A remark on the index of G-manifolds in the representation theory

By Yoshinobu Kamishima

(Received May 15, 1976)

1. Introduction

Fix a finite group G. Let \mathscr{F} be a family of subgroups of G which satisfies if $H \in \mathscr{F}$ and $H^{\prime} \subset H$, then $H^{\prime} \in \mathscr{Z}$. Then G-bordism group of G-manifolds is denoted by $\Omega_{*}(G, \mathscr{F})$. And its elements are the bordism classes $[G, M]$ where M is a differentiable closed manifold and all isotropy groups G_{x} are in \mathscr{F}. Now we consider the index of G-manifolds. It is well known that the index I is a bordism invariant of $\Omega_{4 k}$. And it is extended naturally to the G-bordism invariant: $I: \Omega_{4 k}(G, \mathscr{F}) \longrightarrow R O(G)$, where $R O(G)$ is the Grothendieck group of G over R.

In this paper we compute the index of G-manifolds with $\mathscr{F}=\{1\}$ in $R O(G)$ in the sense of R. Lee [5].
2. The homomorphism $\boldsymbol{I}: \Omega_{4 k}(G, \mathscr{F}) \longrightarrow \boldsymbol{R O}(\boldsymbol{G})$

Let M be a compact oriented differentiable G-manifold without boundary and \mathscr{F}-free. The bilinear form $\Phi: H^{2 k}(M ; R) \times H^{2 k}(M ; R) \longrightarrow R$ is defined by $\Phi(x, y)=\langle x \cup y,[M]\rangle$, where $[M]$ is the orientation class of M. Then by the Poincaré duality, Φ is non-singular, symmetric and G-invariant. In $H^{2 k}(M ; R)$, we set G-invariant maximal subspaces

$$
\begin{aligned}
& V_{+}=\left\{x \in H^{2 k}(M ; R) \mid \Phi(x, x)>0 \text { if } x \neq 0\right\} \\
& V_{-}=\left\{x \in H^{2 k}(M ; R) \mid \Phi(x, x)>0 \text { if } x \neq 0\right\}, \text { then }
\end{aligned}
$$

$I: \Omega_{4 k}(G, \mathscr{F}) \longrightarrow R O(G)$ is defined by $I[G, M]=\left[V_{+}\right]-\left[V_{-}\right]$(see [4] pp. 578), where $\left[V_{ \pm}\right]$is the equivalence class of $V_{ \pm}$in $R O(G)$. Now by the well known result (see [4] pp. 85-86), it is proved that

The correspondence $I: \Omega_{4 k}(G, \mathscr{F}) \longrightarrow R O(G)$ is the well-defined homomorphism.
In particular, $G=\{1\}$, since $\Omega_{4 k}(G, \mathscr{F})=\Omega_{4 k}$ and $R O(G)=Z[K]$, where K is a trivial representation, $I: \Omega_{4 k} \longrightarrow R O(G)$ is $I[M]=I(M)[K]$, where $I(M)$ is the index of M.

Let H be a proper subgroup of G, then the extension homomorphism $i_{*}: \Omega_{*}(H, \mathscr{F}) \longrightarrow \Omega_{*}(G, \mathscr{F})$ is defined by $i_{*}[H, M]=[G, G \times M]$. And similarly the extension homomorphism $i_{*}: R O(H) \longrightarrow R O(G)$ is defined by $i_{*}[V]=[R G \underset{R H}{\otimes} V]$, where $R G($ rep. $R H)$ is the group ring of $G($ rep. $H)$ over R. And by the restriction of the action of G to that of H, the restriction homomorphism is defined.
Then the following diagram is commutative.

Here i^{*} is the restriction homomorphism.

Rroof. (2.2) is trivial and for (2.3), let [H, M] be a element of $\Omega_{4 k}(H)$, since M is a free H-manifold, it follows that $H^{2 k}(G \times M)=R G \underset{R H}{\otimes} H^{2 k}(M)$. And by the definition, $I[H, M]=\left[V_{+}\right]-\left[V_{-}\right]$, then $H_{2 k}{ }^{H}(M)=V_{+} \oplus{ }^{R H}$. And so $H^{2 k}(G \underset{H}{\times} M)=\left(R G \underset{R H}{\otimes} V_{+}\right) \oplus\left(R G \underset{R H}{\otimes} V_{-}\right) . \quad R G \underset{R H}{\otimes} V_{ \pm}$are the G-invariant maximal subspaces for symmetric bilinear form on

$$
H^{2 k}(G \times M), \quad \text { that is } \quad I i_{*}[H, M]=\left[R G \bigotimes_{R H} V_{+}\right]-\left[R G \underset{R H}{\otimes} V_{-}\right] .
$$

Hence $I i_{*}[H, M]=i_{*} I[H, M]$.
3. The index of G-manifolds in the case of $\mathscr{F}=\{1\}$

Fix a finite group G and $\mathscr{F}=\{1\}$. Let $R G$ denote by the group ring of G over R.

Theorem. I: $\Omega_{4 k}(G) \longrightarrow R O(G)$ and if $[G, M] \in \Omega_{4 k}(G)$, then $\quad I[G, M]=I(M / G)[R G]$.
Proof. For the augmentation $\varepsilon_{*}: \Omega_{n}(G) \longrightarrow \Omega_{n}, \varepsilon_{*}[G, M]=[M / G]$, the reduced bordism group $\widetilde{\Omega}_{n}(G)$ is denoted by $\operatorname{Ker}\left[\varepsilon_{*}: \Omega_{n}(G) \longrightarrow \Omega_{n}\right]$. Since $\varepsilon_{*}[H, M]=[M / H]=[G \times M / G]=\varepsilon_{*} i_{*}[H, M]$ if $[H, M] \in \Omega_{n}(H)$, where i_{*} is the extension $\Omega_{n}(H) \longrightarrow \Omega_{n}(G)$, there is a following commutative diagram.

In particular, $H=\{1\}$, then $\widetilde{\Omega}_{*}(1)=0, \varepsilon_{*}$ is identity. If $[G, M] \in \Omega_{n}(G)$, since $\varepsilon_{*}[G, M]=[M / G]=\varepsilon_{*} i_{*}[M / G],[G, M]-i_{*}[M / G] \in \operatorname{Ker} \varepsilon_{*}=\widetilde{\Omega}_{n}(G)$, and hence we have $I[G, M] \equiv I i_{*}[M / G]\left(\bmod I\left(\widetilde{\Omega}_{4 k}(G)\right)\right.$. \quad By (2.3), for $H=\{1\}, I i_{*}[M /$ $G]=I(M / G)[R G]$, therefore $I[G, M] \equiv I(M / G)[R G]\left(\bmod I\left(\widetilde{\Omega}_{4 k}(G)\right)\right)$.
Now, let C denote the class of torsion group consisting of the elements of odd order.
Then there exists the following theorem in [6] (pp. 41).
Theorem. For any $C W$-pair (X, A), there is an isomorphism

$$
\theta: \Omega_{n}(X, A) \cong \sum_{p+q=n} H_{p}\left(X, A ; \Omega_{q}\right) \quad(\bmod C)
$$

And the reduced bordism group $\widetilde{\Omega}_{n}(X)$ is denoted by $\operatorname{Ker} \varepsilon_{*}\left[\Omega_{n}(X) \longrightarrow\right.$ $\Omega_{n}(p t)$, where ε is a collapsing map $\varepsilon: X \rightarrow p t$. In particular $\widetilde{\Omega}_{n}(G)=\widetilde{\Omega}_{n}(B G)$. Let X be connected, then by the construction of θ, the following diagram is commutative.

And $\operatorname{Ker} \varepsilon_{*}=\sum_{p+q=n} \widetilde{H}_{p}\left(X ; \Omega_{q}\right), \sum_{p+q=n} H_{p}\left(p t ; \Omega_{q}\right) \cong \Omega_{n}$, and so $\operatorname{Mod} C$ isomorphism θ induces the homomorphism $\theta_{1} ; \widetilde{\Omega}_{n}(X) \longrightarrow \sum_{p+q=n} \widetilde{H}_{p}\left(X ; \Omega_{q}\right)$. By the above commutativity, $\operatorname{Ker} \theta_{1} \in C$.

Now we consider $X=B G$ and $\theta_{1}: \widetilde{\Omega}_{n}(G) \longrightarrow \sum_{p+q=n} \widetilde{H}_{p}\left(G ; \Omega_{q}\right)$. According to the proposition of Cartan-Eilenberg, $\widetilde{H}_{*}(G ; Z)$ is a torsion group. (see [7] prop. 2.5 pp .236$)$ And is also $\sum_{p+q=n} \widetilde{H}_{p}\left(G ; S_{q}\right)$ since each Ω_{q} is finitely generated abelian group. And so $\operatorname{Im} \theta_{1}$ is a torsion group. Therefore $\widetilde{\Omega}_{4 k}(G)$ is a torsion group.

In the case $I: \tilde{\Omega}_{4 k}(G) \longrightarrow R O(G), R O(G)$ is the free abelian group, and its basis consist of the equivalence classes of irreducible representations.

Hence $I\left(\tilde{\Omega}_{4 k}(G)\right)=0$. And by (1), $I[G, M]=I(M / G)[R G]$.
Corollary. (J. A. Schafer [1], H-T-Ku and M-C-Ku [2]) Let G be a finite group acting freely on $M^{4 k}$. Then if G acts trivially on $H^{2 k}(M$;
R), the index $I(M)$ is zero.
Example. Let $C P^{2 k}$ be a $4 k$-dimensional complex projective space. We have $I\left(C P^{2 k}\right)=1$. Let p be an odd integer. Denote $4 k$-dimensional closed manifold M by connected sum of $S^{1} \times S^{4 k-1}$ and p-disjoint copies of $C P^{2 k}$. Then M is diffeomorphic to $L: L$ is

There exists an orientation preserving free Z_{p}-action on L by the cyclic permutation of each component. And so there exists an orientation preserving free Z_{p}-action on M via the diffeomorphism from M to L. And hence we have $\left[Z_{p}, M\right] \in \Omega_{4 k}\left(Z_{p}\right)$.

In the case p : odd, $R O\left(Z_{p}\right)=Z[K]+Z\left[V_{1}\right]+\cdots+Z\left[V_{\frac{p-i}{2}}\right]$, where K is a trivial representation and each $V_{i}\left(i=1 \ldots \frac{p-1}{2}\right)$ is the representation : $Z_{p}=\langle\zeta\rangle \zeta$: generator,

$$
\zeta \longrightarrow\left(\begin{array}{cc}
\cos \frac{2 \pi i}{p} & -\sin \frac{2 \pi i}{p} \\
\sin \frac{2 \pi i}{p} & \cos \frac{2 \pi i}{p}
\end{array}\right)
$$

Since M / Z_{p} is diffeomorphic to the manifold attached one handle to $C P^{2 k}$, it is cobordant to $C P^{2 k}$. By the easy computation, $I\left[Z_{p}, M\right]=[K]+\left[V_{1}\right]$ $+\cdots+\left[V_{\frac{p-1}{2}}\right]$.

Remark. We consider the case where $G=Z_{2}$ and \mathscr{F} is non-trivial. Let $Z_{2}=\langle T\rangle$ and M^{T} be fixed points set and denote self-intersection by $\left(M^{T}\right)^{2}$. Then
$\operatorname{Sign}(T, M)=I\left(\left(M^{T}\right)^{2}\right)$, where $\operatorname{Sign}(T, M)=\operatorname{trace}\left(T^{*} \mid V_{+}\right)-\operatorname{trace}\left(T^{*} \mid V_{-}\right)$. (This is the proposition 6.15 in [3].) Using this result, it follows that if $\left[Z_{2}, M\right] \in \Omega_{4 k}\left(Z_{2}, \mathscr{F}\right)$, then

$$
I: \quad \Omega_{4 k}\left(Z_{2}, \mathscr{F}\right) \longrightarrow R O\left(Z_{2}\right) \text { is }
$$

$I\left[Z_{2}, M\right]=\frac{1}{2}\left(I(M)+I\left(\left(M^{T}\right)^{2}\right)\right)[K]+\frac{1}{2}\left(I(M)-I\left(\left(M^{T}\right)^{2}\right)\right)\left[K_{-}\right]$, where K_{-}is one dimensional representation $T \longrightarrow-1$. And so, if Z_{2} acts as ± 1 on $H^{2 k}(M$; R), then $I(M)= \pm I\left(\left(M^{T}\right)^{2}\right)$. (Of course it follows also from the prop. 6.15
in [3].)
Note. In the unoriented case, the similar result was proved by R . Stong in [8]. If Z_{2} acts on a $2 n$-dimensional unoriented manifold, then

$$
\chi(M) \equiv \chi\left(\left(M^{T}\right)^{2}\right) \quad(\bmod 2)
$$

References

[1] J. A. Schafer: A relation between group actions and index. Proc. cof. transformation groups (1967), pp. 349-350 Springer-Verlag.
[2] H. T. Ku and M. C. Ku: A note on the index of a G-manifold, Proc. Amer. Math. Soc. 22 (1969), pp. 600-602.
[3] M. F. Atiyah and I. M. Singer: The index of elliptic operators III, Ann. of Math. 87 (1968), pp. 546-604.
[4] F. Hirzebruch: Topological methods in Algebraic Geometry 3rd ed. SpringerVerlag. (1966).
[5] R. Lee: Semi-characteristic classes Topology 12 (1973), pp. 183-199.
[6] P. E. Conner and E. E. Floyd: Differentiable Periodic Maps Springer-Verlag (1964).
[7] H. Cartan and S. Eilenberg: Homological Algebra Princeton Univ. Press (1956).
[8] R. Stong: Semi-characteristics and Free Group Actions Compositio. Math. 29 (1974), pp. 223-248.

