Positive approximants of normal operators

Takashi Sekiguchi

(Received October 15, 1975)

1. Introduction. We consider the problem of approximation for a given bounded linear operator on a fixed Hilbert space by positive operators where positivety means non-negative semi-definite. Study of this problem was initiated by P. R. Halmos [4], who proved that the distance of an operator to the set of all positive operators is completely determined. The results proved by him can be formulated as follows.

Let A be a bounded linear operator on a Hilbert space \mathscr{A}. Put $A=$ $B+i C$ where B and C denote the real part $\operatorname{Re} A$ and the imaginary part $\operatorname{Im} A$ of A respectively.
(1) Put

$$
\delta=\inf \{\|A-P\|: P \geqq 0\}
$$

Then

$$
\delta=\inf \left\{r \geqq 0: r^{2} \geqq C^{2}, B+\left(r^{2}-C^{2}\right)^{\frac{1}{2}} \geqq 0\right\}
$$

(2) Define another norm ||| ||| by

$$
\|A\|=\left\|(\operatorname{Re} A)^{2}+(\operatorname{Im} A)^{2}\right\|^{\frac{1}{2}}
$$

Then

$$
\frac{1}{2}\|A\| \leqq\|A\| \leqq\|A\|
$$

and

$$
\delta=\inf \{\|A-P\|: P \geqq 0\}
$$

(3) Put

$$
\mathscr{P}(A)=\{P \geqq 0:\|A-P\|=\delta\}
$$

and

$$
\mathscr{P}_{n}(A)=\{P \geqq 0:\|A-P\|=\delta\} .
$$

Then both $\mathscr{P}(A)$ and $\mathscr{P}_{n}(A)$ are convex sets and $\mathscr{P}(A) \subseteq \mathscr{P}_{n}(A)$. The operators in $\mathscr{P}(A)$ and $\mathscr{P}_{n}(A)$ are called positive approximants and positive near-approximants respectively.
(4) The operator P_{0} defined by

$$
P_{0}=B+\left(\delta^{2}-C^{2}\right)^{\frac{1}{2}}
$$

is maximum in both $\mathscr{P}(A)$ and $\mathscr{P}_{n}(A)$, that is, $P_{0} \in \mathscr{P}(A)$ and $P \leqq P_{0}$ for any operator P in $\mathscr{P}_{n}(A)$.

In the present paper we consider the problem raised by R. Bouldin [2], that is, a necessary and sufficient condition for that $\mathscr{P}(A)$ coincides with $\mathscr{P}_{n}(A)$ in the case A is a normal operator. Since both $\mathscr{P}(A)$ and $\mathscr{P}_{n}(A)$ are weakly compact convex sets, these sets are the convex closures of respective extremal points. By this result we show that the set of all extremal points of $\mathscr{P}(A)$ is either finite or uncountable in the case A is a normal operator.

In this paper operators are bounded linear operators on a complex Hilbert space \mathscr{H}. Put $B=\operatorname{Re} A$ and $C=\operatorname{Im} A$ for a given operator A. B_{+}and B_{-}denote the positive and the negative parts of a Hermitian operator B respectively. $\operatorname{Ran}(A)$ denotes the range of an operator A. $\left.A\right|_{\mu}$ denotes the restriction of A on an A-reducing subspace \mathscr{A}. $\{A\}^{\prime}$ and $\{A\}^{\prime \prime}$ denote the commutant and the double commutant of A respectively. The dimension of a subspace \mathscr{M} is denoted by $\operatorname{dim} \mathscr{M} . \mathscr{M}^{\perp}$ denotes the orthogonal complement of $\mathscr{M} . N^{-}$denotes the closure of a set \mathscr{V}.
2. Positive approximants and positive near approximants. Put

$$
\mathscr{H}_{0}=\operatorname{Ran}\left(P_{0}\right)^{-} \cap \operatorname{Ran}\left(\delta^{2}-C^{2}\right)^{-},
$$

then $\operatorname{Ran}\left(P_{0}-P\right)^{-}$is included in \mathscr{H}_{0} for any operaotr P in $\mathscr{P}_{n}(A)$ since $(B-P)^{2}+C^{2} \leqq \delta^{2}$ and $0 \leqq P \leqq P_{0}$. In the case A is a normal operator, \mathscr{H}_{0} is an A-reducing subspace, hence \mathscr{H}_{0} is a reducing subspace for each operator P in $\mathscr{P}_{n}(A)$.

Theorem 2.1. Let A be a normal operator. If the operator $\left.(\operatorname{Im} A)\right|_{\alpha_{0}}$ is non-scalar, then there exists a positive operator P such that
(a) $P \notin \mathscr{P}(A)$ and $P \in \mathscr{P}_{n}(A)$,
(b) $\left.P\right|_{w_{0}}$ does not commute with $\left.(\operatorname{Im} A)\right|_{x_{0}}$.

Proof. Obviously $\left.C\right|_{\mathscr{\pi}_{0}}$ is scalar if $\operatorname{dim} \mathscr{H}_{0}$ is zero or one. Hence it can be assumed that $\operatorname{dim} \mathscr{H}_{0} \geqq 2$. Let $E(\boldsymbol{\sigma})$ denote the spectral measure of $A . \sigma(A)$ and $\sigma_{p}(A)$ denote the spectrum and the point spectrum of A respectively. Put

$$
\Gamma_{\dot{\delta}}=\{z:|z|=\delta, \operatorname{Re} z \leqq 0\} \cup\{z:|\operatorname{Im} z|=\delta\}
$$

and

$$
\sigma^{\prime}(A)=\sigma(A)-\Gamma_{\delta} .
$$

Obviously $\mathscr{H}_{0}=\operatorname{Ran}\left(E\left(\sigma^{\prime}(A)^{-}\right)\right)$holds. Suppose $\left.C\right|_{\mathscr{R}_{0}}$ is non-scalar. Im σ denotes $\{\operatorname{Im} z: z \in \sigma\}$ for a set σ included in $\sigma(A)$. The set $\operatorname{Im} \sigma^{\prime}(A)$ contains more than two points. There exist non-empty and sufficiently small closed sets σ_{1} and σ_{2} included in $\sigma^{\prime}(A)$ such that
(i) both σ_{1} and σ_{2} are connected sets,
(ii) both σ_{1} and σ_{2} have positive distances from the set Γ_{δ},
(iii) $\operatorname{Im} \sigma_{1} \cap \operatorname{Im} \sigma_{2}=\phi$.

By condition (i), $\operatorname{Im} \sigma_{i}$ is either a one point set or a closed interval for $i=1,2$.
(1) $\operatorname{Im} \sigma_{i}$ is a closed interval,
(2) σ_{i} is a segment paralell to the real axis,
(3) σ_{i} is a one point set $\left\{\lambda_{i}\right\}\left(\right.$ then $\left.\lambda_{i} \in \sigma_{p}(A)\right)$.

Put $\mathscr{M}_{i}=\operatorname{Ran}\left(E\left(\sigma_{i}\right)\right)$ for $i=1$, 2. In the case condition (1) it can be assumed that $\sigma_{p}\left(\left.C\right|_{\mu_{i}}\right)=\phi$ and moreover $\operatorname{dim} \mathscr{M}_{i}$ is countably infinite. In fact if $\operatorname{dim} \mathscr{M}_{i}$ is uncountable, then choose a subspace $\mathscr{\Lambda}^{\prime}{ }_{i}$ instead of \mathscr{M}_{i} where $\mathscr{M}^{\prime}{ }_{i}$ is the minimal C-reducing subspace generated by a non-zero vector in $\mathscr{N}_{i} . \operatorname{dim} \mathscr{M}_{i}^{\prime}$ is countably infinite and the set $\operatorname{Im} \sigma\left(\left.C\right|_{\boldsymbol{\mu}_{i}^{\prime}}\right)$ contains more than two points and connected since $\sigma_{p}\left(\left.C\right|_{\mu_{i}^{\prime}}\right)=\phi$. Similarly in the case condition (2) it can be assumed that $\sigma_{p}\left(\left.B\right|_{\mu_{i}}\right)=\phi$ and $\operatorname{dim} \mathcal{M}_{i}$ is countably infinite. In the case condition (3) it can be assumed that dim $\mathscr{N}_{i}=1$. The proof is reduced to the following cases.

Case. I. Both σ_{1} and σ_{2} satisfy condition (1). Put $\operatorname{Im} \sigma_{i}=\left[\alpha_{i}, \beta_{i}\right]$ for $i=1,2$. Without loss of generality, it can be moreover assumed that
(1-1) $0<\alpha_{i}<\beta_{i}$ or $\alpha_{i}<\beta_{i}<0$ for $i=1,2$,
(1-2) $\beta_{i}-\alpha_{i}=\varepsilon_{1}>0$ for $i=1,2$,
(1-3) all numbers $\left|\alpha_{1}\right|,\left|\alpha_{2}\right|,\left|\beta_{1}\right|$ and $\left|\beta_{2}\right|$ are distinct.
Put $a_{i}=\beta_{i}$ and $b_{i}=\alpha_{i}$ if $0<\alpha_{i}<\beta_{i}$, and put $a_{i}=\left|\alpha_{i}\right|$ and $b_{i}=\left|\beta_{i}\right|$ if $\alpha_{i}<\beta_{i}<0$ for $i=1,2$, then $a_{i}=\left\|\left.C\right|_{\mathcal{N}_{i}}\right\|$ and $b_{i}=\inf \left\{\left\|\left.C\right|_{\omega_{i}} x\right\|: x \in \mathscr{M}_{i},\|x\|=1\right\}$ for $i=$ 1,2. Put $\mathscr{M}=\mathscr{M}_{1} \oplus \mathscr{M}_{2}$ where the symbol \oplus means orthogonal direct sum. The operators $\left.B\right|_{\mu},\left.C\right|_{\mu}$ and $\left.P_{0}\right|_{\mu}$ can be represented as matrices of operators on $\mathscr{M}=\mathscr{M}_{1} \oplus \mathscr{M}_{2}$:

$$
\left.B\right|_{\mu}=\left[\begin{array}{cc}
B_{1} & 0 \\
0 & B_{2}
\end{array}\right],\left.\quad C\right|_{\mu}=\left[\begin{array}{cc}
C_{1} & 0 \\
0 & C_{2}
\end{array}\right]
$$

and

$$
\left.P_{0}\right|_{\mu}=\left[\begin{array}{cc}
B_{1}+\left(\delta^{2}-C_{1}^{2}\right)^{\frac{1}{2}} & 0 \\
0 & B_{2}+\left(\delta^{2}-C_{2}^{2}\right)^{\frac{1}{2}}
\end{array}\right] .
$$

By condition (ii) there exists a positive number ε_{0} such that for $i=1,2$,

$$
B_{i}+\left(\delta^{2}-C_{i}^{2}\right)^{\frac{1}{2}} \geqq \varepsilon_{0} \text { and }\left(\delta^{2}-C_{i}^{2}\right)^{\frac{1}{2}} \geqq \varepsilon_{0} .
$$

Put

$$
\sigma_{i}(s)=\left\{z: z \in \boldsymbol{\sigma}_{i}, a_{i}-s \leqq|\operatorname{Im} z| \leqq a_{i}\right\}
$$

for each positive number s such that $0<s \leqq \varepsilon_{1}$. Choose a unitary operator U mapping \mathscr{M}_{2} onto \mathscr{M}_{1} such that

$$
U\left(\operatorname{Ran}\left(E\left(\sigma_{2}(s)\right)\right)\right)=\operatorname{Ran}\left(E\left(\sigma_{1}(s)\right)\right)
$$

for each s. Define a positive operator Q_{t} on \mathscr{M} for each real number t such that $0<t \leqq \varepsilon_{0}$ by

$$
Q_{t}=\left[\begin{array}{cc}
\left(\delta^{2}-C_{1}^{2} 1^{\frac{1}{2}}-\varepsilon_{0}+t\right. & t U \\
t U^{*} & \left(\delta^{2}-C_{2}^{2}\right)^{\frac{1}{2}}-\varepsilon_{0}+t
\end{array}\right]
$$

Moreover define a positive operator P_{t} on \mathscr{H} for each t such that \mathscr{M} is a P_{t}-reducing subspace for each t,

$$
\left.P_{t}\right|_{\mu}=Q_{t}+\left.B\right|_{\mu} \text { and }\left.P_{t}\right|_{\mu^{1}}=\left.P_{0}\right|_{\mu^{\perp}} .
$$

Then

$$
\left.\left(A-P_{t}\right)\right|_{\boldsymbol{\mu}^{\perp}}=\left.\left\{-\left(\delta^{2}-C^{2}\right)^{\frac{1}{2}}+i C\right\}\right|_{\mathcal{N}^{\perp}}
$$

is a saclar multiple of a unitary operator on \mathscr{M}^{L} with norm δ while

$$
\left.\left(A-P_{t}\right)\right|_{\mu}=-Q_{t}+\left.i C\right|_{\mu}
$$

Define the operators D_{i} and F_{i} for $i=1,2$ by

$$
D_{i}=\left(\delta^{2}-C_{i}^{2}\right)^{\frac{1}{2}}-\varepsilon_{0}+t,
$$

and

$$
\begin{aligned}
F_{i} & =D_{i}^{2}+t^{2}+C_{i}^{2} \\
& =\delta^{2}+t^{2}+\left(\varepsilon_{0}-t\right)^{2}-2\left(\varepsilon_{0}-t\right)\left(\delta^{2}-C_{i}^{2}\right)^{\frac{1}{2}} .
\end{aligned}
$$

Then

$$
Q_{t}^{2}+\left(\left.C\right|_{*}\right)^{2}=\left[\begin{array}{cc}
F_{1} & t\left(D_{1} U+U D_{2}\right) \\
t\left(U^{*} D_{1}+D_{2} U^{*}\right) & F_{2}
\end{array}\right]
$$

and

$$
\begin{aligned}
& \left(-Q_{t}+\left.i C\right|_{\Omega}\right)^{*}\left(-Q_{t}+\left.i C\right|_{\Omega}\right) \\
& \quad=\left[\begin{array}{cc}
F_{1} & t\left(D_{1} U+U D_{2}+i C_{1} U-i U D_{2}\right) \\
t\left(U^{*} D_{1}+D_{2} U^{*}-i U^{*} C_{1}+i C_{2} U^{*}\right) & F_{2}
\end{array}\right]
\end{aligned}
$$

Obviously both $\left\|\left(Q_{t}\right)^{2}+\left(\left.C\right|_{\mu}\right)^{2}\right\|$ and $\left\|-Q_{t}+\left.i C\right|_{\mu}\right\|^{2}$ are continuous functions with respect to t. Since

$$
\begin{gathered}
\left\|-Q_{t}+\left.i C\right|_{. \mu}\right\|^{2} \geqq\left\|\left(Q_{t}\right)^{2}+\left(\left.C\right|_{\mu}\right)^{2}\right\| \\
\geqq \quad \max \left\{\left\|F_{1}\right\|^{2},\left\|F_{2}\right\|^{2}\right\}
\end{gathered}
$$

hence

$$
\begin{aligned}
& \left\|-Q_{\iota_{0}}+\left.i C\right|_{\mu}\right\|^{2} \geqq\left\|\left(Q_{\iota_{0}}\right)^{2}+\left(\left.C\right|_{\kappa}\right)^{2}\right\| \\
& \geqq \quad \delta^{2}+\varepsilon_{0}^{2}
\end{aligned}
$$

It can be shown that for each t

$$
\left\|\left(Q_{t}\right)^{2}+\left(\left.C\right|_{\mu}\right)^{2}\right\|^{\frac{1}{2}}<\left\|-Q_{t}+\left.i C\right|_{\mu}\right\|
$$

In fact any unit vector x in \mathcal{M} can be represented as $x=\cos \theta x_{1} \oplus \sin \theta x_{2}$ where $x_{i} \in \mathscr{M}_{i}$ and $\left\|x_{i}\right\|=1$ for $i=1,2$, and $0 \leqq \theta \leqq \frac{\pi}{2}$. Then

$$
\begin{aligned}
& \left(\left\{\left(Q_{t}\right)^{2}+\left(\left.C\right|_{\mu}\right)^{2}\right\} x, x\right)=\cos ^{2} \theta\left(E_{1} x_{1}, x_{1}\right)+\sin ^{2} \theta\left(E_{2} x, x_{2}\right) \\
+ & 2 t \sin \theta \cos \theta \operatorname{Re}\left\{\left(D_{1} U x_{2}, x_{1}\right)+\left(U D_{2} x_{2}, x_{1}\right)\right\}
\end{aligned}
$$

Since $a_{i}=\left\|\left.C\right|_{\mathcal{M}_{i}}\right\|$ and $b_{i}=\inf \left\{\left\|\left.C\right|_{\mathcal{M}_{i}} x\right\|: x \in \mathcal{M}_{i},\|x\|=1\right\}$, it holds that for each t such that $0<t \leqq \varepsilon_{0}$ and for $i=1,2$

$$
\left\|D_{i}\right\|=\left(\delta^{2}-b_{i}^{2}\right)^{\frac{1}{2}}-\varepsilon_{0}+t
$$

and

$$
\left\|F_{i}\right\|=\delta^{2}+t^{2}-2\left(\varepsilon_{0}-t\right)\left(\delta^{2}-a_{i}^{2}\right)^{\frac{1}{2}}
$$

Put

$$
X_{i}=\left\|F_{i}\right\| \text { for } i=1,2
$$

and

$$
Y=2 t\left(\left\|D_{1}\right\|+\left\|D_{2}\right\|\right)
$$

Then

$$
\begin{aligned}
& \left(\left\{\left(Q_{t}\right)^{2}+\left(\left.C\right|_{\mu}\right)^{2}\right\} x, x\right) \\
\leqq & \sup \left\{X_{1} \cos ^{2} \theta+X_{2} \sin ^{2} \theta+Y \sin \theta \cos \theta: 0 \leqq \theta \leqq \frac{\pi}{2}\right\} \\
= & \sup \left\{\frac{1}{2}\left(X_{1}+X_{2}\right)+\frac{1}{2}\left(X_{1}-X_{2}\right) \cos 2 \theta+\frac{1}{2} Y \sin 2 \theta: 0 \leqq \theta \leqq \frac{\pi}{2}\right\} \\
= & \frac{1}{2}\left(X_{1}+X_{2}\right)^{2}+\frac{1}{2}\left\{\left(X_{1}-X_{2}\right)^{2}+Y^{2}\right\}^{\frac{1}{2}}
\end{aligned}
$$

Hence

$$
\left\|\left(Q_{t}\right)^{2}+\left(\left.C\right|_{\mu}\right)^{2}\right\| \leqq \frac{1}{2}\left(X_{1}+X_{2}\right)^{2}+\frac{1}{2}\left\{\left(X_{1}-X_{2}\right)^{2}+Y^{2}\right\}^{\frac{1}{2}}
$$

Put

$$
Z=2 t\left[\left\{\left(\delta^{2}-a_{1}^{2}\right)^{\frac{1}{2}}+\left(\delta^{2}-a_{2}^{2}\right)^{\frac{1}{2}}-2 \varepsilon_{0}+2 t\right\}^{2}+\left(a_{1}-a_{2}\right)^{2}\right]^{\frac{1}{2}}
$$

Choose a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ of unit vectors in \mathscr{M} as follows:

$$
x_{n}=\cos \theta x_{1(n)} \oplus \sin \theta x_{2(n)}
$$

where $x_{i(n)} \in E\left(\mathscr{M}_{i}\right),\left\|x_{i(n)}\right\|=1(n=1,2, \cdots)$ for $i=1,2, \theta$ is a constant such that $0 \leqq \theta \leqq \frac{\pi}{2}$,

$$
\lim _{u \rightarrow \infty}\left\{C_{2} x_{2(n)}-a_{2} x_{2(n)}\right\}=0,
$$

and

$$
\begin{gathered}
x_{1(n)}=z U x_{2(n)}(n=1,2, \cdots) \text { where } z \text { is a complex number such that } \\
2 t\left\{\left(\delta^{2}-a_{1}^{2}\right)^{\frac{1}{2}}+\left(\delta^{2}-a_{2}^{2}\right)^{\frac{1}{2}}-2 \varepsilon_{0}+2 t+i\left(a_{1}-a_{2}\right)\right\} z=Z .
\end{gathered}
$$

It is easy that

$$
\lim _{n \rightarrow \infty}\left\{C_{1} x_{1(n)}-a_{1} x_{1(n)}\right\}=0
$$

Then

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left\|\left(-Q_{t}+\left.i C\right|_{\mu}\right) x_{n}\right\|^{2} \\
= & \lim _{n \rightarrow 8}\left[\cos ^{2} \theta\left(F_{1} x_{1(n)}, x_{1(n)}\right)+\sin ^{2} \theta\left(F_{2} x_{2(n)}, x_{2(n)}\right)\right. \\
+ & \left.2 t \sin \theta \cos \theta \operatorname{Re}\left\{\left(\left(D_{1} U+U D_{2}+i C_{1} U-i U C_{2}\right) x_{2(n),}, x_{1(n)}\right)\right\}\right] \\
= & X_{1} \cos ^{2} \theta+X_{2} \sin ^{2} \theta+Z \sin \theta \cos \theta .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \left\|-Q_{t}+\left.i C\right|_{\mu}\right\|^{2} \\
\geqq & \sup \left\{X_{1} \cos ^{2} \theta+X_{2} \sin ^{2} \theta+Z \sin \theta \cos \theta: 0 \leqq \theta \leqq \frac{\pi}{2}\right\} \\
= & \frac{1}{2}\left(X_{1}+X_{2}\right)+\frac{1}{2}\left\{\left(X_{1}-X_{2}\right)^{2}+Z^{2}\right\}^{\frac{1}{2}} .
\end{aligned}
$$

Obviously for sufficiently small ε_{1}, Z is larger than Y. Hence for each t such that $0<t \leqq \varepsilon_{0}$,

$$
\left\|\left(Q_{t}\right)^{2}+\left(\left.C\right|_{\mu}\right)^{2}\right\|^{\frac{1}{2}}<\left\|-Q_{t}+\left.i C\right|_{\mu}\right\|
$$

Since $\left\|-Q_{t}+\left.i C\right|_{\mu}\right\|<\delta$ for sufficiently small t and $\left\|\left(Q_{t}\right)^{2}+\left(\left.C\right|_{\mu}\right)^{2}\right\|^{\frac{1}{2}}>\delta$ for t sufficiently near ε_{0}, there exists a positive number t_{0} such that $t_{0}<\varepsilon_{0}$,

$$
\left\|\left(Q_{t_{0}}\right)^{2}+\left(\left.C\right|_{\mu}\right)^{2}\right\|^{\frac{1}{2}}=\delta \text { and }\left\|-Q_{t_{0}}+\left.i C\right|_{\mu}\right\|>\delta .
$$

Then

$$
\left\|A-P_{t_{0}}\right\|=\delta \text { and }\left\|A-P_{t_{0}}\right\|>\delta .
$$

Hence $P_{t_{0}}$ is contained in $\mathscr{P}_{n}(A)$ but not in $\mathscr{P}(A) . C_{1} U$ is not equal to $U C_{2}$ since $\sigma\left(\left.C\right|_{\mu_{1}}\right) \neq \sigma\left(\left.C\right|_{\boldsymbol{\mu}_{2}}\right)$ hence $P_{t_{0}}$ does not commute wit $\left.C\right|_{\boldsymbol{q}_{0}}$.

Other cases can be similarly proved.
Case II. σ_{1} satisfies condition (1) or (2) and σ_{2} satisfies condition (2). Since $\left.C\right|_{\mu_{2}}$ is scalar, by choosing an arbitrary unitary operator U in the proof of Case I, the proof can be shown similarly as Case I.

Case III. σ_{1} and σ_{2} satisfy condition (1) and condition (3) respectively. Choose an isometric operator V such that there exists a positive number s_{0} less than ε but sufficiently near ε_{1} and

$$
V\left(\mathscr{N}_{2}\right) \cong \operatorname{Ran}\left(\sigma_{1}\left(s_{0}\right)\right)
$$

instead of a unitary operator U in the proof of Case I, and define a positive operator F_{1} in the proof of Case I by

$$
F_{1}=\sigma^{2}+t^{2} V V^{*}+\left(\varepsilon_{0}-t\right)^{2}-2\left(\varepsilon_{0}-t\right)\left(\delta^{2}-C_{1}^{2}\right)^{\frac{1}{2}} .
$$

Case IV. σ_{1} and σ_{2} satisfy condition (2) and condition (3) respectively. An isometric operator V in the proof of Case III can be chosen arbitrarily.

Case V. Both σ_{1} and σ_{2} satisfy condition (3). Since $\operatorname{dim} \mathscr{M}_{1}=\operatorname{dim}$ $\mathscr{M}_{2}=1$, the proof is obvious. The proof is completed.

We show a sufficient and necessary condition for that $\mathscr{P}(A)$ coincides with $\mathscr{P}_{n}(A)$ as corollary of Theorem 2.1.

Corollary 2.2. Let A be a normal operator. The following conditions are equivalent:
(a) $\mathscr{D}(A) \leqq\{\operatorname{Im} A\}^{\prime}$,
(b) $(\operatorname{Im} A)_{\dot{x}_{0}}=\lambda I_{x_{\chi_{0}}}$ where $I_{z_{0}}$ is the identity operator on \mathscr{y}_{0}
and λ is a real number.
(c) $\sigma(A) \cong \Gamma_{\delta} \cup\{z: \operatorname{Im} z=\lambda\}$,
(d) $\mathscr{P}(A)=\mathscr{P}_{n}(A)$.

Proof. The implications $(\mathrm{b}) \Leftrightarrow(\mathrm{c}),(\mathrm{b}) \Rightarrow(\mathrm{a})$ and $(\mathrm{b}) \Rightarrow(\mathrm{d})$ are obvious since $A-P$ is a normal operator for any P in $\mathscr{P}_{n}(A)$. By the proof of Theorem 2.1 the implication $(\mathrm{d}) \Rightarrow(\mathrm{b})$ holds, and moreover for sufficiently small positive number t there exists a positive operator P_{t} in $\mathscr{P}(A)$ such that $\left.P_{t}\right|_{\psi_{0}}$ does not commute with $\left.C\right|_{\varkappa_{0} .}$. Hence the implication (a) $\Rightarrow(\mathrm{b})$ holds.

Corollary 2.3. Let A be a normal operator. The following con-
ditions are equivalent:
(a) $\mathscr{P}(A) \cong\{A\}^{\prime}$,
(b) $\left.A\right|_{\tilde{\%}_{0}}=\lambda I_{\tilde{w}_{0}}$ where λ is a complex number.
(d) $\sigma(A) \cong \Gamma_{i} \cup\{\lambda\}$.

Proof. The implications $(\mathrm{b}) \Leftrightarrow(\mathrm{c})$ and $(\mathrm{b}) \Leftrightarrow(\mathrm{a})$ are obvious.
(a) $\Rightarrow(\mathrm{b}): \mathscr{P}(A) \cong\{C\}^{\prime}$ holds since $\mathscr{P}(A) \cong\{A\}^{\prime}$, hence $\left.C\right|_{\varkappa_{0}}$ is scalar. Moreover $\mathscr{P}(A) \cong\{B\}^{\prime}$ holds. Suppose $\left.B\right|_{\mathscr{\mathscr { C } _ { 0 }} \text { is }}$ is non-scalar. Choose two non-trivial orthogonal subspace \mathscr{M}_{1} and \mathscr{M}_{2} included in \mathscr{K}_{0} such that \mathscr{N}_{i} is the range of a spectral projection of B for $i=1,2$, and there exists a positive number ε_{2} such that for $i=1,2$

$$
\left.\left\{\left(B_{-}\right)^{2}+C^{2}\right\}\right|_{\mathbb{N}_{i}} \leqq \delta^{2}-\varepsilon_{2} .
$$

Define a positive operator P_{t} on $\mathscr{\mathscr { H }}$ for sufficiently small positive number t such that the subspace $\mathscr{M}=\mathscr{M}_{1} \oplus \mathscr{M}_{2}$ is a P_{t}-reducing subspace, $\left.P_{t}\right|_{\mathscr{M}}=$ $\left.P_{0}\right|_{\mu}$ and $\left.P_{t}\right|_{\mathscr{M}}$ is represented as matrix of operators on $\mathscr{M}=\mathscr{M}_{1} \oplus \mathscr{M}_{2}$:

$$
\left.P_{t}\right|_{\star}=\left[\begin{array}{cc}
t & t U \\
t U^{*} & t
\end{array}\right]+\left.B_{+}\right|_{\kappa}
$$

where U is a partially isometric operator mapping \mathscr{M}_{2} into \mathscr{M}_{1}. For sufficiently small t,

$$
\left\|\left.\left(A-P_{t}\right)\right|_{\mu}\right\|=\left\|\left.\left(A-P_{t}\right)\right|_{\mu}\right\| \| \delta
$$

since $\left.C\right|_{\%_{0}}$ is scalar. Hence P_{t} is contained in $\mathscr{P}(A)$ and does not commute with B. This contradicts to condition (a). The proof is completed.
3. The extremal points of $\mathscr{P}(A)$. In this section we consider a condition for that $\exp (\mathscr{P}(A))$ is a finite set where $\operatorname{ext}(\mathscr{P}(A))$ denotes the set of all extremal points of $\mathscr{P}(A)$.

Theorem 3.1. Let A be a normal operator. The following conditions are equivalent:
(a) $\mathscr{P}(A) \cong\{A\}^{\prime \prime}$,
(b) $\operatorname{ext}(\mathscr{P}(A))$ consists of at most countable operators,
(c) $\operatorname{ext}(\mathscr{P}(A))$ consists of at most two operators,
(d) $\operatorname{dim} \mathscr{H}_{0} \leqq 1$,
(e) P is a linear combination of $(\operatorname{Re} A)_{+}$and P_{0} for any operator P in $\mathscr{F}(A)$.

Proof. The implications $(\mathrm{c}) \Rightarrow(\mathrm{d}) \Rightarrow(\mathrm{e})$ hold by the result in [1]. More-
over, the implications $(\mathrm{e}) \Rightarrow(\mathrm{a})$ and $(\mathrm{c}) \Leftrightarrow$ (b) hold obviously.
(a) $\Rightarrow(\mathrm{d})$: Since $\mathscr{P}(A) \cong\{A\}^{\prime \prime}, \mathscr{P}(A) \subseteq\{A\}^{\prime}$ holds. By Corollary 2.3 $\left.A\right|_{\mathscr{H}_{0}}$ is scalar. If $\operatorname{dim} \mathscr{A}_{0} \geqq 2$ holds, then by the proof of Corollary 2.3 there exist a subspace \mathscr{M} included in \mathscr{H}_{0} such that $\operatorname{dim} \mathscr{M} \geqq 2$ and a positive operator P in $\mathscr{P}(A)$ such that \mathscr{M} is a P-reducing subspace and $\left.P\right|_{\mu}$ is non-scalar. This is a contradiction.
(b) $\Rightarrow(\mathrm{d})$: Suppose $\operatorname{ext}(\mathscr{P}(A))$ is at most countable and $\operatorname{dim} \mathscr{H} \geqq 2$. For any closed subspace \mathscr{M} included in \mathscr{H}_{0} such that \mathscr{M} is the range of a spectral projection of A, there exists a positive operator P_{1} in $\mathscr{P}(A)$ such that P_{1} differs from $P_{0},\left.P_{1}\right|_{\mu^{\perp}}=\left.P_{0}\right|_{\mu^{\perp}}$ and $\operatorname{Ran}\left(P_{0}-P_{1}\right)^{-} \subseteq \mathscr{M}$. If P_{1} is not contained in $\operatorname{ext}(\mathscr{P}(A))$, there exist two operators P_{2} and P_{3} in $\operatorname{ext}(\mathscr{P}(A))$ and a positive number λ such that $0<\lambda<1$,

$$
P_{1}=\lambda P_{2}+(1-\lambda) P_{3} \text { and } P_{2} \neq P_{0} .
$$

Since $P_{0}-P_{1}=\lambda\left(P_{0}-P_{1}\right)+(1-\lambda)\left(P_{0}-P_{3}\right)$ and all operators $P_{0}-P_{1}, P_{0}-P_{2}$ and $P_{0}-P_{3}$ are positive, by Douglas' theorem [3]

$$
\operatorname{Ran}\left(P_{0}-P_{1}\right)^{\frac{1}{2}} \supseteqq \operatorname{Ran}\left(P_{0}-P_{2}\right)^{\frac{1}{2}}
$$

holds. Hence

$$
\mathscr{M} \supseteq \operatorname{Ran}\left(P_{0}-P_{1}\right)^{-} \supseteq \operatorname{Ran}\left(P_{0}-P_{2}\right)^{-} .
$$

By choosing P_{2} instead of P_{1}, it can be assumed that $P_{1} \in \operatorname{ext}(\mathscr{P}(A))$. If any operator P in $\operatorname{ext}(\mathscr{P}(A))$ is commuting with all spectral projections of A, then $\mathscr{P}(A) \cong\{A\}^{\prime}$. This contradicts to $\operatorname{dim} \mathscr{H}_{0} \geqq 2$ by the proof of the implication (a) $\Rightarrow(\mathrm{d})$. Hence there exist two non-trivial orthogonal subspace \mathscr{M}_{1} and \mathscr{N}_{2} included in \mathscr{H}_{0} such that \mathscr{M}_{i} is the range of a spectral projection G_{i} of A for $i=1,2$, and a positive operator P in $\operatorname{ext}(\mathscr{P}(A))$ such that P does not commute with both G_{1} and G_{2}, and

$$
\operatorname{Ran}\left(P_{0}-P\right)^{-} \cong \mathscr{M}_{1} \oplus \mathscr{M}_{2}
$$

For any unitary operator U commuting with $A, U^{*} P U \epsilon \operatorname{ext}(\mathscr{P}(A))$ holds. Choose a unitary operator U_{θ} commiting with A such that $\left.U_{\theta}\right|_{\mu}$ is defined as matrix of operators on $\mathscr{M}=\mathscr{M}_{1} \oplus \mathscr{M}_{2}$:

$$
\left.U_{\theta}\right|_{\mu x}=\left[\begin{array}{ll}
1 & 0 \\
0 & e^{i \theta}
\end{array}\right]
$$

and

$$
\left.U_{\theta}\right|_{\mu^{\perp}}=I_{k^{\perp}}
$$

Put

$$
\left.P\right|_{\mu \mu}=\left[\begin{array}{ll}
P_{11} & P_{12} \\
P_{12}^{*} & P_{22}
\end{array}\right]
$$

as matrix of operators on $\mathscr{M}=\mathscr{M}_{1} \oplus \mathscr{M}_{2}$.
Then

$$
\left.\left(U_{\theta}^{*} P U_{\theta}\right)\right|_{\mu}=\left[\begin{array}{cc}
P_{11} & e^{i \theta} P_{12} \\
e^{-i \theta} P_{12}^{*} & P_{22}
\end{array}\right] \text { and }\left.\left(U_{\theta}^{*} P U_{\theta}\right)\right|_{\mu^{\perp}}=\left.P_{0}\right|_{\mu^{\perp}} .
$$

Obviously $\left\{U_{\theta}^{*} P U_{\theta}: 0 \leqq \theta<2 \pi\right\}$ is uncountable, this contradicts to condition (b). Hence $\operatorname{dim} \mathscr{A}_{0} \leqq 1$. The proof is completed.

References

[1] T. ANDO, T. SEKIgUCHI and T. SuZUKi: Approximation by positive operators, Math. Z. 131 (1973), 273-282.
[2] R. Bouldin: The convex structure of the set of positive approximants for a given operator (to appear).
[3] R. G. Douglas: On majorization, factorization and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413-415.
[4] P. R. Halmos: Positive approximants of operators, Indiana Univ. Math. J. 21 (1971/72), 951-960.

Department of Mathematics Hokkaido University

