 0 \\ 0 & B_2 + (\delta^2 - C_2^2)^{\frac{1}{2}} \end{bmatrix}.$$

By condition (ii) there exists a positive number ε_0 such that for i=1, 2,

$$B_i + (\delta^2 - C_i^2)^{\frac{1}{2}} \ge \varepsilon_0$$
 and $(\delta^2 - C_i^2)^{\frac{1}{2}} \ge \varepsilon_0$.

Put

$$\sigma_i(s) = \left\{ z : z \in \sigma_i, \ a_i - s \leq |\text{Im } z| \leq a_i \right\}$$

for each positive number s such that $0 < s \leq \varepsilon_1$. Choose a unitary operator U mapping \mathcal{M}_2 onto \mathcal{M}_1 such that

$$U\left(\operatorname{Ran}\left(E(\sigma_2(s))\right)\right) = \operatorname{Ran}\left(E(\sigma_1(s))\right)$$

for each s. Define a positive operator Q_t on \mathcal{M} for each real number t such that $0 < t \leq \varepsilon_0$ by

$$Q_{t} = \begin{bmatrix} (\delta^{2} - C_{1}^{2})^{\frac{1}{2}} - \varepsilon_{0} + t & tU \\ tU^{*} & (\delta^{2} - C_{2}^{2})^{\frac{1}{2}} - \varepsilon_{0} + t \end{bmatrix}$$

Moreover define a positive operator P_t on \mathscr{K} for each t such that \mathscr{M} is a P_t -reducing subspace for each t,

$$P_t\Big|_{\mathcal{A}} = Q_t + B\Big|_{\mathcal{A}} \text{ and } P_t\Big|_{\mathcal{A}^{\perp}} = P_0\Big|_{\mathcal{A}^{\perp}}.$$

Then

$$(A - P_{\iota})\Big|_{\mathscr{A}^{\perp}} = \left\{-(\delta^2 - C^2)^{\frac{1}{2}} + iC\right\}\Big|_{\mathscr{A}^{\perp}}$$

is a saclar multiple of a unitary operator on \mathcal{M}^{\perp} with norm δ while

$$(A-P_t)\Big|_{\mathcal{A}} = -Q_t + iC\Big|_{\mathcal{A}}.$$

Define the operators D_i and F_i for i=1, 2 by

$$D_i = (\delta^2 - C_i^2)^{\frac{1}{2}} - \varepsilon_0 + t,$$

and

$$\begin{split} F_{i} &= D_{i}^{2} + t^{2} + C_{i}^{2} \\ &= \delta^{2} + t^{2} + (\varepsilon_{0} - t)^{2} - 2 \left(\varepsilon_{0} - t\right) \left(\delta^{2} - C_{i}^{2}\right)^{\frac{1}{2}}. \end{split}$$

Then

$$Q_{t}^{2} + (C|_{*})^{2} = \begin{bmatrix} F_{1} & t(D_{1}U + UD_{2}) \\ t(U^{*}D_{1} + D_{2}U^{*}) & F_{2} \end{bmatrix}$$

and

$$(-Q_t + iC|_{\mathscr{A}})^* (-Q_t + iC|_{\mathscr{A}})$$

= $\begin{bmatrix} F_1 & t(D_1U + UD_2 + iC_1U - iUD_2) \\ t(U^*D_1 + D_2U^* - iU^*C_1 + iC_2U^*) & F_2 \end{bmatrix}$

T. Sekiguchi

Obviously both $||(Q_t)^2 + (C|_{\mathscr{M}})^2||$ and $||-Q_t + iC|_{\mathscr{M}}||^2$ are continuous functions with respect to t. Since

$$|-Q_{t}+iC|_{\mathscr{A}}||^{2} \ge ||(Q_{t})^{2}+(C|_{\mathscr{A}})^{2}||$$

$$\ge \max \left\{ ||F_{1}||^{2}, ||F_{2}||^{2} \right\}$$

hence

$$\begin{split} \| - Q_{\iota_0} + iC |_{\mathscr{M}} \|^2 &\geq \| (Q_{\iota_0})^2 + (C |_{\mathscr{M}})^2 \| \\ &\geq \qquad \delta^2 + \varepsilon_0^2 \,. \end{split}$$

It can be shown that for each t

$$||(Q_t)^2 + (C|_{\mathscr{M}})^2||^{\frac{1}{2}} < ||-Q_t + iC|_{\mathscr{M}}||.$$

In fact any unit vector x in \mathcal{M} can be represented as $x = \cos \theta x_1 \oplus \sin \theta x_2$ where $x_i \in \mathcal{M}_i$ and $||x_i|| = 1$ for i=1, 2, and $0 \leq \theta \leq \frac{\pi}{2}$. Then

$$\left(\left\{(Q_t)^2 + (C|_{\mathcal{A}})^2\right\} x, x\right) = \cos^2\theta (E_1 x_1, x_1) + \sin^2\theta (E_2 x, x_2) + 2t \sin\theta \cos\theta \operatorname{Re}\left\{(D_1 U x_2, x_1) + (U D_2 x_2, x_1)\right\}.$$

Since $a_i = \|C\|_{\mathscr{M}_i}\|$ and $b_i = \inf \{\|C\|_{\mathscr{M}_i} x\| : x \in \mathscr{M}_i, \|x\| = 1\}$, it holds that for each t such that $0 < t \leq \varepsilon_0$ and for i=1, 2

 $\|D_i\| = (\delta^2 - b_i^2)^{\frac{1}{2}} - \varepsilon_0 + t$

and

Put

 $||F_i|| = \delta^2 + t^2 - 2(\varepsilon_0 - t)(\delta^2 - a_i^2)^{\frac{1}{2}}.$ $X_i = ||F_i||$ for i = 1, 2 $Y = 2t(||D_1|| + ||D_2||).$

and

Then

$$\begin{split} & \left(\left\{(Q_{t})^{2}+(C|_{\mathscr{A}})^{2}\right\}x,x\right)\\ & \leq \qquad \sup\left\{X_{1}\cos^{2}\theta+X_{2}\sin^{2}\theta+Y\sin\theta\cos\theta:0\leq\theta\leq\frac{\pi}{2}\right\}\\ & = \qquad \sup\left\{\frac{1}{2}\left(X_{1}+X_{2}\right)+\frac{1}{2}\left(X_{1}-X_{2}\right)\cos2\theta+\frac{1}{2}Y\sin2\theta:0\leq\theta\leq\frac{\pi}{2}\right\}\\ & = \qquad \frac{1}{2}\left(X_{1}+X_{2}\right)^{2}+\frac{1}{2}\left\{(X_{1}-X_{2})^{2}+Y^{2}\right\}^{\frac{1}{2}}. \end{split}$$

Hence

=

$$\|(Q_t)^2 + (C|_{\mathcal{A}})^2\| \leq \frac{1}{2} (X_1 + X_2)^2 + \frac{1}{2} \left\{ (X_1 - X_2)^2 + Y^2 \right\}^{\frac{1}{2}}.$$

274

Put

$$Z = 2t \left[\left\{ \left(\delta^2 - a_1^2 \right)^{\frac{1}{2}} + \left(\delta^2 - a_2^2 \right)^{\frac{1}{2}} - 2\varepsilon_0 + 2t \right\}^2 + (a_1 - a_2)^2 \right]^{\frac{1}{2}}.$$

Choose a sequence $\{x_n\}_{n=1}^{\infty}$ of unit vectors in \mathcal{M} as follows:

$$x_n = \cos\theta \; x_{1(n)} \oplus \sin\theta \; x_{2(n)}$$

where $x_{i(n)} \in E(\mathcal{M}_i)$, $||x_{i(n)}|| = 1$ $(n=1, 2, \cdots)$ for $i=1, 2, \theta$ is a constant such that $0 \leq \theta \leq \frac{\pi}{2}$,

$$\lim_{u\to\infty} \left\{ C_2 \, x_{2(n)} - a_2 \, x_{2(n)} \right\} = 0 \, ,$$

and

$$\begin{split} x_{1(n)} = & z U x_{2(n)} \ (n = 1, 2, \cdots) \text{ where } z \text{ is a complex number such that} \\ & 2t \left\{ (\delta^2 - a_1^2)^{\frac{1}{2}} + (\delta^2 - a_2^2)^{\frac{1}{2}} - 2\varepsilon_0 + 2t + i(a_1 - a_2) \right\} z = Z. \end{split}$$

It is easy that

$$\lim_{n\to\infty} \left\{ C_1 \, x_{1(n)} - a_1 \, x_{1(n)} \right\} = 0 \, .$$

Then

$$\begin{split} &\lim_{n \to \infty} \| (-Q_t + iC|_{\mathscr{A}}) \, x_n \|^2 \\ &= \lim_{n \to 8} \left[\cos^2 \theta \, (F_1 \, x_{1(n)}, \, x_{1(n)}) + \sin^2 \theta \, (F_2 \, x_{2(n)}, \, x_{2(n)}) \right. \\ &+ 2t \sin \theta \cos \theta \, \operatorname{Re} \left\{ ((D_1 U + UD_2 + iC_1 U - iUC_2) \, x_{2(n)}, \, x_{1(n)}) \right\} \right] \\ &= X_1 \cos^2 \theta + X_2 \sin^2 \theta + Z \, \sin \theta \cos \theta \, . \end{split}$$

Hence

$$\begin{aligned} \| -Q_t + iC \|_{\mathscr{A}} \|^2 \\ &\ge \sup \left\{ X_1 \cos^2 \theta + X_2 \sin^2 \theta + Z \sin \theta \cos \theta : 0 \le \theta \le \frac{\pi}{2} \right\} \\ &= \frac{1}{2} \left(X_1 + X_2 \right) + \frac{1}{2} \left\{ (X_1 - X_2)^2 + Z^2 \right\}^{\frac{1}{2}}. \end{aligned}$$

Obviously for sufficiently small ε_1 , Z is larger than Y. Hence for each t such that $0 < t \leq \varepsilon_0$,

$$\|(Q_t)^2 + (C|_{\mathcal{M}})^2\|^{\frac{1}{2}} < \|-Q_t + iC|_{\mathcal{M}}\|.$$

Since $||-Q_t+iC|_{\mathscr{A}}|| < \delta$ for sufficiently small t and $||(Q_t)^2+(C|_{\mathscr{A}})^2||^{\frac{1}{2}} > \delta$ for t sufficiently near ε_0 , there exists a positive number t_0 such that $t_0 < \varepsilon_0$,

$$||(Q_{t_0})^2 + (C|_{\mathscr{M}})^2||^{\frac{1}{2}} = \delta \text{ and } ||-Q_{t_0} + iC|_{\mathscr{M}}|| > \delta.$$

T. Sekiguchi.

Then

$$|||A - P_{t_0}||| = \delta \text{ and } ||A - P_{t_0}|| > \delta.$$

Hence P_{t_0} is contained in $\mathscr{P}_n(A)$ but not in $\mathscr{P}(A)$. C_1U is not equal to UC_2 since $\sigma(C|_{\mathscr{M}_1}) \neq \sigma(C|_{\mathscr{M}_2})$ hence P_{t_0} does not commute wit $C|_{\mathscr{M}_0}$.

Other cases can be similarly proved.

Case II. σ_1 satisfies condition (1) or (2) and σ_2 satisfies condition (2). Since $C|_{\mathcal{A}_2}$ is scalar, by choosing an arbitrary unitary operator U in the proof of Case I, the proof can be shown similarly as Case I.

Case III. σ_1 and σ_2 satisfy condition (1) and condition (3) respectively. Choose an isometric operator V such that there exists a positive number s_0 less than ε but sufficiently near ε_1 and

$$V(\mathcal{M}_2) \subseteq \operatorname{Ran}(\sigma_1(s_0))$$

instead of a unitary operator U in the proof of Case I, and define a positive operator F_1 in the proof of Case I by

$$F_1 = \sigma^2 + t^2 V V^* + (\varepsilon_0 - t)^2 - 2 (\varepsilon_0 - t) (\delta^2 - C_1^2)^{\frac{1}{2}}.$$

Case IV. σ_1 and σ_2 satisfy condition (2) and condition (3) respectively. An isometric operator V in the proof of Case III can be chosen arbitrarily.

Case V. Both σ_1 and σ_2 satisfy condition (3). Since dim $\mathcal{M}_1 = \dim \mathcal{M}_2 = 1$, the proof is obvious. The proof is completed.

We show a sufficient and necessary condition for that $\mathscr{P}(A)$ coincides with $\mathscr{P}_n(A)$ as corollary of Theorem 2.1.

COROLLARY 2.2. Let A be a normal operator. The following conditions are equivalent:

(a) $\mathscr{P}(A) \subseteq \{\operatorname{Im} A\}',$

(b) (Im A)_{\vec{x}_0} = $\lambda I_{\vec{x}_0}$ where $I_{\vec{x}_0}$ is the identity operator on \mathcal{K}_0 and λ is a real number.

(c)
$$\sigma(A) \subseteq \Gamma_{\delta} \cup \{z : \text{Im } z = \lambda\},\$$

(d) $\mathscr{P}(A) = \mathscr{P}_n(A)$.

PROOF. The implications $(b) \rightleftharpoons (c)$, $(b) \Rightarrow (a)$ and $(b) \Rightarrow (d)$ are obvious since A-P is a normal operator for any P in $\mathscr{P}_n(A)$. By the proof of Theorem 2.1 the implication $(d) \Rightarrow (b)$ holds, and moreover for sufficiently small positive number t there exists a positive operator P_t in $\mathscr{P}(A)$ such that $P_t|_{\mathscr{X}_0}$ does not commute with $C|_{\mathscr{X}_0}$. Hence the implication $(a) \Rightarrow (b)$ holds.

COROLLARY 2.3. Let A be a normal operator. The following con-

ditions are equivalent:

(a)
$$\mathscr{P}(A) \subseteq \{A\}',$$

(b) $A|_{\mathscr{Z}_0} = \lambda I_{\mathscr{Z}_0}$ where λ is a complex number.

(d)
$$\sigma(A) \subseteq \Gamma_{\delta} \cup \{\lambda\}$$
.

PROOF. The implications $(b) \iff (c)$ and $(b) \iff (a)$ are obvious.

(a) \Rightarrow (b): $\mathscr{P}(A) \subseteq \{C\}'$ holds since $\mathscr{P}(A) \subseteq \{A\}'$, hence $C|_{\mathscr{X}_0}$ is scalar. Moreover $\mathscr{P}(A) \subseteq \{B\}'$ holds. Suppose $B|_{\mathscr{X}_0}$ is non-scalar. Choose two non-trivial orthogonal subspace \mathscr{M}_1 and \mathscr{M}_2 included in \mathscr{K}_0 such that \mathscr{M}_i is the range of a spectral projection of B for i=1, 2, and there exists a positive number ε_2 such that for i=1, 2

$$\left\{(B_{-})^{2}+C^{2}\right\}\Big|_{\mathscr{K}_{i}} \leq \delta^{2}-\varepsilon_{2} \; .$$

Define a positive operator P_t on \mathscr{K} for sufficiently small positive number t such that the subspace $\mathscr{M} = \mathscr{M}_1 \oplus \mathscr{M}_2$ is a P_t -reducing subspace, $P_t|_{\mathscr{K}} = P_0|_{\mathscr{K}}$ and $P_t|_{\mathscr{K}}$ is represented as matrix of operators on $\mathscr{M} = \mathscr{M}_1 \oplus \mathscr{M}_2$:

$$P_t|_{\mathcal{A}} = \begin{bmatrix} t & tU \\ tU^* & t \end{bmatrix} + B_+|_{\mathcal{A}}$$

where U is a partially isometric operator mapping \mathcal{M}_2 into \mathcal{M}_1 . For sufficiently small t,

$$\|(A - P_{\mathbf{i}})\|_{\mathscr{M}}\| = \|(A - P_{\mathbf{i}})\|_{\mathscr{M}}\| \leq \delta$$

since $C|_{\mathscr{X}_0}$ is scalar. Hence P_t is contained in $\mathscr{P}(A)$ and does not commute with B. This contradicts to condition (a). The proof is completed.

3. The extremal points of $\mathscr{P}(A)$. In this section we consider a condition for that $\exp(\mathscr{P}(A))$ is a finite set where $\exp(\mathscr{P}(A))$ denotes the set of all extremal points of $\mathscr{P}(A)$.

THEOREM 3.1. Let A be a normal operator. The following conditions are equivalent:

(a) $\mathscr{P}(A) \subseteq \{A\}''$,

(b) $ext(\mathscr{P}(A))$ consists of at most countable operators,

(c) $ext(\mathscr{P}(A))$ consists of at most two operators,

(d) dim $\mathcal{M}_0 \leq 1$,

(e) P is a linear combination of $(\text{Re } A)_+$ and P_0 for any operator P in $\mathscr{P}(A)$.

PROOF. The implications $(c) \Rightarrow (d) \Rightarrow (e)$ hold by the result in [1]. More-

over, the implications $(e) \Rightarrow (a)$ and $(c) \iff (b)$ hold obviously.

(a) \Rightarrow (d): Since $\mathscr{P}(A) \subseteq \{A\}'', \mathscr{P}(A) \subseteq \{A\}'$ holds. By Corollary 2.3 $A|_{\mathscr{X}_0}$ is scalar. If dim $\mathscr{K}_0 \ge 2$ holds, then by the proof of Corollary 2.3 there exist a subspace \mathscr{M} included in \mathscr{K}_0 such that dim $\mathscr{M} \ge 2$ and a positive operator P in $\mathscr{P}(A)$ such that \mathscr{M} is a P-reducing subspace and $P|_{\mathscr{K}}$ is non-scalar. This is a contradiction.

 $(b) \Rightarrow (d)$: Suppose $ext(\mathscr{P}(A))$ is at most countable and dim $\mathscr{H} \ge 2$. For any closed subspace \mathscr{M} included in \mathscr{H}_0 such that \mathscr{M} is the range of a spectral projection of A, there exists a positive operator P_1 in $\mathscr{P}(A)$ such that P_1 differs from P_0 , $P_1|_{\mathscr{H}^{\perp}} = P_0|_{\mathscr{H}^{\perp}}$ and $\operatorname{Ran}(P_0 - P_1)^- \subseteq \mathscr{M}$. If P_1 is not contained in $ext(\mathscr{P}(A))$, there exist two operators P_2 and P_3 in $ext(\mathscr{P}(A))$ and a positive number λ such that $0 < \lambda < 1$,

$$P_1 = \lambda P_2 + (1 - \lambda) P_3$$
 and $P_2 \neq P_0$.

Since $P_0 - P_1 = \lambda (P_0 - P_1) + (1 - \lambda) (P_0 - P_3)$ and all operators $P_0 - P_1$, $P_0 - P_2$ and $P_0 - P_3$ are positive, by Douglas' theorem [3]

$$\operatorname{Ran}\left(P_{0}-P_{1}\right)^{\frac{1}{2}} \supseteq \operatorname{Ran}\left(P_{0}-P_{2}\right)^{\frac{1}{2}}$$

holds. Hence

$$\mathcal{M} \supseteq \operatorname{Ran}(P_0 - P_1)^- \supseteq \operatorname{Ran}(P_0 - P_2)^-$$

By choosing P_2 instead of P_1 , it can be assumed that $P_1 \in ext(\mathscr{P}(A))$. If any operator P in $ext(\mathscr{P}(A))$ is commuting with all spectral projections of A, then $\mathscr{P}(A) \subseteq \{A\}'$. This contradicts to dim $\mathscr{H}_0 \ge 2$ by the proof of the implication (a) \Rightarrow (d). Hence there exist two non-trivial orthogonal subspace \mathscr{M}_1 and \mathscr{M}_2 included in \mathscr{H}_0 such that \mathscr{M}_i is the range of a spectral projection G_i of A for i=1, 2, and a positive operator P in $ext(\mathscr{P}(A))$ such that P does not commute with both G_1 and G_2 , and

$$\operatorname{Ran}(P_0-P)^- \subseteq \mathcal{M}_1 \oplus \mathcal{M}_2.$$

For any unitary operator U commuting with A, $U^*PU \in ext(\mathscr{P}(A))$ holds. Choose a unitary operator U_{θ} commiting with A such that $U_{\theta}|_{\mathscr{A}}$ is defined as matrix of operators on $\mathscr{M} = \mathscr{M}_1 \oplus \mathscr{M}_2$:

$U_{\theta} _{\mathcal{M}} =$	$=\begin{bmatrix}1\\0\end{bmatrix}$	$\begin{bmatrix} 0 \\ e^{i\theta} \end{bmatrix}$
$U_{\theta} _{\mathscr{A}^{\perp}} = I_{\mathscr{A}^{\perp}}$.		
$P _{\mathcal{M}} =$	$[P_{11} \\ P_{12}^*]$	$\left. \begin{array}{c} P_{12} \\ P_{22} \end{array} \right]$

and

Put

as matrix of operators on $\mathcal{M} = \mathcal{M}_1 \oplus \mathcal{M}_2$. Then

$$(U_{\theta}^* P U_{\theta})|_{\mathscr{A}} = \begin{bmatrix} P_{11} & e^{i\theta} P_{12} \\ e^{-i\theta} P_{12}^* & P_{22} \end{bmatrix} \text{ and } (U_{\theta}^* P U_{\theta})|_{\mathscr{A}^{\perp}} = P_0|_{\mathscr{A}^{\perp}}.$$

Obviously $\{U_{\theta}^* PU_{\theta}: 0 \leq \theta < 2\pi\}$ is uncountable, this contradicts to condition (b). Hence dim $\mathscr{H}_0 \leq 1$. The proof is completed.

References

- T. ANDO, T. SEKIGUCHI and T. SUZUKI: Approximation by positive operators, Math. Z. 131 (1973), 273-282.
- [2] R. BOULDIN: The convex structure of the set of positive approximants for a given operator (to appear).¹
- [3] R. G. DOUGLAS: On majorization, factorization and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413-415.
- [4] P. R. HALMOS: Positive approximants of operators, Indiana Univ. Math. J. 21 (1971/72), 951-960.

Department of Mathematics Hokkaido University