A remark on the index of G-manifolds in the representation theory

By Yoshinobu KAMISHIMA

(Received May 15, 1976)

1. Introduction

Fix a finite group G. Let \mathscr{F} be a family of subgroups of G which satisfies if $H \in \mathscr{F}$ and $H' \subset H$, then $H' \in \mathscr{F}$. Then G-bordism group of G-manifolds is denoted by $\Omega_*(G, \mathscr{F})$. And its elements are the bordism classes [G, M] where M is a differentiable closed manifold and all isotropy groups G_x are in \mathscr{F} . Now we consider the index of G-manifolds. It is well known that the index I is a bordism invariant of Ω_{4k} . And it is extended naturally to the G-bordism invariant: $I: \Omega_{4k}(G, \mathscr{F}) \longrightarrow RO(G)$, where RO(G) is the Grothendieck group of G over R.

In this paper we compute the index of G-manifolds with $\mathscr{F} = \{1\}$ in RO(G) in the sense of R. Lee [5].

2. The homomorphism $I: \mathcal{Q}_{4k}(G, \mathscr{K}) \longrightarrow RO(G)$

Let M be a compact oriented differentiable G-manifold without boundary and \mathscr{F} -free. The bilinear form $\Phi: H^{2k}(M; R) \times H^{2k}(M; R) \longrightarrow R$ is defined by $\Phi(x, y) = \langle x \cup y, [M] \rangle$, where [M] is the orientation class of M. Then by the Poincaré duality, Φ is non-singular, symmetric and G-invariant. In $H^{2k}(M; R)$, we set G-invariant maximal subspaces

$$V_{+} = \left\{ x \in H^{2k}(M; R) \middle| \varPhi(x, x) > 0 \text{ if } x \neq 0 \right\}$$
$$V_{-} = \left\{ x \in H^{2k}(M; R) \middle| \varPhi(x, x) > 0 \text{ if } x \neq 0 \right\}, \text{ then}$$

 $I: \Omega_{4k}(G, \mathscr{F}) \longrightarrow RO(G)$ is defined by $I[G, M] = [V_+] - [V_-]$ (see [4] pp. 578), where $[V_{\pm}]$ is the equivalence class of V_{\pm} in RO(G). Now by the well known result (see [4] pp. 85-86), it is proved that

(2.1) The correspondence $I: \Omega_{4k}(G, \mathscr{F}) \longrightarrow RO(G)$ is the well-defined homomorphism.

In particular, $G = \{1\}$, since $\Omega_{4k}(G, \mathscr{Z}) = \Omega_{4k}$ and RO(G) = Z[K], where K is a trivial representation, $I: \Omega_{4k} \longrightarrow RO(G)$ is I[M] = I(M)[K], where I(M) is the index of M.

Y. Kamishima

Let *H* be a proper subgroup of *G*, then the extension homomorphism $i_*: \Omega_*(H, \mathscr{F}) \longrightarrow \Omega_*(G, \mathscr{F})$ is defined by $i_*[H, M] = [G, G \times M]$. And similarly the extension homomorphism $i_*: RO(H) \longrightarrow RO(G)$ is defined by $i_*[V] = [RG \bigotimes_{RH} V]$, where RG(rep. RH) is the group ring of G(rep. H) over *R*. And by the restriction of the action of *G* to that of *H*, the restriction homomorphism is defined.

Then the following diagram is commutative.

(2.2)
$$\begin{array}{c} \Omega_{4k}(G,\mathscr{F}) & \stackrel{i^*}{\longrightarrow} & \Omega_{4k}(H,\mathscr{F}) \\ \downarrow I & & \downarrow I \\ RO(G) & \stackrel{i^*}{\longrightarrow} & RO(H) \end{array}$$

Here i^* is the restriction homomorphism.

(2.3)
$$\begin{array}{c} \Omega_{4k}(H) & \xrightarrow{i_{*}} & \Omega_{4k}(G) \\ \downarrow I & \downarrow I \\ RO(H) & \xrightarrow{i_{*}} & RO(G) \end{array}$$

Rroof. (2.2) is trivial and for (2.3), let [H, M] be a element of $\Omega_{4k}(H)$, since M is a free H-manifold, it follows that $H^{2k}(G \times M) = RG \bigotimes_{RH} H^{2k}(M)$. And by the definition, $I[H, M] = [V_+] - [V_-]$, then $H_{2k}(M) = V_+ \bigoplus V_-$. And so $H^{2k}(G \times M) = (RG \bigotimes_{RH} V_+) \bigoplus (RG \bigotimes_{RH} V_-)$. $RG \bigotimes_{RH} V_{\pm}$ are the G-invariant maximal subspaces for symmetric bilinear form on

 $H^{2k}(G \underset{H}{\times} M), \text{ that is } Ii_*[H, M] = [RG \underset{RH}{\otimes} V_+] - [RG \underset{RH}{\otimes} V_-].$ Hence $Ii_*[H, M] = i_*I[H, M].$

3. The index of G-manifolds in the case of $\mathscr{F} = \{1\}$

Fix a finite group G and $\mathscr{F} = \{1\}$. Let RG denote by the group ring of G over R.

THEOREM. I:
$$\Omega_{4k}(G) \longrightarrow RO(G)$$
 and if $[G, M] \in \Omega_{4k}(G)$,
then $I[G, M] = I(M/G)[RG]$.

Proof. For the augmentation $\varepsilon_* : \Omega_n(G) \longrightarrow \Omega_n$, $\varepsilon_*[G, M] = [M/G]$, the reduced bordism group $\tilde{\Omega}_n(G)$ is denoted by Ker $[\varepsilon_* : \Omega_n(G) \longrightarrow \Omega_n]$. Since $\varepsilon_*[H, M] = [M/H] = [G \times M/G] = \varepsilon_* i_*[H, M]$ if $[H, M] \in \Omega_n(H)$, where i_* is the extension $\Omega_n(H) \longrightarrow \Omega_n(G)$, there is a following commutative diagram.

In particular, $H = \{1\}$, then $\tilde{\Omega}_*(1) = 0$, ε_* is identity. If $[G, M] \in \Omega_n(G)$, since $\varepsilon_*[G, M] = [M/G] = \varepsilon_* i_*[M/G]$, $[G, M] - i_*[M/G] \in \operatorname{Ker} \varepsilon_* = \tilde{\Omega}_n(G)$, and hence we have $I[G, M] \equiv Ii_*[M/G] \pmod{I(\tilde{\Omega}_{4k}(G))}$. By (2.3), for $H = \{1\}$, $Ii_*[M/G] = I(M/G) [RG]$, therefore $I[G, M] \equiv I(M/G) [RG] \pmod{I(\tilde{\Omega}_{4k}(G))}$. (1) Now, let C denote the class of torsion group consisting of the elements of odd order.

Then there exists the following theorem in [6] (pp. 41).

THEOREM. For any CW-pair (X, A), there is an isomorphism

$$\theta: \ \mathcal{Q}_n(X, A) \cong \underset{p+q=n}{\overset{\sum}{\sum}} H_p(X, A \ ; \mathcal{Q}_q) \pmod{C}$$

And the reduced bordism group $\tilde{\Omega}_n(X)$ is denoted by Ker $\varepsilon_*[\Omega_n(X) \longrightarrow \Omega_n(pt)]$, where ε is a collapsing map $\varepsilon: X \rightarrow pt$. In particular $\tilde{\Omega}_n(G) = \tilde{\Omega}_n(BG)$. Let X be connected, then by the construction of θ , the following diagram is commutative.

And Ker $\varepsilon_* = \sum_{p+q=n} \widetilde{H}_p(X; \Omega_q)$, $\sum_{p+q=n} H_p(pt; \Omega_q) \cong \Omega_n$, and so Mod C isomorphism θ induces the homomorphism θ_1 ; $\widetilde{\Omega}_n(X) \longrightarrow \sum_{p+q=n} \widetilde{H}_p(X; \Omega_q)$. By the above commutativity, Ker $\theta_1 \in C$.

Now we consider X=BG and $\theta_1: \tilde{\Omega}_n(G) \longrightarrow \sum_{p+q=n} \tilde{H}_p(G; \Omega_q)$. According to the proposition of Cartan-Eilenberg, $\tilde{H}_*(G; Z)$ is a torsion group. (see [7] prop. 2.5 pp. 236) And is also $\sum_{p+q=n} \tilde{H}_p(G; \Omega_q)$ since each Ω_q is finitely generated abelian group. And so Im θ_1 is a torsion group. Therefore $\tilde{\Omega}_{4k}(G)$ is a torsion group.

In the case $I: \tilde{\Omega}_{4k}(G) \longrightarrow RO(G)$, RO(G) is the free abelian group, and its basis consist of the equivalence classes of irreducible representations.

Hence $I(\tilde{\Omega}_{4k}(G))=0$. And by (1), I[G, M]=I(M/G)[RG].

COROLLARY. (J. A. Schafer [1], H-T-Ku and M-C-Ku [2]) Let G be a finite group acting freely on M^{4k} . Then if G acts trivially on $H^{2k}(M;$ R), the index I(M) is zero.

EXAMPLE. Let CP^{2k} be a 4k-dimensional complex projective space. We have $I(CP^{2k})=1$. Let p be an odd integer. Denote 4k-dimensional closed manifold M by connected sum of $S^1 \times S^{4k-1}$ and p-disjoint copies of CP^{2k} . Then M is diffeomorphic to L:L is

There exists an orientation preserving free Z_p -action on L by the cyclic permutation of each component. And so there exists an orientation preserving free Z_p -action on M via the diffeomorphism from M to L. And hence we have $[Z_p, M] \in \Omega_{4k}(Z_p)$.

In the case p: odd, $RO(Z_p) = Z[K] + Z[V_1] + \dots + Z[V_{\frac{p-i}{2}}]$, where K is a trivial representation and each $V_i \left(i = 1 \dots \frac{p-1}{2}\right)$ is the representation: $Z_p = \langle \zeta \rangle \zeta$: generator,

$$\zeta \longrightarrow \begin{pmatrix} \cos \frac{2\pi i}{p} - \sin \frac{2\pi i}{p} \\ \sin \frac{2\pi i}{p} & \cos \frac{2\pi i}{p} \end{pmatrix}.$$

ί.,

Since M/Z_p is diffeomorphic to the manifold attached one handle to CP^{2k} , it is cobordant to CP^{2k} . By the easy computation, $I[Z_p, M] = [K] + [V_1] + \dots + [V_{\frac{p-1}{2}}]$.

REMARK. We consider the case where $G=Z_2$ and \mathscr{F} is non-trivial. Let $Z_2 = \langle T \rangle$ and M^r be fixed points set and denote self-intersection by $(M^r)^2$. Then

Sign $(T, M) = I((M^T)^2)$, where Sign $(T, M) = \text{trace}(T^*|V_+) - \text{trace}(T^*|V_-)$. (This is the proposition 6.15 in [3].) Using this result, it follows that if $[Z_2, M] \in \mathcal{Q}_{4k}(Z_2, \mathscr{F})$, then

$$I: \quad \Omega_{4k}(Z_2, \mathscr{F}) \longrightarrow RO(Z_2) \quad \text{is}$$

 $I[Z_2, M] = \frac{1}{2} (I(M) + I((M^T)^2)) [K] + \frac{1}{2} (I(M) - I((M^T)^2)) [K_-]$, where K_- is one dimensional representation $T \longrightarrow -1$. And so, if Z_2 acts as ± 1 on $H^{2k}(M; R)$, then $I(M) = \pm I((M^T)^2)$. (Of course it follows also from the prop. 6.15)

in [3].)

NOTE. In the unoriented case, the similar result was proved by R. Stong in [8]. If Z_2 acts on a 2*n*-dimensional unoriented manifold, then

$$\chi(M) \equiv \chi((M^T)^2) \pmod{2}$$
.

References

- J. A. SCHAFER: A relation between group actions and index. Proc. cof. transformation groups (1967), pp. 349-350 Springer-Verlag.
- [2] H. T. KU and M. C. KU: A note on the index of a G-manifold, Proc. Amer. Math. Soc. 22 (1969), pp. 600-602.
- [3] M. F. ATIYAH and I. M. SINGER: The index of elliptic operators III, Ann. of Math. 87 (1968), pp. 546-604.
- [4] F. HIRZEBRUCH: Topological methods in Algebraic Geometry 3rd ed. Springer-Verlag. (1966).
- [5] R. LEE: Semi-characteristic classes Topology 12 (1973), pp. 183-199.
- [6] P. E. CONNER and E. E. FLOYD: Differentiable Periodic Maps Springer-Verlag (1964).
- [7] H. CARTAN and S. EILENBERG: Homological Algebra Princeton Univ. Press (1956).
- [8] R. STONG: Semi-characteristics and Free Group Actions Compositio. Math. 29 (1974), pp. 223-248.

Department of Mathematics Hokkaido University