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Let G be a LCA group with dual G, and E a compact subset of G.
Following Rudin [5], we say that E is a Kronecker set if, to each fe C(E)
with |f]=1 and &>0, there exists 7€G such ‘that ||f—7||lz<e. Suppose
G is a metrizable I-group, K is a compact subset of G, and E is a perfect
totally disconnected, compact metric space. Then, as is well-known, there
exist two Kronecker sets K; and K,CG, both homeomorphic to E, such
that K, +K;DK (cf. [3; Lemma 3.4], [6], and [7; Lemma 7.2]).

In this note we prove two analogs to the above result. I thank Pro-
fessor S. Saeki for his useful advices.

THEOREM 1 (c¢f. [7]) Let T={|z|=1} be the circle group, and T* the
countable cartesian product thereof. Let also E be a compact metric space
with a perfect subset. Then there exist two Kronecker sets K, and K,CT*,
both homeomorphic to E, such that K,+ K,=T".

THEOREM 2 Let G be a metrizable LCA I-group, ECG a compact
set, and N>2 a natural number. Then there exist disjoint Kronecker sets
K, -, Ky, all homeomorphic to D,={0, 1}*, such that

(1) the sum K,+ --- + Ky contains E, and

(i1) the union of any N—1 sets of the K,'s is a Kronecker set.
is an easy consequence of the following.

LEMMA 1 Let E be a compact metric space, and C(E; T*) the space
of all continuous mappings from E into T=. Then, given fo€ C(E; T"),
there exists fe C(E; T%) such that both f(E) and (fo—f)(E) are Kronecker
sets in T homeomorphic to E.

ProorF Our proof follows Kaufman’s idea in (see also [1; pp. 184~
185]). First notice that C(E; T) forms a complete metric, topological
group under the topology of uniform convergence. Since E is a compact

metric space, C(E; T') is separable. Let {g,}x-; be a countable dense set
in C(E; T). We write N=U A(m, n), where

Alm, n)={feC(E; T*): llgn—1(f)ls=1/n for all 1=},

(T denotes the dual group of 7). It is obvious that every A(m, n) is
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closed in C(E; T=). Moreover we claim that A(m,n) has no interior
point. In fact, let ge C(E; T'), fe C(E; T=), and U a neighborhood of f
in C(E; T™). We write f=(f, f3-*), where f,€ C(E; T) is the nth com-
ponent of f. By the definition of the product topology of 7', there exists
a natural number n such that A€ U, where

= (ﬁy "'7f;v g_’f;z+2>f;z+3_7 )

Then, denoting by %€ T the canonical projection onto the zn+1th factor,
we have 2(h)=g on E. This proves that on A(m, n) has interior points
and N is therefore of first category in C(E; T™).

We now prove that every fe C(E; T*)\N is one-to-one. Choose any
distinct points a; and a,€ E. Since {g,}i-, is dense in C(E; T), there
exists ¢, € {g.)-1 such that g,,(a)#9¢,(a). Since f¢ N, we can find Xe T
so that

lon—2(A)]| ;<37 | gn (@) — g (@) -
Then

|9 (@)= 0 (2| <2 | 0= 2 (1), + | L (fla) =X (A1)
<(2/3)| g (@) — g (@2) |+ X (fla) = X (fl2))|

which confirms the one-to-oneness of f. Hence we obtain that f(E) is
homeomorphic to E. Finally it is easy to see that f(E) is a Kronecker
set whenever f¢& N by the definition of N. Since C(E; T) is a complete
topological group, C(E; T*)\((f;—N)UN) is non-empty and every element
of this set has the required property.

ProoF oF THEOREM 1

If we construct a continuous mapping from E onto 7™, we shall have
by an application of Lemma 1. Since E is a compact metric
space which contains a perfect subset, it contains a compact subset homeo-
morphic to D,. Since D, is homeomorphic to the countable product space
of D, with itself, and since [0, 1] is a continuous image of D, the Tietze’s
extention theorem guarantees that [0, 1] (and hence T°°) is a continuous
image of E. This comletes the proof.

To prove [Theorem 2, we need a lemma.

LEMMA 2 Let G be a LCA group, ECG a compact set, and =7
a natural number. Let also V;(1<i<#) be open sets such that U}, V;D
E. Then there exist W,;(1<i<#), compact neighborhoods of 0, such that
Uti(we+ V)DE for all w,eW,.

ProoF First choose compact sets K,CV;(1<i<n) so that U7, K;D
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E. Next take a compact neighborhood W of 0 so that K;,— Wc V, for all
1<i<n. Then w;eW for 1<i<n imply

Uri(wi+ V) DU K, DE,
as was required.

PrOOF OF THEOREM 2

To make the proof simple, we shall only prove for N=3.
Our proof is similar to that of Lemma 3.4 of [3]

For r=1, 2, -, we construct a finite collection %, of distinct compact

sets in G with non-empty interior. First choose any compact sets K, K,

K,CG so that
int K1 +1int Kz +int K3D E

and put #,={K,} for r=1,2,3. Suppose that .#,={K,;}*™ are con-
structed for all 1<n<r+2 and some r>1, and that
int K, +int K,,; +int K,,,DE,

where K,=U?% K,;, for all n. Since E is compact, there exist distinct
points z,€int K, and x, €int K,;(1<m<n(r)) such that U2 (x,+z,+
int K,;;)DE. There is no loss of generality in assuming that all the K,

(resp. K(,41);) contain at least two x,’s(resp. x.,’s). Applying - we
obtain disjoint compact neighborhoods W,,, -+, W,,,Cint K, and W4, ---,
W/ .nCint K,,; of these points such that

U™ (W, +wh,+int K, ,)DE

for all choices of w, €W,,, and w,,€W/,. Since G is an I-group, we can
find v, €int W,,, and v}, € int W/, so that {v,, v}, 1<m<n( r)} is a Krone-
cker set (see [5; 5.2]). Choose a finite set F, of G so that to any real
numbers a,, and a,,(1<m<n(r)) there corresponds a 7€ F, satisfying

|exp (tay)— |<1/r 1<m<n(r)
Iexp wa,)—1(v,) |<1/r (1<m<n(r)

Since F, is a finite set, there exist disjoint compact neighborhoods K, ,3m
of v, and K4 of v, such that 1<m<n(r) imply

(2)

(2 |7(@)=7@)|<lr  (2€Kqsom and T€F)
(

(

7(@)—71(©.)|<l/r  (x€Kisom and TEF)

3) diam K(,43,<1/r and K,,3,C W,
3)' diam K(,.+4)m< 1/r and K(,,H)mC W,.m
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Finally we define %, ={K,11n}%?) for k=3 and 4, which completes our
inductive construction of {.%,}=,.

Putting
ch == no U K(3q+k)m (k = 19 2’ 3):
q=0m

we claim that these three sets have the required properties. It is obvious
that H,, H,, H, are disjoint, perfect, and totally disconnected, and that H,
+H,+ H;DE. Therefore we need only confirm that, say, H,UH, is
a Kronecker set.

Let feC(H,UH,; T) and ¢>0 be given. Choose a natural number
g so that 1/(g—1)<e¢/2, and set r=3¢9—2. Since f is uniformly continuous,
we can demand that there are real numbers a, and a), (1<m<n(r)
satisfying

(4) |A@)—explian)|<el2  (x€HiNKesom and 1<m<n(r)
(4) | Ax)—exp(ia)

(Notice U2 Kipiaym= U 29 Kigeym D H, and similarly for H,.)
Choose 7€ F, as in (1) and (1. We then have by (2) and (4) that

|f(@)—7 (@)| < | Fla)—exp (ia) | +|exp (ian) =T (vn)| + |7 (vm) =T (2)|
<Lel2+1/r+1]r<el2+1)(g—1)<e

<el2 (xeH,NK+9m and 1<m<n(r).

whenever x€ H,N K(,,3), for some 1<m<n(r).
Similarly we have by (2 and (4)

f@-T@)|<e  (zeH).

In other words, we have proved that | f(x)—7(z)|<e for all xe H;UH, and
some 7€G. This completes the proof.

REMARK After the first draft of this note was written, Professer S.
Saeki pointed out that the following variance of Kaufman’s theorem
yields an alternative and simple proof of

Let G be a metrizable LCA I-group, H a ¢-compact independent subset
thereof, and D a totally disconnected compact metric space. Then quasi-

all fe C(D; G) have the properties that
(i) f is one-to-one,
(ii) f(D) is a Kronecker set, and
(i) Gp(f(D)NGp(H)={0}.

If, in addtion, H is a totally disconnected Kronecker set, then (ii) can be
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strengthened to be (i) f(D)UH is a Kronecker set. (cf. [6; Lemma]).
follows from an inductive application of this result. We omit
the details.
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