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A counter example of Gross’ star theorem

By Yukio NAGAsAkaA
(Received June 15, 1976)

1. Introduction.

Let R be an open Riemann surface. Let w=f(p) be a meromorphic
function on the sufrace R. We denote by @, the covering surface gen-
erated by the inverse function of w=f(p) over the extended w-plane. Let
¢ € D; be a regular point on @, lying over the basic point w,=f(p,)3 oo
and let /, be the longest segment on @, that starts from gq,, consists of
only regular points of @; and lies over the half straight line arg (w—wy)
=¢ (0<0<2r) on the w-plane. Here a regular point of @, is a point of
@, not being an algebraic branch point. If /, has finite length, then /, is
said to be a singular segment with its argument § of @,. The set 2=

U Z, is clearly a domain and is called a Gross’ star region with the
0<8<2z

center g on @;. We call the set S;={¢"|/, is singular} the singular set
of . Since the set S,={e¢"|the length of [,<n} is a closed set on the
unit circle I'={|w|=1} and S,= GlS’” Sg is an F, set on [

If for any Gross’ star regionn,Q on @, the linear measure (dm=d#) of
Sy equals zero, then we say that the function f(p) or @, has the Gross’
property. Further, if any meromorphic function on R has the Gross’
property, then we say that the Riemann surface R has the Gross’ property.
W. Gross proved that R={]z|<oo} has the Gross’ property. And M.
Tsuji [cf. 5] extended this Gross’ theorem in the following: If R is
a domain on the z-plane and the boundary of R is of logarithmic capacity
zero, then R has the Gross’ property. And Z. Y#jobd [cf. 5] proved
a Riemann surface R € O, has the Gross’ property. And Z. Kuramochi [2],
proved that there exists a Riemann surface R€ Oyp such that R has
not the Gross’ property and also there exists a domain Re O, —O, on
the z-plane such that R has not the Gross’ property.

Further Z. Kuramochi considered the next K. Noshiro’s problem: Is
the singular set of any Gross’ star region of a covering surface belonging
to O, a set of capacity zero? Let H be an F, set on_ I'. If there exists

a sequence of closed sets F,(n=1, 2, ---) such that H= UF and F,NH—F,
=¢ for every n, then the F, set H is called a discrete F set. Z. Kuramochi
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proved the following :

THEOREM [4]. Let H be an arbitrary discrete F, set of linear measure
zero on I'. Then there exists a planar covering surface belonging to O,
over the w-plane which has a Gross’ star region with the singular set H.

In the present paper we show that the above theorem is valid for an
arbitrary F, set of linear measure zero.

THEOREM. Let H be an arbitrary F, set of linear measure zero on
I'. Then there exists a planar covering surface belonging to O, over the
w-plane which has a Gross’ star region with the singular set H.

But the connectivity of covering surfaces of the above theorems is
infinite. It still remain to solve the problem: Let @ be a covering surface
which is conformal equivalent to {|z|<oo}. Then, is the singular set of
any Gross’ star region of @ a set of capacity zero?

2. Kuramochi’s lemma.

Let I be a closed interval in I' such that /= {¢"|0<a<0<b<2x).
Then m(I)=b—a. Take real numbers R>0 and a>0 such that R exp(—a)
>1. Let I,(i=0,1, ---, n) be closed intervals such that
o

I, = {wl |w| =R exp (—a+ o

), a<arg w_<_b}.

We cut slits in the w-plane. Set
<= {Iw‘soo}_li—luli(i=1’ 2,:,n) and &, = {|wl SOO}—In .

And connect =¢; and £, crosswise on the slit [;(i=1,2, ---,n). Thus
we have an (n+1)-sheeted planar covering surface of the w-plane. We
denote this resulting surface by R,(/; Rexp(—a)). Every branch point of
R.(I; Rexp(—a)) lies over the segments :

{wlR exp(—a)<|w|<Rexp ("%)’ arg w=a and b}.

And the border of R,(I; Rexp(—a)) is the set I, in &;. Let 0(z)=w(z;
I, R exp(—a)) be the continuous function on R,(I; Rexp(—a)) such that
the boundary value 0 on I, in <;, harmonic in R,(/; Rexp(—a))—<,
and w(2)=1 on <,,;. Let D(w) be the Dirichlet integral of @ on R,(I;
Rexp(—a)). Then Z. Kuramochi proved the following result :

Lemma ([4]). D(w)< —"‘—’—’éﬂ+—n”—.
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5m(I)

As the consequence, if n>——m then D(0)< p

For any given closed interval I and any given a>0, we fix the integer

n=n(l, a) such that ;&) <n< 7:&) +1. Then we write R([; Rexp(—a))

=R,(I; Rexp(—a)). And we denote by <,(I; R exp(—a)) the first sheet
&, of R(I; Rexp(—a)) and denote by < (I; Rexp(—a)) the last sheet
£, of R(I; Rexp(—a).

Let P be a point of I We denote by R(P; Rexp(—a)) the surface
which is obtained from {|w|< oo} by deleting the slit

{w = re¥

3. A partition of an F, set H.

Rexp(—a)<r<Rexp (—%), 0 = arg P} .

Let H be an F. set of linear measure zero on I'. Then the F, set H
is a countable union of closed sets F,(n=1,2,-); H=UF,. Take F,.

Since the complement CF, of F, is open, CF, is the union of a countable
collection of disjoint open intervals I() (i=1, 2, ---); Cl,=U I(@). By Fi=
A (C(0IG) and m(F)=0, lim m(C(0 I(?)))=0. Let a(j) be an integer
- =1

n=1 i=1 n-—+c0

a a(
such that m(C('U’ I6) <7 and 1<a()<a@) <. C U 1) s the

union J(j) and P(j), where J(j) is the union of a finite collection of
disjoint closed intervals J;(j) (i=1,2, ---, N(J(j))) and P(j) is an isolated
and finite set. Then J(j)DJ(j+1) and P(j)\cP(j+1)CF,.. We set J(0)
=I" and Q(j)=P(j)NnJ(j—1) for any j>1. For an interval I on I' we
denoted by e(I) the end points of . Then we see the following:

(1) JG+1DUQG+1)cJ(j) and every component of J(j+ 1) is con-
tained in some component of J(j) (j=0).

(2) mIG) <5 G=1)

oo N(J(J

(3) F=0"U e((i)U(d Q0
(The poorf of (3).) Since e(J;(j '))UP(j)C(EcJe(I(k)))CFI and F; is closed,
we have U U e(J;(/)HU (U Q(f)cF,. Suppose x€F,. By z¢I(i) for every

i, x€J(j ) P(j) for every j(j=>1). Then x€P(j,) for some j, or x€J(j)
for every j. In the former case, x€Q(j) for some j. And in the latter
case, there is some i(j) such that x€Jy; (j) for every j. Then by (1)
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1;(1) (1) DJi(z)( ) oo and xXE nJi(j)( .). Since m(J(]))'_’() a.nd f;] Ji(j) (]) is
connected, we have {z}= ﬂ Jz(,)( NC U (L (F))
We set J(7,0)=J(j)— J(]—i—l) (]>0). Then J(j,0) is the union of

a finite collection of disjoint closed intervals. Take F;. Set F(2; j)=F;N
J(j,0). Then F(2; j)is closed and we have

(4) FUF,= Flu(jL_JoF(2 5 7))

(The proof of (4).) We show the following: If x¢F, then x€J(j, 0)
for some j>0. Let x¢F,. Suppose z€lI(k). If 1<k<a(l), then x¢ J(1)
UPQ). If a(j)<k<a(j+1) for some j>1, then xeJ(j)UP(j)—J(j+1)U
P(j+1). Since P(j)CF, by z¢F, we see x¢J(1) or x€J(j)—J(j+1)
for some j>1, that is x€J(j, 0) for some j>0. Hence if x€ F,—F,, then
xeF(2; j).

J(j,0)—F(2; j) is the union of a countable collection of disjoint
intervals I(j,7) (i=1,2, ---); J(j,00—F(2; j)= ngI(j, 7). These intervals are

open intervals except for a finite number of half-open intervals. By

m(F(2; 7)=0, l1m m(J(j, 0)— U 1(j,2)=0. Then for every j>0 and every

a(d,8)

k>1 there is an integer a(j, k) such that m( U (J(j,0)— U I(j i)))<%
- B =

and 1<a(j,1)<a(j, 2)< . J(4, 0)— 91 I(j,7) is the union J(j, k) and

P(j, k), where J(j, k) is the union of a finite collection of disjoint closed
intervals J,(7, ) (=1, 2, ---, N(J(j, k))) and P(j, k) is an isolated and finite
set. Then J(j, k)DJ(j, k+1) and P(j, k()T P(j, k+1)CF(2; j). We set Q(j,
k)=P(j, k)N J(j, k—1) (k>1) Then we see the following:

(5) J(U, k+1)UQ, k+1)CJ(j, k) and every component of J(j, k+1)
is contained in some component of J(j, k) (=0, k=>0).

(6) % mlIG )< gosr-

Jj=20,k21

o N(I(F. ) o

(7) Fi =0 U eWli, U0 QU B).

Suppose F(k—1; 4y, -+, ix_a) J (&1, =+, te-1) and Q(y, -+, ;1) are defined,
where J(i,, -+, t5-1) (6120, -++, 7;,-1=>0) is the union of a finite collection of
disjoint closed intervals, Q (¢, -+, Z5—1) (210, -++, 4,20, 7;_1>1) is an isolated
and finite set and J(iy, -+, tpoz, L1+ 1)U Q@ +++, Gamsy T+ 1)TI (B, +++, Zam1).
And F(k—1; 1, -, ie2)=F, 1 NJ (0, o+, 44-5 0). We define F(k; 2, -+, 14-1),
J(iy, -+, 7) and QG -+, 4s). We set

J(il’ Tt ik—l, 0) = J(ib HREY ik—l)_J(ib Tty ilc—Za ik—1+ ]-)
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Then J(iy, -+, i,_1, 0) is the union of a finite collection of disjoint closed
intervals. And we set

F(k; il, Ty, i/c_1>=J(i1, *c ik—ly O)nF]L.
Then F(k; i), -++, iz_,) is closed and we have
(8) F1UF2U“‘UFk=F1U<UF(23j))U"'U( U F(k; ib"',i/c—l))
J=0 $,20, 05,20
(The proof of (8)) We suppose
FUFU - UF=FU(UF@; U~ Ul U Fk=1; i, -, ),

LPPRRTY ¥ S

xé.EFlU(%JF(z 7j))U"'U( U F(k_l 5 ily R ilc—Z))' Since x¢F], xEJ(il, 0)

Tysslfp—y

for some 7,>0. Since x4 F(2; ,), € J(i}, i, 0) for some #,>0. --- Since
x& F(k—1; 4y, -+, ixy), x€J(y, =+, iy, 0) for some 7,_;>0. Hence, if
xe€F,—(F,U---UF,_,), then xe F(k; 1, -+, i;_1).

J(y, -, i1, 0)—F(k; 7y, -++, i4_,) is the union of a countable collection
of disjoint intervals I(z,, :--, 2;_1, 2) (=1, 2, +-*);

J(il, Y ik—h O)_F(k 5 il, e ik—l) = UI(ily B ik—b i)‘
These intervals are open intervals except for a finite number of half-open

intervals. By m (F(k; iy, -+, i,-1))=0, lim m(J(Z, -+, 1z-1, 0)— Gl(il, oo Tpet,
=1

n—e0

1))=0. Then for every #,>0, -+, 4,-,>0 and every ¢>1, there is an integer
a(ty, ++, 141, 1) such that

. . a(il,"‘vik_pj) . . . 1
m( U (J(zl, L1y O)_ U I(lls -1 z)))<_W-_l—)— and
G tetip td=n i=1

§,20,, 85— 120,721 (rigeyn )
a(tyyip_ g

1Sd(i1, '”’ilc—la 1)Sa(i1, ”',ik—la Z)S”" J(ila "'3ik—13 O)_ U I(ila Y

i=1
ir-1, 1) is the union J(zy, -+, 2,1, j) and P(éy, -+, ix—1, j), Where J (7, -+, 141, J)
is the union of a finite collection of disjoint closed intervals J;(z;, **+, 41,
7) 6=1,2, -+, N(J (&, -+, t2-1, 7)) and P(,, -+, i4-1, f) is an isolated and finite
set. We set Qi -+, 141, 7)) =Py, -+, ta—1, )) NI (&, ***, ta-1,J—1) (j=21). Then
J (G, Gaeyy J) DI Gty =+, Taes j+1) and Qs +++, 141, T Qs *++, Ly, j+ 1) Fy
Then we see the following:

(9) J@, a1, i+ 1)U Qe1, -+ Lemr, 2 +1)CJ (@, -+, %) and every
component of J(iy, -++, i;_y, iz +1) is contained in some component of J(z,
MY ik) (i120, ttty ik20).

(10) S my e i) <ge

iyt tig=n
120,008 120,721

© N(J(ils"'vt}’g))

(A1) Flks iy o in-)= U (i iU U Qi -+ i)

ig=1  i=1
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4, The construction of the Riemann surface R;.

In §3, we defined J(z,, -+-, ;) and Q(zy, -*+, i) for every k, where J(i,
.-+, ;) is the union of a finite collection of disjoint intervals J;(, ==+, 7x)
on I' 1=1,2, -, N(J (4, -+-, i) and Q(ds, ***,7;) is a finite set on I'. We
set Qiy, i) ={Qi(, -+, )€l ; i=1,2, -, NQ(, -, ix)}. We take
a sequence of real numbers {R,}_, which satisfies the conditions 1<R,<

R, . exp (— —é—) and

1z — NI (i -+, i) —0las n—>c0)
Rn iyt tig<n—k
].Og §,20, 58 20,021
n—1 1£k<n~1

We consider the following Riemann surfaces ;
R (0) = {lw] < eo},

. . . . 1
R (Ji (43, ++-, zk)> =R (Ji (G, =5 k) 5 Ry ggiy_ +4 €XP (‘W»

. . . . 1
R (Qz (C7REEEN 1k)> =R (Qw (RN AR Ri1+---+ik_,+k €xXp ('—W))

We denote by <2,(J; (&, -+, i) and < (J;(zy, ++, ;) the first sheet and the
last sheet of R(J; (4, -+, ix) respectively (See §2). And we concider the
following segments ;

1 . . .
T=Ril+---+ik_,+k €Xp ("‘W>, e’eJ;(i, -, llc)}

1
r=R; i.yip_+r €XP (—W) <r<

1 . .
< R; stiy_+1 €XP <_W>’ 0 =argQ;(, -, lfc)}-

We cut slits UK,(1), UL;(1), UK(0, -+, 0,1) and UL,(0, -, 0, 1) (m=1,2, )

m m

in R(0) and we denote the resulting surface by R’(0). .
Next we cut slits K’ (3, +++, 45—y, 2x+ 1), L' (&g, -+, Ghes, 2+ 1), K' (21, +*+, 1,
0,---,0,1) and L' (4, -, 2, 0, -++, 0, 1) (m=1,2, ---) in the last sheet = (J;(z,

K@@, - ip) = {‘w= re’

L4y, -+, i) ={w=reio

m

e 1)) of R(J; (2, -+, ix)), where K' (&) (=G, **+, Z4—1, 2 +1) or (44, -+, 24, 0, -+, 0,
1), m=1,2, --) is the union of all components K;(a) such that J,;(e)CJ; (7,
.-, 7,) and L'(a) is the union of all components L;(a) such that Q;(a)€

Ji(@y, -+, 7). We denote the resulting surface by R'(J; (s, -+, ).
We shall connect all Riemann surfaces R’(0),



A counter example of Gross’ star theorem 7

R’ (J; (6, -+, 22)) (2,220, -+, 1,10, 4,>1;i=1,2, -, N(J (G, -+, 44) ; k=1, 2, )
and

m’(Qi(il, Tt lk)) (i1207 R ik—lZO, 4 >1;1=12, -, N(Q(il, ) ilc); k—_"l, 2, )
First we connect R’'(0) with R'(J;(B)) (8=(1) or ﬁ=(w, 1), =12, -,

N(J(B), m=1,2, ---) crosswise across each slit K;(8) on R’(0) and the slit
K,(f) on the first sheet <£,(J;(B)) of R'(J;(8)) and connect R'(0) with
R(Q,;(B) (=1, 2, ---, N(Q(B)) crosswise across each slit L,(8) on R’'(0) and
the silt L,(8) on R(Q,(B). Next we connect R’ (J; (s, -+, 7:)) with R'(J;(a))
such that J;(a)CJ; (i, ---, i;) crosswise each slit K;(a) on the last sheet
= (J; (@ -+, 32)) of R'(J; (4 -+, 7;) and the slit K,(a) on <£,(J;(a)) of R'(J;
(a)) and connect R'(J; (i, -+, ) with R(Q;(a)) such that Q;(a)€J;(z, -+, 1)
crosswise across each silt L;(a) on the last sheet = (J;(z, -+, ix) of R'(J;
(4, *--, 1)) and the slit L;(a) on R(Q,(a). We denote the resulting surface
Rz.
The surface Ry has the following properties:

(a) Ry is a planar covering surface belonging to O, over w-plane.
(b) Let 2 be a Gross’ star region with center 0€R'(0) on Ry. Then
the singular set of 2 equals H.

(The proof of Rz€O0,)
We define a exhaustion {2,}7-, of Ry in the following.

2y ={we (0)]li< R exp( 5 )

2, ={weR (0] jwl < Roexp( 5 )}
oyl () —{we 2 (20) 1> R cxp( 3]}
u(uR(Q.w))

Q;={weﬂi'(0)llw|<Rsexp<—%*>}
0( (¥ (7 0)~fewe < (700)] vl = Roexe 55 )
o(uf(32)Joe st 5 1)

§
L

u(UR(Q )(ua%(Q()))u(gm(Qi(o,1))>.
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2, =fwe R O)]lw|< Ry exp (5 )

(U (Rl )

1SISN(I(ig00i))
1
|| = R,11 exp | — G

Gyt tig<n—k
U( U (ER' (Ji (21, ++, ik))

1<k<n—1
_{w (S (Jt (il, °t ik)>
IS'I:SN(J(iI!""ik))
iyt tig=n—k+1

1<k<n

. 1
—{w €= <J@ (11, Tt Zk)) Iwi 2 Ri1+~~~+ik_1+k €xp <_W>}))

u( U R(Qul -, m))
1<SISN(T (84,001 p))
Ut tip<n—k+1
1<k<n

Let w,(w) be the hamonic measure of 82, with respect to 2,—2,_,.
Let , and r, be positive real numbers such that r,<7,. We denote by
o(w; r, ) the hamonic mesure of {|w|=r} with respect to the ring
domain {n<|w|<r}. And we set

. . . . 1
(D(w ; Jz (lly el zk))=w(w ; Ji (zl, ey zk), Ri1+"'+ik—1+]‘ exp (_W)) (See
§2 for the definition of w(w; I, Rexp(—a)). Then by Dirichlet principle
we have

D0, (w) < D(w (w; R, R,y exp (-%))

+ X D(w(w;Rn, Rnﬂexp(—%))xN(J(il,---, i)
Mt '

+ PN D(w(w s iy, o, z,c)))
1<ISN(ITiysrig))
iyt ip=n—k+1
1€k<sn

Since Kuramochi’s lemma,

D(w(ws Jilin i) < 5><m(Ji1(i1, i)

it Fig

Then, by (10), we have

. . 5 x 2! 5
el D D(0s Sy i) ST =
1€Sk<n

Hence we bhave
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Dlw.) <o+ o ; (1+' > N(JG, -, m))
Rewexp(—5) Sty
log R
Then by (12), we have D(w,)—>0 as n—>c0. Thus we have R € O,.
(The proof of (b))

We note that the set of all branch points of the covering surface Ry
is the set

U <€<Ji (il, ) Zk)> UQi (ih ) ik)) .

Let S, be the singular set of 2. Since F(k; iy, -, i41)=J (&1, -+, tx-1, )N
F,(k>2), we have

Son{jw|<R}=F,
SeN{Ri<|w| <R} = F(2; 0)
SN {R,<|w| <R} = F(2; )UF(3; 0,0)

..................

S,,n{R,,_1<|w|gk,,}—_—_+ U FRs by ).
Gt tip_thk=n
2<k<n

Then S;=UF(k; i, -, 7). Hence, by (8), we have S,=fF.
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