Remarks on relatively flat modules

By Kenji NISHIDA

(Received June 21, 1976)

Introduction

Let R be a ring and I be an idempotent ideal of R. Put $\mathscr{T} = \{_{\mathbb{R}}M; IM = M\}$, $\mathscr{T} = \{_{\mathbb{R}}M; IM = 0\}$, and $\mathscr{C} = \{_{\mathbb{R}}M; Ann_{\mathcal{M}} I = 0\}$. Then $(\mathscr{T}, \mathscr{T})$, $(\mathscr{T}, \mathscr{C})$ is a TTF-theory over the category of all left R-modules. Since I is an ideal, we can define a TTF-theory over the category of all right R-modules in the same way. We denote it $(\mathscr{T}', \mathscr{T}')$, $(\mathscr{T}', \mathscr{C}')$.

Bland calls a left *R*-module *M* relatively flat if, for any exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ of right *R*-modules such that $C \in \mathscr{F}'$, a sequence $0 \rightarrow A \otimes M \rightarrow B \otimes M \rightarrow C \otimes M \rightarrow 0$ is exact [1]. In this paper we call such a module *I*-flat.

It is well known that a flat module is characterized by the purity in the sense of Cohn. We shall define the *I*-purity and give the similar characterization of the *I*-flatness.

In section 2, we investigate the *I*-flatness of R/I-modules. We give the characterization of a ring which has the property that each *I*-flat module is codivisible with respect to $(\mathcal{T}, \mathcal{F})$.

Throughout this paper, all rings are associative with unit and all modules are unital.

The reader is referred to [5] about the torsion theories.

1. On *I*-purity

It is well known that the purity in the sense of Cohn and the flatness are closely related. We shall show that the similar relation holds between the *I*-purity and the *I*-flatness.

DEFINITION 1-1. We call an exact sequence $0 \rightarrow L \rightarrow X \rightarrow M \rightarrow 0$ of left R-modules I-pure if, for each $A \in \mathcal{F}'$, a sequence $0 \rightarrow A \otimes L \rightarrow A \otimes X \rightarrow A \otimes M$ $\rightarrow 0$ is exact.

We call a submodule U of V I-pure if the induced sequence $0 \rightarrow U \rightarrow V \rightarrow V/U \rightarrow 0$ is I-pure.

THEOREM 1-2. The following conditions are equivalent for a left R-module M.

(1) M is I-flat.

- (2) Every exact sequence $0 \rightarrow L \rightarrow X \rightarrow M \rightarrow 0$ is I-pure.
- (3) There exists an I-pure exact sequence $0 \rightarrow L \rightarrow X \rightarrow M \rightarrow 0$ such that X is I-flat.

PROOF. (1) implies (2); Let $A \in \mathscr{F}'$. We take an exact sequence $0 \rightarrow C \rightarrow B \rightarrow A \rightarrow 0$, where B is free. We get the following commutative diagram;

where the rows and the columns are exact. By (1) and $A \in \mathscr{F}'$, f is a monomorphism. Then we can show that g is a monomorphism by a diagram chase. Hence $0 \rightarrow L \rightarrow X \rightarrow M \rightarrow 0$ is *I*-pure.

(2) implies (3); This is clear, since we can take X free.

(3) implies (1); Let $0 \rightarrow C \rightarrow B \rightarrow A \rightarrow 0$ be an exact sequence of right *R*-modules such that $A \in \mathscr{F}'$. We get a commutative diagram (*), where now the middle column instead of the middle row is a short exact sequence. By (3) g is a monomorphism. Then we can show that f is a monomorphism by a diagram chase. Hence M is *I*-flat.

We shall give the elementwise characterization of I-purity.

In the following Theorem 1–3, Corollary 1–5, and 1–6, we assume that I is a finitely generated right ideal.

THEOREM 1–3. Let U be a submodule of V. Then the following conditions are equivalent.

(1) U is an I-pure submodule of V.

(2) Let $v_1, \dots, v_m \in V$, $u_1, \dots, u_n \in U$, and $d_{ij} \in R(i=1, \dots, n; j=1, \dots, m)$, where $\{d_{ij}\}$ satisfies the following condition (I).

Condition (I); For any $x_1, \dots, x_n \in I$, there exist

 $r_1, \cdots, r_m \in R$ such that $x_i = \sum_j d_{ij} r_j$ $(i=1, \cdots, n)$.

If $u_i = \sum_j d_{ij} v_j$, then there exist $u'_1, \dots, u'_m \in U$ such that $u_i = \sum_j d_{ij} u'_j$ $(i=1, \dots, n)$.

PROOF. (1) implies (2); Let v_j , u_i , d_{ij} $(i=1, \dots, n; j=1, \dots, m)$ be given as in (2). Define $\alpha : \mathbb{R}^m \to \mathbb{R}^n$ be $\alpha = (d_{ij})$. Put $M = \text{Coker } \alpha$. By (I), for every $(x_1, \dots, x_n) \in I^n$, there exists $(r_1, \dots, r_m) \in \mathbb{R}^m$ such that $(x_1, \dots, x_n) = \alpha(r_1, \dots, r_m)$. Thus we have $I^n \subset \text{Im } \alpha$, that is, MI = 0. Hence $M \in \mathscr{F}'$. Let ω_1 ,

K. Nishida

..., $\omega_n \in M$ be the generators of M. Then we have $\sum_i \omega_i d_{ij} = 0$ for all j=1, ..., m. By assumption $M \otimes U \rightarrow M \otimes V$ is a monomorphism. Thus we have $\sum \omega_i \otimes u_i = \sum \omega_i \otimes \sum d_{ij} v_j = \sum \omega_i d_{ij} \otimes v_j = 0$. Therefore, we have $\sum \omega_i \otimes u_i = 0$ in $M \otimes U$. By Lemma 2.3 of [3], there exist $u'_1, \dots, u'_m \in U$ such that $u_i = \sum d_{ij} u'_j$ for all $i=1, \dots, n$.

(2) implies (1); We need to show that $0 \rightarrow M \otimes U \rightarrow M \otimes V$ is exact for every $M \in \mathscr{T}'$. We may assume that M is finitely generated, and since every finitely generated module is a direct limit of finitely presented modules, we may even assume that M is finitely presented. Let $R^m \rightarrow R^n \rightarrow M \rightarrow$ 0 be exact. We represent $\alpha = (d_{ij})_{1 \leq i \leq n, 1 \leq j \leq m}, d_{ij} \in R$. Since MI = 0, we have $I^n \subset \text{Im } \alpha$. Thus $\{d_{ij}\}$ satisfies the condition (I). Consider the following commutative diagram;

where the rows are exact. Since ψ is a monomorphism, ρ is a monomorphism if and only if $\operatorname{Im} g \cap \operatorname{Im} \psi = \operatorname{Im} \psi f$ by Lemma 11.3 of [5]. Take $(v_1, \dots, v_m) \in V^m \cong R^m \otimes V$. Put $v = g(v_1, \dots, v_m) = (\sum d_{ij} v_j)_i \in V^n$. If $v \in \operatorname{Im} \psi$, then there exists $(u_1, \dots, u_n) \in U^n$ such that $u_i = \sum d_{ij} v_j$ for all $i = 1, \dots, n$. By assumption there exist $u'_1, \dots, u'_m \in U$ such that $u_i = \sum d_{ij} u'_j$ for all $i = 1, \dots, n$. By assumption there exist $u'_1, \dots, u'_m \in U$ such that $u_i = \sum d_{ij} u'_j$ for all $i = 1, \dots, n$. that is, $v \in \operatorname{Im} \psi f$. Thus we have $\operatorname{Im} g \cap \operatorname{Im} \psi \subset \operatorname{Im} \psi f$. But the converse inclusion always holds. Hence we have $\operatorname{Im} g \cap \operatorname{Im} \psi = \operatorname{Im} \psi f$, so that, ρ is a monomorphism.

COROLLARY 1-4. Let M be a finitely presented right R-module such that $M \in \mathscr{F}'$. Then $M \cong N/K$, where N and K are isomorphic to some finite direct sums of R/I.

PROOF. Let $R^m \to R^n \to M \to 0$ be exact. We represent $\alpha = (d_{ij})_{1 \leq i \leq n, 1 \leq j \leq m}$. Since MI=0, we have $I^n \subset \text{Im } \alpha$. Thus, for any $x_1, \dots, x_n \in I$, there exist $r_1, \dots, r_m \in R$ such that $x_i = \sum d_{ij} r_j$. Hence $\{d_{ij}\}$ satisfies (I). Now, for each $(y_1, \dots, y_n) \in I^n$, there exists $(s_1, \dots, s_m) \in R^m$ such that $y_i = \sum d_{ij} s_j$ for all $i=1, \dots, n$. It is easily shown that I is an I-pure left ideal of R. Thus there exist $z_1, \dots, z_m \in I$ such that $y_i = \sum d_{ij} z_j$ by Theorem 1-3. Therefore, $\alpha (I^m) = I^n$. This implies that $\bar{\alpha} : (R/I)^m \to (R/I)^n$, which is induced from α , is a monomorphism. Thus we have an exact sequence $0 \to (R/I)^m \to (R/I)^n \to M \to 0$. Hence $M \cong N/K$, where $N \cong (R/I)^n$, $K \cong (R/I)^m$.

COROLLARY 1-5. Let M, M', and M'' be R-modules and $M'' \subset M' \subset M$.

(1) If M' is an I-pure submodule of M and M'' is an I-pure submodule of M', then M'' is an I-pure submodule of M and M'/M'' is an I-pure submodule of M/M''.

(2) If M'' is an I-pure submodule of M, then M'' is an I-pure submodule of M'.

COROLLARY 1-6. Let N and P be submodules of M such that $N \cap P$ and N+P are I-pure submodules of M. Then N and P are I-pure in M.

PROOF. We shall prove the corollary for N. Take any $z_j = x_j + y_j \in N + P$, $x_j \in N$, $y_j \in P(1 \le j \le m)$, $a_i \in N(1 \le i \le n)$, and $d_{ij} \in R(1 \le i \le n, 1 \le j \le m)$, where $\{d_{ij}\}$ satisfies (I). If $a_i = \sum d_{ij} z_j = \sum d_{ij} x_j + \sum d_{ij} y_j$, then we put $b_i = a_i - \sum d_{ij} x_j$. Since $b_i \in P \cap N$ and $y_j \in P$, there exist $y'_j \in P \cap N$ such that $b_i = \sum d_{ij} y'_j$ by assumption. Thus $a_i = \sum d_{ij} (x_j + y'_j)$ and $x_j + y'_j \in N$. Therefore, N is I-pure in N+P by Theorem 1-3. Hence N is I-pure in M by Corollary 1-5 (1).

2. On I-flat modules

Following Bland [2], we call a left *R*-module *M* codivisible if, for any exact sequence $0 \rightarrow C \rightarrow B \rightarrow A \rightarrow 0$, where *C* is torsionfree, the induced map Hom $(M, B) \rightarrow$ Hom (M, A) is onto. A left *R*-module *C* is a codivisible cover of *M* if *C* is codivisible and there exists an epimorphism $C \rightarrow M$ whose kernel is small in *C* [2].

In this section we investigate the *I*-flatness of left R/I-modules which are regarded as an *R*-module. Under a condition, we also give the characterization of a ring whose *I*-flat modules are codivisible with respect to $(\mathscr{T}, \mathscr{F})$.

LEMMA 2–1. R/I is an I-flat left R-module.

PROOF. Let $M \in \mathscr{F}'$. Then we have an exact sequence $0 \rightarrow M \otimes I \rightarrow M \otimes R \rightarrow M \otimes R/I \rightarrow 0$, since $M \otimes I = 0$. Hence R/I is *I*-flat by Theorem 1-2.

COROLLARY 2-2. Every free R/I-module is I-flat as an R-module.

LEMMA 2-3. Let M be an R/I-module. M is an I-flat R-module if and only if M is a flat R/I-module.

PROOF. Assume that M is *I*-flat. Let $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ be an exact sequence of right R/I-modules. Then $C \in \mathscr{K}'$. Thus by assumption $0 \rightarrow A \otimes M \rightarrow B \otimes M \rightarrow C \otimes M \rightarrow 0$ is exact.

Conversely, let $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ be an exact sequence of right *R*-modules such that $C \in \mathscr{A}'$. Take an exact sequence $0 \rightarrow K \rightarrow F \rightarrow M \rightarrow 0$, where *F* is a free *R/I*-module. By Corollary 2-2 *F* is an *I*-flat *R*-module. We get the following commutative diagram;

K. Nishida

with the exact rows and the columns. Since M is flat as an R/I-module, ϕ is a monomorphism. Since F is I-flat, ϕ is a monomorphism. Thus γ is a monomorphism by a diagram chase. Hence M is I-flat as an R-module.

COROLLARY 2–4. If M is an I-flat R-module, then M/IM is a flat R/I-module.

REMARK. If $(\mathcal{T}, \mathcal{F})$ is hereditary, then the converse holds as well (cf. Theorem 2.4 of [1]).

Finally, we shall prove the following theorem.

THEOREM 2-5. If $(\mathcal{T}, \mathcal{F})$ is hereditary, then the following conditions are equivalent.

(1) Every I-flat left R-module is codivisible with respect to $(\mathcal{T}, \mathcal{F})$.

(2) Every left R-module M has a codivisible cover with respect to $(\mathcal{T}, \mathcal{F})$.

(3) R/I is a left perfect ring.

PROOF. The equivalence of (2) and (3) is stated in Theorem 11 of [4].

(1) implies (3); We need to show that each flat R/I-module is projective. Let M be a flat R/I-module. Then M is an I-flat R-module by Lemma 2-3. By (1) M is codivisible with respect to $(\mathcal{T}, \mathcal{F})$. Hence M is a projective R/I-module by Proposition 6 of [4].

(3) implies (1); Let M be an *I*-flat left R-module. By Corollary 2-4 M/IM is a flat R/I-module. Thus M/IM is a projective R/I-module by (3). Hence M is codivisible with respect to $(\mathcal{T}, \mathcal{F})$ by Theorem 8 of [4].

Addendum:

Recently the author has received a paper by H. Katayama entitled "Flat and projective properties in a torsion theory, Res. Rep. of Ube Tech. Coll., No. 15. (1972)" where we have found that our Theorem 1–2 is also obtained independently [cf. Proposition 2.4].

References

- P. E. BLAND: Relatively flat modules, Bull. Austral. Math. Soc. Vol. 13 (1975), 375-387.
- [2] P. E. BLAND: Perfect torsion theories, Proc. Amer. Math. Soc. 41 (1973), 349-355.
- [3] P. M. COHN: On the free product of associative rings, Math. Z. 71 (1959), 380-398.
- [4] K. M. RANGASWAMY: Codivisible modules, Comm. in Algebra, 2 (6), (1974), 475-489.
- [5] Bo STENSTRÖM: Rings of Quotients, Springer-Verlag, BERLIN, (1975).

Department of Mathematics Hokkaido University Sapporo Japan