On a theorem of S. Chowla

By Tadashige OKADA (Received May 4, 1976)

Let p be an odd prime. Then S. Chowla [3] proved the following theorem.

THEOREM. The $\frac{p-1}{2}$ real numbers $\cot(2\pi a/p)$, $a=1, 2, \dots, \frac{p-1}{2}$ are linearly independent over the field Q of rational numbers.

Other proofs were given by Hasse [4], Iwasawa [5] and by Ayoub [1], [2].

In this note, we shall show the following theorem, which is a generalization of the above theorem, by means of improving the method of Chowla's proof.

THEOREM. Let n be an integer with n>2 and let T be a set of representatives mod n such that the union $\{T, -T\}$ is a complete set of residues prime to n. Then the $\phi(n)/2$ real numbers $\cot(\pi a/n)$, $a \in T$ are linearly independent over Q, where $\phi(n)$ is the Euler totient function.

Proof. Let D be the set of all Dirichlet characters to the modulus n. For a map

$$F: (\mathbf{Z}/n\mathbf{Z})^{\times} \longrightarrow \mathbf{C}$$

from the multiplicative group $(\mathbb{Z}/n\mathbb{Z})^{\times}$ of the residue class ring $\mathbb{Z}/n\mathbb{Z}$ to the complex field C, we define the Fourier transform by

$$\hat{F}(\chi) = \frac{1}{\phi(n)} \sum_{\substack{a \pmod n \\ (a,n)=1}} F(a) \, \bar{\chi}(a) \qquad (\chi \in D).$$

Then the inversion formula

$$F(a) = \sum_{\mathbf{x} \in D} \hat{F}(\mathbf{X}) \ \mathbf{X}(a)$$
 $(a \in \mathbb{Z}, \ (a, n) = 1)$

holds.

We define

$$H(a) = -\frac{1}{n} \sum_{x=1}^{n-1} e^{-2\pi i ax/n} \log (1 - e^{2\pi i x/n}) \qquad (a \in \mathbb{Z})$$

The formulas (6) and (16) in Lehmer [7] yield

$$\widehat{H}(\chi_0) = \frac{1}{n} \sum_{p|n} \frac{\log p}{p-1},$$

where χ_0 is the principal character to the modulus n. For $\chi \neq \chi_0$ we have easily

$$\widehat{H}(\chi) = \frac{1}{\phi(n)} L(1, \bar{\chi}).$$

Hence the inversion formula yields

(1)
$$H(a) = \frac{1}{n} \sum_{p|n} \frac{\log p}{p-1} + \frac{1}{\phi(n)} \sum_{x \neq x_0} L(1, \bar{\chi}) \chi(a) \qquad (a \in \mathbb{Z}, (a, n) = 1).$$

The formulas (6) and (12) in Lehmer [7] yield

$$\frac{\pi}{n}\cot\left(\frac{\pi a}{n}\right) = H(a) - H(-a) \qquad (a \in \mathbb{Z}, \ a \not\equiv 0 \pmod{n}).$$

From this and (1),

$$(2) \qquad \frac{\pi}{n} \cot\left(\frac{\pi a}{n}\right) = \frac{1}{\phi(n)} \sum_{\chi \neq \chi_0} (\chi(a) - \chi(-a)) L(1, \bar{\chi})$$
$$= \frac{2}{\phi(n)} \sum_{\chi(-1) = -1} \chi(a) L(1, \bar{\chi}) \qquad (a \in \mathbb{Z}, (a, n) = 1).$$

Let ζ denote a primitive *n*-th root of unity. Then the Galois group of $Q(\zeta)$ over Q is given by the mappings $\sigma_a: \zeta \longrightarrow \zeta^a$ $(a \in S)$, where S is a complete set of residues prime to n.

We set

$$f(x) = \frac{1}{i}\cot\left(\frac{\pi x}{n}\right).$$

Clearly, f(b) belongs to $Q(\zeta)$ for any integer b and $f(b)^{\sigma_a} = f(ab)$.

Suppose that there exist $C_b \in Q$ such that

$$\sum_{b \in T} C_b f(b) = 0.$$

Then applying the mappings $\sigma_{\bar{a}}$ $(a \in T)$, we get

$$\sum_{b \in T} C_b f(\bar{a}b) = 0,$$

where \bar{a} is defined by $\bar{a}a \equiv 1 \pmod{n}$.

Then by the Frobenius determinant relation (see [6; p. 284]) and (2), we have that

$$\det_{a,b\in T} [f(ab)] = \prod_{\chi(-1)=-1} \left(\sum_{a\in T} \bar{\chi}(a) f(a) \right)$$

$$= \prod_{\chi(-1)=-1} \left(\sum_{a\in T} \bar{\chi}(a) \sum_{\phi(-1)=-1} \frac{2n}{\pi i \phi(n)} \phi(a) L(1, \bar{\phi}) \right)$$

$$\begin{split} &= \left(\frac{n}{\pi i}\right)^{\frac{\phi(n)}{2}} \prod_{\chi(-1)=-1} \left(\sum_{\phi(-1)=-1} L(1, \overline{\phi}) \sum_{a \in T} \frac{2}{\phi(n)} \overline{\chi}(a) \psi(a)\right) \\ &= \left(\frac{n}{\pi i}\right)^{\frac{\phi(n)}{2}} \prod_{\chi(-1)=-1} L(1, \chi) \Rightarrow 0. \end{split}$$

Hence $C_b=0$ for all $b \in T$, as required.

References

- [1] R. AYOUB: On a theorem of S. Chowla, J. Number Theory, 7 (1975), 105-107.
- [2] R. AYOUB: On a theorem of Iwasawa, J. Number Theory, 7 (1975), 108-120.
- [3] S. CHOWLA: The nonexistence of nontrivial linear relations between the roots of a certain irreducible equation, J. Number Theory, 2 (1970), 120-123.
- [4] H. HASSE: On a question of S. Chowla, Acta Arith. 18 (1971) 275-280.
- [5] K. IWASAWA: On a theorem of Chowla, (see [1; p. 105]).
- [6] S. LANG: Elliptic functions, Addision-Wesley, 1973.
- [7] D. H. LEHMER: Euler constants for arithmetical progressions, Acta Arith. XXVII (1975), 125-142.

Tadashige Okada Hachinohe Institute of Technology Ohbiraki, Hachinohe Aomori, Japan