Primitive extensions of rank 3 of $2^n \cdot GL(n, 2)$

By Shiro IWASAKI

(Received February 4, 1975)

1. Introduction.

As is well known, (n+1)-dimensional general linear group GL(n+1, 2)=PSL(n+1, 2) over GF(2), the field with two elements is simple for $n \ge 2$ and acts doubly transitively on P(n, 2), the set of the points of *n*-dimensional projective space over GF(2). Taking a point p in P(n, 2), set $\Delta =$ $P(n, 2) - \{p\}$ and let H be the stabilizer of p in GL(n+1, 2). Then H is the semi-direct product of an elementary abelian group of order 2^n and GL(n, 2). The transitive permutation group (H, Δ) has rank 2 extension (GL(n+1, 2), P(n, 2)). In this note, we determine primitive extensions of rank 3 of (H, Δ) .

THEOREM. Let (G, Ω) be a primitive extension of rank 3 of (H, Δ) . Then

(i) n=1 and (G, Ω) is isomorphic to the dihedral group of order 10 acting on 5 letters, or

(ii) n=2 and (G, Ω) is isomorphic to the alternating group A_6 acting on the unordered pairs of $\{1, 2, 3, 4, 5, 6\}$.

The idea of the proof of our Theorem is due to Bannai [2], which determined primitive extensions of rank 3 of $(PSL(n, 2^{f}), P(n-1, 2^{f}))$, and the author thanks Dr. E. Bannai. He is also grateful to the referee for setting Lemma 7 a better form.

NOTATION. We follow the notation of Higman [4] mostly and use [4] frequently. In a transitive permutation group G on a finite set Ω , we denote by a^g the image of $a \in \Omega$ under $g \in G$, and for a subset X of Ω , G_x denotes the pointwise stabilizer of X, $G_x = \{g \in G | x^g = x \text{ for all } x \in X\}$. If $X = \{a, b, \dots\}, G_x$ is written $G_{ab} \dots$. For a subset Y of G and $g \in G$, we let $Y^g = g^{-1} Yg, g^Y = \{g^y = y^{-1}gy | y \in Y\}$ and $a^Y = \{a^y | y \in Y\}$. The number of G_a orbits $(a \in \Omega)$ counting $\{a\}$, is called the rank of (G, Ω) .

The following notation will be fixed throughout this note. Let (G, Ω) be a primitive extension of rank 3 of (H, Δ) , that is, 1) (G, Ω) is a primitive permutation group of rank 3, and 2) there exists an orbit $\Delta(a)$ of the stabilizer G_a of a point $a \in \Omega$ such that G_a acts faithfully on $\Delta(a)$ and $(G_a, \Delta(a))$ is isomorphic to (H, Δ) .

S. Iwasaki

Let $\Gamma(a)$ be another non-trivial orbit of G_a and we may assume $\Delta(a)^g = \Delta(a^g)$ and $\Gamma(a)^g = \Gamma(a^g)$ for all $a \in \Omega$ and all $g \in G$. Set $k = |\Delta(a)|$ $(= |\Delta| = 2(2^n - 1))$ and $l = |\Gamma(a)|$. The intersection numbers λ, μ for G are defined by

$$|\varDelta(a) \cap \varDelta(b)| = \begin{cases} \lambda & \text{if } b \in \varDelta(a) \\ \mu & \text{if } b \in \Gamma(a). \end{cases}$$

Then the relation $\mu l = k(k - \lambda - 1)$ holds by [4, Lemma 5].

2. Proof of Theorem.

In case n=1, we easily obtain (i) of Theorem and so we assume $n \ge 2$ (so $k=2(2^n-1)\ge 6$) in the following. Since $(G_a, \Delta(a))$, (H, Δ) and $(GL(n+1, 2)_{(10\cdots 0)}, P(n, 2) - \{(10\cdots 0)\})$ are isomorphic to one another, we may assume $G_a = H = GL(n+1, 2)_{(10\cdots 0)}$ and $\Delta(a) = \Delta = P(n, 2) - \{(10\cdots 0)\}$. Take $b = (010\cdots 0) \in \Delta(a)$. It is easily seen that G_{ab} has the orbits-length 1, 1, k-2 on Δ . As G has even order, $\Delta(a)$ and $\Gamma(a)$ are self-paired by Wielandt [6, Theorem 16.5]. By [5], one of the following holds.

(*) l>1 is a divisor of k, and $\lambda=0$ or k-2,

(**) l > k-2 and l is a divisor of k(k-2), and $\lambda = 0$ or 1.

LEMMA 1. The cases (**) with $\lambda = 0$ and (*) do not occur.

PROOF. Since $\mu l = k(k-\lambda-1)$ and $0 \leq |\Gamma(a) \cap \Gamma(c)| = l-k+\mu-1$ for $c \in \Gamma(a)$, we have

$$\mu = k-1$$
 and $l = k$ in case (*) with $\lambda = 0$ or (**) with $\lambda = 0$,
 $\mu = 1$ and $l = k$ in case (*) with $\lambda = k-2$.

In all the cases, by Higman [4, Lemma 7], $(\lambda - \mu)^2 + 4(k - \mu) = (k - 1)^2 + 4$ must be a square, say e^2 , e > 0. But, since 4 = (e + k - 1)(e - (k - 1)), we have 2(k-1) = (e+k-1)-(e-(k-1))=3 or 0, a contradiction.

So we are left with the case (**) with $\lambda = 1$ and throughout the rest of the paper we consider this case in detail. $\Delta(a) \cap \Gamma(b)$ is a G_{ab} -orbit of length k-2 and take a point $c \in \Delta(a) \cap \Gamma(b)$. As $\Delta(a)$ is self-paired, Gcontains an element g interchanging a and b by [6, Theorem 16.4]. Set $d = c^{g} \in \Delta(b) \cap \Gamma(a)$. Then $|G_{ab}: G_{abd}| = |G_{ab}: G_{abc}| = |G_{ab}: G_{abc}| = k-2$.

Now we want to know the possible values of μ , for then the possible values of l are known from $\mu l = k(k-2)$ and we can apply Higman [4, Lemma 7]. Since $\mu = |\Delta(a) \cap \Delta(d)|$ is a sum of lengths of some G_{ad} (or G_{abd})-orbits on $\Delta(a)$, it is sufficient to know the structure of G_{abd} and the lengths of G_{abd} -orbits on $\Delta(a)$. Let us set

Primitive extensions of rank 3 of $2^n \cdot GL(n, 2)$

$$\begin{split} & G^{(n,i)} = \left\{ \left(\begin{array}{c|c} \hline * & 0 \\ \hline * & \ast \end{array} \right)^{i} \in GL(n,2) \right\}, \\ & R^{(n,i)} = \left\{ \left(\begin{array}{c|c} I_i & 0 \\ \hline * & I_{n-i} \end{array} \right) \in GL(n,2) \right\} \text{ where } I_i \text{ denotes } i \times i \\ & \text{ identity matrix,} \end{array} \right. \\ & S^{(n,i)} = \left\{ \left(\begin{array}{c|c} I_i & 0 \\ \hline 0 & \ast \end{array} \right) \middle| \ast \in GL(n-i,2) \right\}. \end{split}$$

Moreover, set $K=G_{ab}$, $M=G_{abd}$, $R=R^{(n+1,2)}$ and $S=S^{(n+1,2)}$. Then we have $K=RS \triangleright R$, $R \cap S=1$ and |K:M|=k-2. We denote by π and ρ , the natural homomorphism $K \rightarrow S$ and the natural isomorphism $S \rightarrow GL(n-1, 2)$, respectively. Furthermore, set $N=\rho_{\pi}(M)$ and $m=|S:\pi(M)|=|GL(n-1, 2):N|$. Then we obtain $m=(k-2)|M\cap R|/|R|$. Note that $|R|=2^{2(n-1)}$ and m is a divisor of $k-2=2^{2}(2^{n-1}-1)$.

LEMMA 2. If $n \ge 6$, then $N^t \subseteq G^{(n-1,1)}$ or $G^{(n-1,n-2)}$ for some $t \in GL(n-1,2)$.

PROOF. From the above remark, it follows that $m \neq 1$ and m is not divisible by $2^{(n-1)-2}$. Hence by Bannai [1, Lemma 2], N fixes some complete subspace W of dimension, say i-1 of P(n-2, 2). Noting that GL(n-1, 2) is transitive on the set of all (i-1)-dimensional complete subspaces of P(n-2, 2), we have $N^t \subseteq G^{(n-1,i)}$ for some $t \in GL(n-1, 2)$. But, since $|GL(n-1, 2): G^{(n-1,i)}| = (2^{n-1}-1)(2^{n-2}-1)\cdots(2^{n-1-(i-1)}-1)/(2^i-1)(2^{i-1}-1)\cdots(2^{n-1})$ and $|GL(n-1, 2): N^t|$ is a divisor of $2^2(2^{n-1}-1)$, i must be 1 or n-2.

LEMMA 3. For $n \ge 4$, $G^{(n,1)}$ and $G^{(n,n-1)}$ have no proper subgroup of index ≤ 6 .

PROOF. Let T be a subgroup of $G^{(n,1)} = R^{(n,1)} S^{(n,1)}$ with $|G^{(n,1)}: T| \leq 6$. Then $T \supseteq S^{(n,1)}$, for otherwise simple group $S^{(n,1)} \cong GL(n-1,2)$ would have a proper subgroup $T \cap S^{(n,1)}$ of index ≤ 6 and $S^{(n,1)}$ would be contained in the symmetric group of degree 6, which is a contradiction. Hence $T = (R^{(n,1)} \cap T) S^{(n,1)}$ and $S^{(n,1)}$ normalizes $R^{(n,1)} \cap T$ as $G^{(n,1)} \succ R^{(n,1)}$.

Since $R^{(n,1)} \cap T \neq 1$, take

$$r = \begin{pmatrix} 1 & 0 \\ \hline r_2 & \\ \vdots & I_{n-1} \\ \hline r_n & \end{pmatrix} \in R^{(n,1)} \cap T - \{1\}$$

Noting that

$$\begin{pmatrix} 1 & 0 \\ \hline 0 & A \end{pmatrix} r \begin{pmatrix} 1 & 0 \\ \hline 0 & A^{-1} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \hline A \begin{pmatrix} r_2 \\ \vdots \\ r_n \end{pmatrix} & I_{n-1} \end{pmatrix}$$

and GL(n-1, 2) is transitive on the set of non-zero elements of the (n-1)-dimensional vector space over GF(2), we obtain $R^{(n,1)} - \{1\} \subseteq r^{S^{(n,1)}} \subseteq T$ and so $G^{(n,1)} = R^{(n,1)} S^{(n,1)} \subseteq T$. As for $G^{(n,n-1)}$, a similar argument yields the result.

Combining Lemmas 2 and 3, we have $N^t = G^{(n-1,1)}$ or $G^{(n-1,n-2)}$ for some $t \in GL(n-1,2)$ if $n \ge 6$, that is,

LEMMA 4. If $n \ge 6$, then $\pi(M) = M_1^s$ or M_2^s for some $s \in S$ and m = (k-2)/4, where

$$M_{1} = \left\{ \begin{pmatrix} I_{2} \\ 0 \\ 0 \\ 1 \\ \dots \\ n \end{pmatrix} \in GL(n+1, 2) \right\} \text{ and}$$
$$M_{2} = \left\{ \begin{pmatrix} I_{2} \\ 0 \\ 0 \\ 1 \\ \end{pmatrix} \in GL(n+1, 2) \right\}$$

LEMMA 5. If $n \ge 6$, then $\pi(M) \subseteq M$.

PROOF. Since $m = (k-2)|M \cap R|/|R| = (k-2)/4$, |MR:M| = 4. On the other hand, $\pi(M) \subseteq MR$ and so $|\pi(M): M \cap \pi(M)| \leq 4$. Hence, Lemmas 3 and 4 yield $\pi(M) = M \cap \pi(M)$.

Now immediate calculations show

LEMMA 6. The lengths of the orbits of M_1 and M_2 on $\Delta(a)$ are respectively

$$\underbrace{\frac{1, \dots, 1}{6}, \quad \underbrace{(k-6)/4, \dots, (k-6)/4,}_{4} \text{ and }}_{4} \\ 1, 1, \underbrace{(k-6)/8, \dots, (k-6)/8,}_{4} \underbrace{(k+2)/8, \dots, (k+2)/8}_{4}.$$

LEMMA 7. If $n \ge 6$, the lengths of the orbits of M on $\Delta(a)$ are (1) 1, 1; 1, 1, 1; k-6, or

(A subsum of these may be an orbit-length of M). (2) 1,1; $(\underline{k-6})/2$, $(\underline{k+2})/2$

(The sum may be an orbit-length of M).

PROOF. Using $s \in S(\subseteq K \subseteq G_a)$ in Lemma 4, set $M' = M^{s^{-1}}$. Then the lengths of the orbits of M on $\Delta(a)$ are equal to those of the orbits of M' on $\Delta(a)^{s^{-1}} = \Delta(a)$. Therefore it suffices to examine the orbits-structure of M' on $\Delta(a)$. Of course, $M'(\subseteq K)$ fixes $b = (010 \cdots 0)$ and $(110 \cdots 0)$. Here we set

$$R_{1} = \left\{ \begin{pmatrix} I_{2} & 0 \\ \hline * & 0 \\ \vdots & \vdots \\ * & 0 \\ \end{pmatrix} \in R \right\} \text{ and } R_{2} = \left\{ \begin{pmatrix} I_{2} & 0 \\ \hline 0 & * \\ \vdots & \vdots \\ 0 & * \\ \end{pmatrix} \in R \right\}$$

Then $|M' \cap R_i| \ge 2^{n-3}$, i = 1, 2 since $|K:M'| = 2^2(2^{n-1}-1)$ and $|R_i| = 2^{n-1}$. Take elements

$$r_{1} = \begin{pmatrix} I_{2} & 0 \\ \alpha_{3} & 0 \\ \vdots & \vdots \\ \alpha_{n+1} & 0 \end{pmatrix} \neq 1 \in M' \cap R_{1} \text{ and } r_{2} = \begin{pmatrix} I_{2} & 0 \\ 0 & \beta_{3} \\ \vdots & \vdots \\ 0 & \beta_{n+1} \\ \end{pmatrix} \neq 1 \in M' \cap R_{2}.$$

By Lemmas 4 and 5, $M' \supseteq \pi(M)^{s^{-1}} = M_1$ or M_2 . Firstly, suppose that $M' \supseteq M_1$. Clearly the followings are M_1 -orbits on $\Delta(a)$ of length $(k-6)/4 = 2(2^{n-2}-1)$;

$$(00010\cdots0)^{M_1} = \{(0, 0, a_3, a_4, \dots, a_{n+1}) | (a_4, \dots, a_{n+1}) \neq (0, \dots, 0)\},\$$

$$(10010\cdots0)^{M_1} = \{(1, 0, a_3, a_4, \dots, a_{n+1}) | (a_4, \dots, a_{n+1}) \neq (0, \dots, 0)\},\$$

$$(01010\cdots0)^{M_1} = \{(0, 1, a_3, a_4, \dots, a_{n+1}) | (a_4, \dots, a_{n+1}) \neq (0, \dots, 0)\}$$

and

$$(11010\cdots 0)^{M_1} = \{(1, 1, a_3, a_4, \cdots, a_{n+1}) | (a_4, \cdots, a_{n+1}) \neq (0, \cdots, 0)\}.$$

On the other hand, it is easily seen that r_1 carries an element of the first (resp. the third) to one of the second (resp. the fourth), and r_2 carries an element of the first to one of the third. Therefore, the above four M_1 -orbits are contained in one M'-orbit. Also, though four points (0010...0), (0110...0), (1010...0) and (1110...0) are M_1 -invariant, these may or may not be moved one another through r_1 and r_2 . The case $M' \supseteq M_2$ is treated similarly.

Since μ is a subsum of the lengths of the orbits of M on $\Delta(a)$ and is a divisor of k(k-2), from Lemma 7 we have (note that $\mu \neq 0$, k by [4, Corollary 3])

LEMMA 8. If $n \ge 6$, μ is equal to one of the values; 1, 2, 3, 4, 5, 6, (k-2)/2 and k-2.

LEMMA 9. The case (**) with $\lambda = 1$ and $n \ge 6$ does not occur.

S. Iwasaki

PROOF. Noting that $\mu l = k(k-2)$, by Lemma 8 we can apply [4, Lemma 7] to conclude the result. For instance (set $D = (\mu - 1)^2 + 4(k - \mu)$),

 $\mu = 2$: D = 4k - 7 is a square and divides $(2k + (1 - \mu)(k + l))^2 = (k(k - 4)/2)^2$ 2)² and so does $7^2 \cdot 3^4$, which is impossible since $k = 2(2^n - 1)$.

 $\mu = 3$: D=4(k-2) and so $(k-2)/4=2^{n-1}-1$ is a square, say e^2 , e>0. Hence $2(2^{n-2}-1)=(e-1)(e+1)$, which is a contradiction since e-1 and e+1 are even or odd simultaneously.

 $\mu = (k-2)/2$: $D = (k/2)^2 + 8$ is a square, say e^2 , e > 0. Hence 8 = (e - (k/2))(e + (k/2)) and so k = 7 or 2, a contradiction.

Now we are left with the (**) with $\lambda = 1$ and $2 \leq n \leq 5$.

LEMMA 10. The case (**) with $\lambda = 1$ and $3 \leq n \leq 5$ does not occur.

PROOF. Since μ is a divisor of k(k-2), $k=2(2^n-1)$, we know the possible values of μ . In case n=3 with $\mu\neq 2, 4$ and n=4, 5, we have a contradiction by [4, Lemma 7]. When n=3, the order of any proper normal subgroup T of H is a divisor of 8. In fact, $H=G^{(4,1)}=R^{(4,1)}S^{(4,1)}$ and $T\cap S^{(4,1)} \lhd S^{(4,1)}$, hence $T\cap S^{(4,1)}=1$ or $S^{(4,1)}$. The former implies |T| is a divisor of 8. The latter yields $T=S^{(4,1)}(R^{(4,1)}\cap T)$ and, since $R^{(4,1)}\cap T\neq 1$, as in the proof of Lemma 3, we obtain T=H. On the other hand, $|G|=2^6\cdot 3^3\cdot 7\cdot 11$ and $2^6\cdot 3^2\cdot 7\cdot 19$ in case $\mu=2$ and 4, respectively. In both cases G is not simple (e.g., Hall [3]). In the former case, for a minimal normal subgroup T of G, $|H\cap T|$ is a divisor of 8 by the above remark. Hence $|T|=2^4\cdot 3^2\cdot 11, 0\leq i\leq 3$. Since T is characteristic simple and |T| contains the prime 11 to the first power only, T must be simple. This is impossible from the order of T. Likewise we have a contradiction in case $\mu=4$.

LEMMA 11. In case (**) with $\lambda = 1$ and n = 2, (G, Ω) is isomorphic to the alternating group A_6 acting on the unordered pairs of $\{1, 2, 3, 4, 5, 6\}$.

PROOF. It is easily checked that (H, Δ) is isomorphic to the symmetric group S_4 acting on the unordered pairs of $\{1, 2, 3, 4\}$. By [4, Lemma 7], the case $\mu=3$, $|\Omega|=15$, |G|=360 remains. If G is not simple and has a minimal normal subgroup T, then $|T|=3\cdot5, 2^2\cdot3\cdot5$ or $2^2\cdot3^2\cdot5$ and T is simple since T is characteristic simple. Hence $T\cong A_5$ and G is isomorphic to a subgroup of Aut $T\cong S_5$, which contradicts |G|=360. Thus G is simple and isomorphic to A_6 . On the other hand, the following is checked: A_6 has two conjugate classes of elementary abelian subgroups of order 4, whose representatives are $V_1 = \{1, (12)(34), (13)(24), (14)(23)\}$ and $V_2 = \{1, (12)(34), (12)(56), (34)(56)\}$. A_6 has two conjugate classes of subgroups isomorphic to S_4 , whose representatives are the normalizers $N_{A_6}(V_1)$ and $N_{A_6}(V_2)$, whose 3-elements have one 3-cycle and two 3-cycles, respectively, and there exists an outer automorphism of A_6 taking one class into the other. This establishes the lemma.

Thus we complete the proof of Theorem.

References

- [1] E. BANNAI: Doubly transitive permutation representations of the finite projective special linear groups PSL(n, q), Osaka J. Math. 8 (1971), 437-445.
- [2] E. BANNAI: Primitive extensions of rank 3 of the finite projective special linear groups PSL(n, q), $q=2^{f}$, Osaka J. Math. 9 (1972), 57-73.
- [3] M. HALL: Simple groups of order less than one million, J. Alg. 20 (1972), 98-102.
- [4] D. G. HIGMAN: Finite permutation groups of rank 3, Math. Z. 86 (1964), 145-156.
- [5] S. IWASAKI: On a theorem of Manning-Cameron, to appear.
- [6] H. WIELANDT: Finite permutation groups, Academic Press, New York and London, 1964.

Department of Mathematics, Hokkaido University Mathematics, Faculty of commerce, Hitotsubashi University