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1. Introduction

Fix a finite group G. Let \mathscr{F} be a family of subgroups of G which
satisfies if H\in \mathscr{F}. and H’\subset H, then H’\in \mathscr{F} Then G-bordism group of
G-manifolds is denoted by \Omega_{*}(G, \mathscr{F}) . And its elements are the bordism
classes [G, M] where M is a differentiate closed manifold and all isotropy
groups G_{x} are in \mathscr{F} . Now we consider the index of G-manifolds. It is
well known that the index I is a bordism invariant of f2_{4k} . And it is
extended naturally to the G bordism invariant : I:\Omega_{4k}(G, \mathscr{F})arrow RO(G),

where RO(G) is the Grothendieck group of G over R.
In this paper we compute the index of G-manifolds with \mathscr{F}=\{1\} in

RO(G) in the sense of R. Lee [5].

2. The homomorphism I:\Omega_{4k}(G, \mathscr{F})arrow RO(G)

Let M be a compact oriented differentiate G-manifold without bound-
ary and \mathscr{F}-free. The bilinear form \Phi:H^{2k}(M;R)\cross H^{2k}(M;R)arrow R is
defined by \Phi(x, y)=\langle x\cup y, [M]\rangle , where [M] is the orientation class of M.
Then by the Poincar\’e duality, \Phi is non-singular, symmetric and G-invariant.
In H^{2k}(M;R), we set G-invariant maximal subspaces

V_{+}=\{x\in H^{2k}(M;R)|\Phi(x, x)>0 if x\neq 0\}

V_{-}=\{x\in H^{2k}(M;R)|\Phi(x, x)>0 if x\neq 0\} , then

I:\Omega_{4k}(G, \mathscr{F}) -arrow RO(G) is defined by I[G, M]=[V_{+}]-[V_{-}] (see [4] pp. 578),

where [V_{\pm}] is the equivalence class of V_{\pm} in RO\{G). Now by the well
known result (see [4] pp. 85-86), it is proved that

(2. 1) The correspondence I:\Omega_{4k}(G,\overline{\mathscr{F}})arrow RO(G) is
the well-defined homomorphism.

In particular, G=\{1\} , since \Omega_{4k}(G, \mathscr{F})=\Omega_{4k} and RO(G)=Z[K] , where K is
a trivial representation, I:\Omega_{4k}arrow RO(G) is I[M]=I(M)[K], where I(M)
is the index of M.
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Let H be a proper subgroup of G, then the extension homomorphism
i_{*}: \Omega_{*}(H, ,\mathscr{T}, )arrow\Omega_{*}(G,.\mathscr{F}) is defined by i_{*}[H, M]=[G, G\cross M] . And simi-

H
larly the extension homomorphism i_{*}: RO(H)arrow RO(G) is defined by
i_{*}[V]=[RG \bigotimes_{RH}V] , where RG(rep. RH) is the group ring of G(rep. H)

over R. And by the restriction of the action of G to that of H, the
restriction homomorphism is defined.
Then the following diagram is commutative.

\Omega_{4k}(G, \mathscr{F})-\Omega_{4k}(H, \mathscr{T}, )\underline{i^{*}}

(2. 2) \downarrow I

i^{*}

\downarrow I

RO(G) —- RO(H)

Here i^{*} is the restriction homomorphism.

\Omega_{4k}(H)-\Omega_{4k}(G)\underline{i_{*}}

(2. 3) \downarrow I \downarrow I

RO(H)–\underline{i_{*RO(G)}}

Rroof. (2. 2) is trivial and for (2. 3), let [H, M] be a element of \Omega_{4k}(H),
since M is a free H-manifold, it follows that H^{2k}(G \cross M)=RG\bigotimes_{RHH}H^{2k}(M) .
And by the definition, I[H, M]=[V_{+}]-[V_{-}] , then H_{2k}(M)=V_{+}\oplus V_{-} . And
so H^{2k}(G \cross M)=(RG\bigotimes_{RHH}V_{+})\oplus(RG\bigotimes_{RH}V_{-}) . RG \bigotimes_{RH}V_{\pm} are the G-invariant maxi-

mal subspaces for symmetric bilinear form on

H^{2k}(G\cross M)H’ that is Ii_{*}[H, M]=[RG \bigotimes_{RH}V_{+}]-[RG\bigotimes_{RH}V-] .

Hence Ii_{*}[H, M]=i_{*}I[H, M] .

3. The index of G-manifolds in the case of \mathscr{F}=\{1\}

Fix a finite group G and \mathscr{F}=\{1\} . Let RG denote by the group ring
of G over R.

THEOREM. I:\Omega_{4k}(G)arrow RO(G) and if [G, M]\in\Omega_{4k}(G) ,

then I[G, M]=I(M/G)[RG] .
Proof. For the augmentation \epsilon_{*}:

\Omega_{n}(G)arrow\Omega_{n}, \epsilon_{*}[G, M]=[M/G] , the
reduced bordism group \overline{\Omega}_{n}(G) is denoted by Ker [\epsilon_{*} : \Omega_{n}(G)arrow\Omega_{n}] . Since
\epsilon_{*}[H, M]=[M/H]=[G\cross M/G]=\epsilon_{*}i_{*}[H, M] if [H, M]\in\Omega_{n}(H), where i_{*} is

H
the extension \Omega_{n}(H)– \Omega_{n}(G), there is a following commutative diagram.
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0arrow\tilde{\Omega}_{n}(H)-\Omega_{n}(H)\Omega_{n}\underline{\epsilon_{*}}arrow 0

\downarrow i_{*} \downarrow i_{*} \downarrow id

0arrow\tilde{\Omega}_{n}(G)-(\Omega_{n}G)\Omega_{n}\underline{\epsilon_{*}}arrow 0

In particular, H=\{1\} , then \overline{\Omega}_{*}(1)=0 , \epsilon_{*} is identity. If [G, M]\in\Omega_{n}(G), since
\epsilon_{*}[G, M]=[M/G]=\epsilon_{*}i_{*}[M/G] , [G, M]-i_{*}[M/G]\in Ker\epsilon_{*}=\tilde{\Omega}_{n}(G), and hence
we have I[G, M]\equiv Ii_{*}[M/G] (mod I(\overline{\Omega}_{4k}(G))). By (2. 3), for H=\langle 1\} , Ii_{*}[M/

G]=I(M/G)[RG], therefore I[G, M]\equiv I(M/G)[RG] (mod I(\tilde{\Omega}_{4k}(G)) ). (1)
Now, let C denote the class of torsion group consisting of the elements
of odd order.
Then there exists the following theorem in [6] (pp. 41).

THEOREM. For any CW-pair (X, A), there is an isomorphism

\theta:\Omega_{n}(X, A)\cong\sum_{p+q=n}H_{p}(X, A ; ^{\Omega_{q}}) (mod C)

And the reduced bordism group \tilde{\Omega}_{n}(X) is denoted by Ker \epsilon_{*}[\Omega_{n}(X)-

\Omega_{n}(pt)] , where \epsilon is a collapsing map \epsilon:Xarrow pt. In particular \tilde{\Omega}_{n}(G)=\tilde{\Omega}_{n}(BG) .
Let X be connected, then by the construction of \theta, the following diagram
is commutative.

0arrow\tilde{\Omega}_{n}(X) \nu\Omega_{n}(X) \epsilon_{*}-\Omega_{n}--0

0 arrow Ker\epsilon_{*}arrow\sum_{p+q=n}H_{p}(X;\Omega_{q})arrow\sum_{p+q=n}H_{p}(pt;\Omega_{q})\downarrow I\theta\epsilon_{*}\downarrowarrow 0

And Ker \epsilon_{*}=\sum_{p+q=n}\overline{H}_{p}(X;\Omega_{q}),\sum_{p+q=n}H_{p}(pt;\Omega_{q})\cong\Omega_{n} , and so Mod C isomor-

phism \theta induces the homomorphism \theta_{1} ; \tilde{\Omega}_{n}(X)arrow\sum_{p+q=n}\overline{H}_{p}(X ; ^{\Omega_{q}}) . By the
above commutativity, Ker \theta_{1}\in C.

Now we consider X=BG and \theta_{1} : \overline{\Omega}_{n}(G\vec{)}\sum_{p+q=n}\overline{H}_{p}(G;\Omega_{q}) . According

to the proposition of Cartan-Eilenberg, \overline{H}_{*}(G;Z) is a torsion group. (see
[7] prop. 2.5 pp. 236) And is a1so\sum_{p+q=n}\overline{H}_{p}(G;\Omega_{q}) since each \Omega_{q} is finitely

generated abelian group. And so Im \theta_{1} is a torsion group. Therefore
\overline{\Omega}_{4k}(G) is a torsion group.

In the case I:\overline{\Omega}_{4k}(G)-arrow RO(G) , RO(G) is the free abelian group, and
its basis consist of the equivalence classes of irreducible representations.

Hence I(\overline{\Omega}_{4k}(G))=0 . And by (1), I[G, M]=I(M/G)[RG] .
COROLLARY. (J. A. Schafer [1], H-T-Ku and M-C-Ku [2] ) Let G be

a finite group acting freely on M^{4k} . Then if G acts trivially on H^{2k}(M ;
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R), the index I(M) is zero.
EXAMPLE. Let CP^{2k} be a 4k-dimensional complex projective space.

We have I(CP^{2k})=1 . Let p be an odd integer. Denote 4k dimensional
closed manifold M by connected sum of S^{1}\cross S^{4k-1} and p-disjoint copies of
CP^{k} . Then M is diffeomorphic to L:L is

*CP_{0\phi}^{2k}

2 k 2k
CP_{P^{-]}}\#

CP_{1}

\#_{1}

\iota_{1\backslash }\backslash ^{J^{\acute{\prime}}}\backslash \backslash ^{J’}\backslash _{\backslash _{\backslash _{\sim---\sim}}\prime}

\prime\prime

There exists an orientation preserving free Z_{p}-action on L by the cyclic
permutation of each component. And so there exists an orientation
preserving free Z_{p}-action on M via the diffeomorphism from M to L. And
hence we have [Z_{p}, M]\in\Omega_{4k}(Z_{p}) .

In the case p : odd, RO(Z_{p})=Z[K]+Z[V_{1}]+\cdots+Z[V_{\frac{p-i}{2}}] , where K is

a trivial representation and each V_{i}(i=1 \cdots\frac{p-1}{2}) is the representation:
Z_{p}=\langle\zeta\rangle\zeta : generator,

\zetaarrow(\begin{array}{l}cos^{\frac{2\pi i}{p}}-sin\frac{2\pi i}{p}\backslash sin\frac{2\pi i}{p} cos\frac{2\pi i}{p}\end{array}) .
\sim

Since M/Z_{p} is diffeomorphic to the manifold attached one handle to CP^{lk},
it is cobordant to CP^{2k} . By the easy computation, I[Z_{p}, M]=[K]+[V_{1}]

+\cdots+[V_{\frac{p-1}{2}}] .
REMARK. We consider the case where G=Z_{2} and - \mathscr{F} is non-trivial.

Let Z_{2}=\langle T\rangle and M^{T} be fixed points set and denote self-intersection by
(M^{T})^{2} . Then

Sign (T, M)=I((M^{T})^{2}), where Sign (T, M)=trace(T^{*}|V_{+})- trace (T^{*}|V_{-}) .
(This is the proposition 6.15 in [3].) Using this result, it follows that if
[Z_{2}, M]\in\Omega_{4k}(Z_{2}, \mathscr{F}), then

I : \Omega_{4k}(Z_{2}, ,\mathscr{F})arrow RO(Z_{2}) is
I[Z_{2}, M]=_{Z}^{1}(I(M)+I((M^{T})^{2}))[K]+\doteqdot(I(M)-I((M^{T})^{2}))[K_{-}] , where K_{-} is one
dimensional representation Tarrow-1 . And so, if Z_{2} acts as \pm 1 on H^{2k}(M ;
R), then I(M)=\pm I((M^{T})^{2}). (Of course it follows also from the prop. 6.15
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in [3].)

Note. In the unoriented case, the similar result was proved by R.
Stong in [8], If Z_{2} acts on a 2n-dimensional unoriented manifold, then

\chi(M)\equiv\chi((M^{T})^{2}) (mod 2).
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