Primitive extensions of rank 3 of $2^{\boldsymbol{n}} \cdot \boldsymbol{G L}(n, 2)$

By Shiro Iwasaki

(Received February 4, 1975)

1. Introduction.

As is well known, $(n+1)$-dimensional general linear group $G L(n+1,2)$ $=\operatorname{PSL}(n+1,2)$ over $G F(2)$, the field with two elements is simple for $n \geqq 2$ and acts doubly transitively on $P(n, 2)$, the set of the points of n-dimensional projective space over $G F(2)$. Taking a point p in $P(n, 2)$, set $\Delta=$ $P(n, 2)-\{p\}$ and let H be the stabilizer of p in $G L(n+1,2)$. Then H is the semi-direct product of an elementary abelian group of order 2^{n} and $G L(n, 2)$. The transitive permutation group (H, Δ) has rank 2 extension $(G L(n+1,2), P(n, 2))$. In this note, we determine primitive extensions of rank 3 of (H, Δ).

Theorem. Let (G, Ω) be a primitive extension of rank 3 of (H, Δ). Then
(i) $n=1$ and (G, Ω) is isomorphic to the dihedral group of order 10 acting on 5 letters, or
(ii) $n=2$ and (G, Ω) is isomorphic to the alternating group A_{6} acting on the unordered pairs of $\{1,2,3,4,5,6\}$.

The idea of the proof of our Theorem is due to Bannai [2], which determined primitive extensions of rank 3 of $\left(P S L\left(n, 2^{f}\right), P\left(n-1,2^{f}\right)\right.$), and the author thanks Dr. E. Bannai. He is also grateful to the referee for setting Lemma 7 a better form.

Notation. We follow the notation of Higman [4] mostly and use [4] frequently. In a transitive permutation group G on a finite set Ω, we denote by a^{g} the image of $a \in \Omega$ under $g \in G$, and for a subset X of Ω, G_{X} denotes the pointwise stabilizer of $X, G_{X}=\left\{g \in G \mid x^{g}=x\right.$ for all $\left.x \in X\right\}$. If $X=\{a, b, \cdots\}, G_{X}$ is written $G_{a b} \cdots$. For a subset Y of G and $g \in G$, we let $Y^{g}=g^{-1} Y g, g^{Y}=\left\{g^{y}=y^{-1} g y \mid y \in Y\right\}$ and $a^{Y}=\left\{a^{y} \mid y \in Y\right\}$. The number of $G_{a^{-}}$ orbits $(a \in \Omega)$ counting $\{a\}$, is called the rank of (G, Ω).

The following notation will be fixed throughout this note. Let (G, Ω) be a primitive extension of rank 3 of (H, Δ), that is, 1) (G, Ω) is a primitive permutation group of rank 3 , and 2) there exists an orbit $\Delta(a)$ of the stabilizer G_{a} of a point $a \in \Omega$ such that G_{a} acts faithfully on $\Delta(a)$ and $\left(G_{a}\right.$, $\Delta(a))$ is isomorphic to (H, Δ).

Let $\Gamma(a)$ be another non-trivial orbit of G_{a} and we may assume $\Delta(a)^{a}$ $=\Delta\left(a^{g}\right)$ and $\Gamma(a)^{g}=\Gamma\left(a^{g}\right)$ for all $a \in \Omega$ and all $g \in G$. Set $k=|\Delta(a)|(=|\Delta|=$ $\left.2\left(2^{n}-1\right)\right)$ and $l=|\Gamma(a)|$. The intersection numbers λ, μ for G are defined by

$$
|\Delta(a) \cap \Delta(b)|=\left\{\begin{array}{lll}
\lambda & \text { if } & b \in \Delta(a) \\
\mu & \text { if } & b \in \Gamma(a) .
\end{array}\right.
$$

Then the relation $\mu l=k(k-\lambda-1)$ holds by [4, Lemma 5].

2. Proof of Theorem.

In case $n=1$, we easily obtain (i) of Theorem and so we assume $n \geqq 2$ (so $k=2\left(2^{n}-1\right) \geqq 6$) in the following. Since ($G_{a}, \Delta(a)$), (H, Δ) and $\left(G L(n+1,2)_{(10 \cdots)}, P(n, 2)-\{(10 \cdots 0)\}\right)$ are isomorphic to one another, we may assume $G_{a}=H=G L(n+1,2)_{(0 \cdots 0)}$ and $\Delta(a)=\Delta=P(n, 2)-\{(10 \cdots 0)\}$. Take $b=(010 \cdots 0) \in \Delta(a)$. It is easily seen that $G_{a b}$ has the orbits-length $1,1, k-2$ on Δ. As G has even order, $\Delta(a)$ and $\Gamma(a)$ are self-paired by Wielandt [6, Theorem 16.5]. By [5], one of the following holds.
(*) $l>1$ is a divisor of k, and $\lambda=0$ or $k-2$,
(**) $l>k-2$ and l is a divisor of $k(k-2)$, and $\lambda=0$ or 1 .
Lemma 1. The cases (**) with $\lambda=0$ and (*) do not occur.
Proof. Since $\mu l=k(k-\lambda-1)$ and $0 \leqq|\Gamma(a) \cap \Gamma(c)|=l-k+\mu-1$ for $c \in$ $\Gamma(a)$, we have

$$
\begin{aligned}
& \mu=k-1 \text { and } l=k \text { in case }\left({ }^{*}\right) \text { with } \lambda=0 \text { or }\left({ }^{* *}\right) \text { with } \lambda=0, \\
& \mu=1 \text { and } l=k \text { in case }(*) \text { with } \lambda=k-2 .
\end{aligned}
$$

In all the cases, by Higman [4, Lemma 7], $(\lambda-\mu)^{2}+4(k-\mu)=(k-1)^{2}+4$ must be a square, say $e^{2}, e>0$. But, since $4=(e+k-1)(e-(k-1))$, we have $2(k-1)=(e+k-1)-(e-(k-1))=3$ or 0 , a contradiction.

So we are left with the case $\left({ }^{* *}\right)$ with $\lambda=1$ and throughout the rest of the paper we consider this case in detail. $\Delta(a) \cap \Gamma(b)$ is a $G_{a b}$-orbit of length $k-2$ and take a point $c \in \Delta(a) \cap \Gamma(b)$. As $\Delta(a)$ is self-paired, G contains an element g interchanging a and b by [6, Theorem 16.4]. Set $d=c^{v} \in \Delta(b) \cap \Gamma(a)$. Then $\left|G_{a b}: G_{a b d}\right|=\left|G_{a b}: G_{a b c}^{g}\right|=\left|G_{a b}: G_{a b c}\right|=k-2$.

Now we want to know the possible values of μ, for then the possible values of l are known from $\mu l=k(k-2)$ and we can apply Higman [4, Lemma 7]. Since $\mu=|\Delta(a) \cap \Delta(d)|$ is a sum of lengths of some $G_{a d}$ (or $\left.G_{a b a}\right)$-orbits on $\Delta(a)$, it is sufficient to know the structure of $G_{a b d}$ and the lengths of $G_{a b a}$-orbits on $\Delta(a)$. Let us set

$$
\begin{aligned}
& \left.G^{(n, i)}=\left\{\left(\begin{array}{c|c}
\overbrace{*}^{*} & 0 \\
\hline * & *
\end{array}\right)\right\} i \in G L(n, 2)\right\}, \\
& R^{(n, i)}=\left\{\left(\begin{array}{c|c}
I_{i} & 0 \\
\hline * & I_{n-i}
\end{array}\right) \in G L(n, 2)\right\} \begin{array}{l}
\text { where } I_{i} \text { denotes } i \times i \\
\text { identity matrix, }
\end{array} \\
& S^{(n, i)}=\left\{\left.\left(\begin{array}{c|c}
I_{i} & 0 \\
\hline 0 & *
\end{array}\right) \right\rvert\, * \in G L(n-i, 2)\right\} .
\end{aligned}
$$

Moreover, set $K=G_{a b}, M=G_{a b d}, R=R^{(n+1,2)}$ and $S=S^{(n+1,2)}$. Then we have $K=R S \triangleright R, R \cap S=1$ and $|K: M|=k-2$. We denote by π and ρ, the natural homomorphism $K \rightarrow S$ and the natural isomorphism $S \rightarrow G L(n-1,2)$, respectively. Furthermore, set $N=\rho_{\pi}(M)$ and $m=|S: \pi(M)|=\mid G L(n-1$, $2): N \mid$. Then we obtain $m=(k-2)|M \cap R|| | R \mid$. Note that $|R|=2^{2(n-1)}$ and m is a divisor of $k-2=2^{2}\left(2^{n-1}-1\right)$.

Lemma 2. If $n \geqq 6$, then $N^{t} \subseteq G^{(n-1,1)}$ or $G^{(n-1, n-2)}$ for some $t \in G L(n-1,2)$.
Proof. From the above remark, it follows that $\mathrm{m} \neq 1$ and m is not divisible by $2^{(n-1)-2}$. Hence by Bannai [1, Lemma 2], N fixes some complete subspace W of dimension, say $i-1$ of $P(n-2,2)$. Noting that $G L(n-1$, 2) is transitive on the set of all ($i-1$)-dimensional complete subspaces of $P(n-2,2)$, we have $N^{t} \subseteq G^{(n-1, i)}$ for some $t \in G L(n-1,2)$. But, since $\left|G L(n-1,2): G^{(n-1, i)}\right|=\left(2^{n-1}-1\right)\left(2^{n-2}-1\right) \cdots\left(2^{n-1-(i-1)}-1\right) /\left(2^{i}-1\right)\left(2^{i-1}-1\right) \cdots(2$ $-1)$ and $\left|G L(n-1,2): N^{t}\right|$ is a divisor of $2^{2}\left(2^{n-1}-1\right), i$ must be 1 or $n-2$.

Lemma 3. For $n \geqq 4, G^{(n, 1)}$ and $G^{(n, n-1)}$ have no proper subgroup of index $\leqq 6$.

Proof. Let T be a subgroup of $G^{(n, 1)}=R^{(n, 1)} S^{(n, 1)}$ with $\left|G^{(n, 1)}: T\right| \leqq 6$. Then $T \supseteq S^{(n, 1)}$, for otherwise simple group $S^{(n, 1)} \cong G L(n-1,2)$ would have a proper subgroup $T \cap S^{(n, 1)}$ of index $\leqq 6$ and $S^{(n, 1)}$ would be contained in the symmetric group of degree 6 , which is a contradiction.
Hence $T=\left(R^{(n, 1)} \cap T\right) S^{(n, 1)}$ and $S^{(n, 1)}$ normalizes $R^{(n, 1)} \cap T$ as $G^{(n, 1)} \triangleright R^{(n, 1)}$. Since $R^{(n, 1)} \cap T \neq 1$, take

$$
r=\left(\begin{array}{c|c}
1 & 0 \\
\hline r_{2} & \\
\vdots & I_{n-1} \\
r_{n} &
\end{array}\right) \in R^{(n, 1)} \cap T-\{1\}
$$

Noting that

$$
\left(\begin{array}{c|c|c}
1 & 0 \\
\hline 0 & A
\end{array}\right) r\left(\frac{1}{0} \left\lvert\, \frac{0}{A^{-1}}\right.\right)=\left(\begin{array}{c|c}
1 & 0 \\
\hline A\left(\begin{array}{c}
r_{2} \\
\vdots \\
r_{n}
\end{array}\right) & I_{n-1}
\end{array}\right)
$$

and $G L(n-1,2)$ is transitive on the set of non-zero elements of the $(n-1)$ dimensional vector space over $G F(2)$, we obtain $R^{(n, 1)}-\{1\} \subseteq r^{s^{(n, 1)}} \subseteq T$ and so $G^{(n, 1)}=R^{(n, 1)} S^{(n, 1)} \subseteq T$. As for $G^{(n, n-1)}$, a similar argument yields the result.

Combining Lemmas 2 and 3 , we have $N^{t}=G^{(n-1,1)}$ or $G^{(n-1, n-2)}$ for some $t \in G L(n-1,2)$ if $n \geqq 6$, that is,

Lemma 4. If $n \geqq 6$, then $\pi(M)=M_{1}^{s}$ or M_{2}^{s} for some $s \in S$ and $m=$ $(k-2) / 4$, where

$$
\begin{aligned}
& M_{1}=\left\{\left(\begin{array}{c|c}
\frac{I_{2}}{0} & \frac{0}{10 \cdots 0} \\
0 & *
\end{array}\right) \in G L(n+1,2)\right\} \text { and } \\
& M_{2}=\left\{\left(\begin{array}{c|c}
\hline & 0 \\
0 & * \\
\vdots \\
& 0 \\
& 1
\end{array}\right) \in G L(n+1,2)\right\}
\end{aligned}
$$

Lemma 5. If $n \geqq 6$, then $\pi(M) \subseteq M$.
Proof. Since $m=(k-2)|M \cap R| /|R|=(k-2) / 4,|M R: M|=4$. On the other hand, $\pi(M) \subseteq M R$ and so $|\pi(M): M \cap \pi(M)| \leqq 4$. Hence, Lemmas 3 and 4. yield $\pi(M)=M \cap \pi(M)$.

Now immediate calculations show
Lemma 6. The lengths of the orbits of M_{1} and M_{2} on $\Delta(a)$ are respectively

$$
\begin{aligned}
& \underbrace{1, \cdots, 1}_{6}, \quad \underbrace{(k-6) / 4, \cdots,(k-6) / 4,}_{4} \text { and } \\
& 1,1, \underbrace{(k-6) / 8, \cdots,(k-6) / 8}_{4}, \underbrace{(k+2) / 8, \cdots,(k+2) / 8}_{4}
\end{aligned}
$$

Lemma 7. If $n \geqq 6$, the lengths of the orbits of M on $\Delta(a)$ are
(1) 1,$1 ; 1,1,1,1 ; k-6$, or
(A subsum of these may be an orbit-length of M).
(2) 1,$1 ;(k-6) / 2,(k+2) / 2$
(The sum may be an orbit-length of M).

Proof. Using $s \in S\left(\subseteq K \subseteq G_{a}\right)$ in Lemma 4, set $M^{\prime}=M^{s^{-1}}$. Then the lengths of the orbits of M on $\Delta(a)$ are equal to those of the orbits of M^{\prime} on $\Delta(a)^{s^{-1}}=\Delta(a)$. Therefore it suffices to examine the orbits-structure of M^{\prime} on $\Delta(a)$. Of course, $M^{\prime}(\subseteq K)$ fixes $b=(010 \cdots 0)$ and $(110 \cdots 0)$.
Here we set

$$
R_{1}=\left\{\left(\begin{array}{c|c}
I_{2} & 0 \\
\hline * & 0 \\
\vdots & \vdots \\
* & I_{n-1}
\end{array}\right) \in R\right\} \quad \text { and } \quad R_{2}=\left\{\left(\begin{array}{cc|c}
I_{2} & 0 \\
\hline 0 & * & \\
\vdots & \vdots & I_{n-1} \\
0 & * &
\end{array}\right\} \in R\right\}
$$

Then $\left|M^{\prime} \cap R_{i}\right| \geqq 2^{n-3}, \quad i=1,2$ since $\left|K: M^{\prime}\right|=2^{2}\left(2^{n-1}-1\right)$ and $\left|R_{i}\right|=2^{n-1}$. Take elements

$$
r_{1}=\left(\begin{array}{cc|c}
I_{2} & 0 \\
\hline \alpha_{3} & 0 & \\
\vdots & \vdots & I_{n-1} \\
\alpha_{n+1} & 0 &
\end{array}\right) \neq 1 \in M^{\prime} \cap R_{1} \quad \text { and } \quad r_{2}=\left(\begin{array}{cc|c}
I_{2} & 0 \\
\hline 0 & \beta_{3} & \\
\vdots & \vdots & I_{n-1} \\
0 & \beta_{n+1} &
\end{array}\right) \neq 1 \in M^{\prime} \cap R_{2}
$$

By Lemmas 4 and $5, M^{\prime} \supseteq \pi(M)^{s^{-1}}=M_{1}$ or M_{2}. Firstly, suppose that M^{\prime} $\supseteq M_{1}$. Clearly the followings are M_{1}-orbits on $\Delta(a)$ of length $(k-6) / 4=$ $2\left(2^{n-2}-1\right)$;

$$
\begin{aligned}
& (00010 \cdots 0)^{M_{1}}=\left\{\left(0,0, a_{3}, a_{4}, \cdots, a_{n+1}\right) \mid\left(a_{4}, \cdots, a_{n+1}\right) \neq(0, \cdots, 0)\right\}, \\
& (10010 \cdots 0)^{M_{1}}=\left\{\left(1,0, a_{3}, a_{4}, \cdots, a_{n+1}\right) \mid\left(a_{4}, \cdots, a_{n+1}\right) \neq(0, \cdots, 0)\right\}, \\
& (01010 \cdots 0)^{M_{1}}=\left\{\left(0,1, a_{3}, a_{4}, \cdots, a_{n+1}\right) \mid\left(a_{4}, \cdots, a_{n+1}\right) \neq(0, \cdots, 0)\right\}
\end{aligned}
$$

and

$$
(11010 \cdots 0)^{M_{1}}=\left\{\left(1,1, a_{3}, a_{4}, \cdots, a_{n+1}\right) \mid\left(a_{4}, \cdots, a_{n+1}\right) \neq(0, \cdots, 0)\right\}
$$

On the other hand, it is easily seen that r_{1} carries an element of the first (resp. the third) to one of the second (resp. the fourth), and r_{2} carries an element of the first to one of the third. Therefore, the above four M_{1-} orbits are contained in one M^{\prime}-orbit. Also, though four points ($0010 \cdots 0$), $(0110 \cdots 0),(1010 \cdots 0)$ and $(1110 \cdots 0)$ are M_{1}-invariant, these may or may not be moved one another through r_{1} and r_{2}. The case $M^{\prime} \supseteq M_{2}$ is treated similarly.

Since μ is a subsum of the lengths of the orbits of M on $\Delta(a)$ and is a divisor of $k(k-2)$, from Lemma 7 we have (note that $\mu \neq 0, k$ by [4, Corollary 3])

Lemma 8. If $n \geqq 6, \mu$ is equal to one of the values ; $1,2,3,4,5,6$, $(k-2) / 2$ and $k-2$.

Lemma 9. The case (${ }^{* *}$) with $\lambda=1$ and $n \geqq 6$ does not occur.

Proof. Noting that $\mu l=k(k-2)$, by Lemma 8 we can apply [4, Lemma 7] to conclude the result. For instance (set $D=(\mu-1)^{2}+4(k-\mu)$),
$\mu=2: D=4 k-7$ is a square and divides $(2 k+(1-\mu)(k+l))^{2}=(k(k-4) /$ $2)^{2}$ and so does $7^{2} \cdot 3^{4}$, which is impossible since $k=2\left(2^{n}-1\right)$.
$\mu=3: D=4(k-2)$ and so $(k-2) / 4=2^{n-1}-1$ is a square, say $e^{2}, e>0$. Hence $2\left(2^{n-2}-1\right)=(e-1)(e+1)$, which is a contradiction since $e-1$ and $e+1$ are even or odd simultaneously.
$\mu=(k-2) / 2: \quad D=(k / 2)^{2}+8$ is a square, say $e^{2}, e>0$. Hence $8=(e-$ $(k / 2))(e+(k / 2))$ and so $k=7$ or 2 , a contradiction.

Now we are left with the ${ }^{* *}$) with $\lambda=1$ and $2 \leqq n \leqq 5$.
Lemma 10. The case (${ }^{* *)}$ with $\lambda=1$ and $3 \leqq n \leqq 5$ does not occur.
Proof. Since μ is a divisor of $k(k-2), k=2\left(2^{n}-1\right)$, we know the possible values of μ. In case $n=3$ with $\mu \neq 2,4$ and $n=4,5$, we have a contradiction by [4, Lemma 7]. When $n=3$, the order of any proper normal subgroup T of H is a divisor of 8 . In fact, $H=G^{(4,1)}=R^{(4,1)} S^{(4,1)}$ and $T \cap S^{(4,1)} \Delta S^{(4,1)}$, hence $T \cap S^{(4,1)}=1$ or $S^{(4,1)}$. The former implies $|T|$ is a divisor of 8 . The latter yields $T=S^{(4,1)}\left(R^{(4,1)} \cap T\right)$ and, since $R^{(4,1)} \cap$ $T \neq 1$, as in the proof of Lemma 3, we obtain $T=H$. On the other hand, $|G|=2^{6} \cdot 3^{3} \cdot 7 \cdot 11$ and $2^{6} \cdot 3^{2} \cdot 7 \cdot 19$ in case $\mu=2$ and 4 , respectively. In both cases G is not simple (e.g., Hall [3]). In the former case, for a minimal normal subgroup T of $G,|H \cap T|$ is a divisor of 8 by the above remark. Hence $|T|=2^{i} \cdot 3^{2} \cdot 11,0 \leqq i \leqq 3$. Since T is characteristic simple and $|T|$ contains the prime 11 to the first power only, T must be simple. This is impossible from the order of T. Likewise we have a contradiction in case $\mu=4$.

Lemma 11. In case $\left(^{(* *)}\right.$ with $\lambda=1$ and $n=2,(G, \Omega)$ is isomorphic to the alternating group A_{6} acting on the unordered pairs of $\{1,2,3,4,5,6\}$.

Proof. It is easily checked that (H, Δ) is isomorphic to the symmetric group S_{4} acting on the unordered pairs of $\{1,2,3,4\}$. By [4, Lemma 7], the case $\mu=3,|\Omega|=15,|G|=360$ remains. If G is not simple and has a minimal normal subgroup T, then $|T|=3 \cdot 5,2^{2} \cdot 3 \cdot 5$ or $2^{2} \cdot 3^{2} \cdot 5$ and T is simple since T is characteristic simple. Hence $T \cong A_{5}$ and G is isomorphic to a subgroup of Aut $T \cong S_{5}$, which contradicts $|G|=360$. Thus G is simple and isomorphic to A_{6}. On the other hand, the following is checked: A_{6} has two conjugate classes of elementary abelian subgroups of order 4, whose representatives are $V_{1}=\{1,(12)(34),(13)(24),(14)(23)\}$ and $V_{2}=\{1$, (12)(34), (12)(56), (34)(56)\}. $\quad A_{6}$ has two conjugate classes of subgroups isomorphic to S_{4}, whose representatives are the normalizers $N_{A_{0}}\left(V_{1}\right)$ and
$N_{A_{\mathrm{e}}}\left(V_{2}\right)$, whose 3 -elements have one 3 -cycle and two 3 -cycles, respectively, and there exists an outer automorphism of A_{6} taking one class into the other. This establishes the lemma.

Thus we complete the proof of Theorem.

References

[1] E. BANNAI: Doubly transitive permutation representations of the finite projective special linear groups $\operatorname{PSL}(n, q)$, Osaka J. Math. 8 (1971), 437-445.
[2] E. Bannai: Primitive extensions of rank 3 of the finite projective special linear groups $\operatorname{PSL}(n, q), q=2 f$, Osaka J. Math. 9 (1972), 57-73.
[3] M. Hall: Simple groups of order less than one million, J. Alg. 20 (1972), 98102.
[4] D. G. Higman : Finite permutation groups of rank 3, Math. Z. 86 (1964), 145-156.
[5] S. IwASAKI: On a theorem of Manning-Cameron, to appear.
[6] H. Wielandt: Finite permutation groups, Academic Press, New York and London, 1964.

Department of Mathematics,
Hokkaido University
Mathematics, Faculty of commerce, Hitotsubashi University

