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Remarks on relatively flat modules
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Introduction

Let R be a ring and I be an idempotent ideal of R. Put \mathscr{T}=\{_{R}M ;
IM=M\} , \mathscr{F}=\{_{R}M;IM=0\} , and \mathscr{C}=\{_{R}M;Ann_{M}I=0\} . Then (\mathscr{T}, \mathscr{F}),
(\mathscr{F}, \mathscr{C}) is a TTF-theory over the category of all left R modules Since I
is an ideal, we can define a TTF-theory over the category of all right
R-modules in the same way. We denote it (\mathscr{T}’, \mathscr{F}’), (\mathscr{F}’, \mathscr{C}’) .

Bland calls a left R module M relatively flat if, for any exact sequence
Oarrow Aarrow Barrow Carrow 0 of right R-modules such that C\in- \mathscr{F}’ , a sequence Oarrow A\otimes M

arrow B\otimes Marrow C\otimes Marrow 0 is exact [1]. In this paper we call such a module I-flat.
It is well known that a flat module is characterized by the purity in

the sense of Cohn. We shall define the I-purity and give the similar
characterization of the /-flatness.

In section 2, we investigate the I-flatness of R/I-modules. We give
the characterization of a ring which has the property that each /-flat

module is codivisible with respect to (\mathscr{T}, \mathscr{F}).
Throughout this paper, all rings are associative with unit and all

modules are unital.
The reader is referred to [5] about the torsion theories.

1. On \bm{I}-purity

It is well known that the purity in the sense of Cohn and the flatness
are closely related. We shall show that the similar relation holds between
the I-purity and the flatness

DEFINITION 1-1. We call an exact sequence Oarrow Larrow Xarrow Marrow 0 of left
R modules I-pure if, for each A\in \mathscr{F}’ , a sequence Oarrow A\otimes Larrow A\otimes Xarrow A\otimes M

arrow 0 is exact.
We call a submodule U of VI-pure if the induced sequence Oarrow Uarrow

Varrow V/Uarrow 0 is I-pure.
THEOREM 1-2. The following conditions are equivalent for a left R-

module M.
(1 ) M is I-flat.



Remarks on relatively flat modules 131

(2) Every exact sequence Oarrow Larrow Xarrow Marrow 0 is I-pure.
(3) There exists an I-pure exact sequence Oarrow L- Xarrow Marrow 0 such that

X is I-flat.
PROOF. (1) implies (2); Let A\in\swarrow ’, . We take an exact sequence 0arrow

Carrow B- A-O, where B is free. We get the following commutative diagram;
C\otimes Larrow C\otimes Xarrow C\otimes Marrow 0

0arrow B\otimes Larrow B\otimes Xarrow B\otimes Marrow 0\downarrow\downarrow f\downarrow

A \bigotimes_{0}Larrow A\bigotimes_{0}Xarrow A\bigotimes_{0}Marrow 0\downarrow g\downarrow\downarrow\downarrow\downarrow\downarrow

(^{*})

where the rows and the columns are exact. By (1) and A\in \mathscr{F}’, f is a
monomorphism. Then we can show that g is a monomorphism by a
diagram chase. Hence Oarrow L- Xarrow Marrow 0 is I-pure.

(2) implies (3); This is clear, since we can take X free.
(3) implies (1); Let Oarrow C- Barrow Aarrow 0 be an exact sequence of right R-

modules such that A\in \mathscr{F}’ . We get a commutative diagram (^{*}), where now
the middle column instead of the middle row is a short exact sequence.
By (3) g is a monomorphism. Then we can show that f is a monomor-
phism by a diagram chase. Hence M is I-flat.

We shall give the elementwise characterization of /-purity.
In the following Theorem 1-3, Corollary 1-5, and 1-6, we assume that

I is a finitely generated right ideal.
THEOREM 1-3. Let U be a submodule of V. Then the following

conditions are equivalent.
(1) U is an I-pure submodule of V.
(2) Let v_{1} , \cdots , v_{m}\in V, u_{1} , \cdots , u_{n}\in U, and d_{if}\in R(i=1, \cdots, n ; j=1, \cdots, m),

where \{d_{if}\} satisfies the following condition (/).
Condition (I); For any x_{1} , \cdots , x_{n}\in I, there exist
r_{1}, \cdots , r_{m}\in R such that x_{i}= \sum_{f}d_{if}r_{J}

(i=1, \cdots, n).

Ifu_{i}= \sum_{f}d_{if}v_{f}, then there exist u_{1}’, \cdots , u_{m}’\in U such that u_{i}= \sum_{f}d_{if}u_{j}’(i=1 ,
\ldots , n).

PROOF. (1) implies (2) ; Let v_{f} , u_{i} , d_{if}(i=1, \cdots, n ; j=1, \cdots, m) be given
as in (2). Define \alpha:R^{m}- R^{n} be \alpha=(d_{if}) . Put M=Coker\alpha . By (I), for
every (X_{1}^{ },\cdots, x_{n})\in I^{n}, there exists (r_{1}, \cdots, r_{m})\in R^{m} such that (x_{1^{ }},\cdots, x_{n})=\alpha(r_{1} ,
\ldots , r_{m}). Thus we have I^{n}\subset{\rm Im}\alpha, that is, MI=0. Hence M\in \mathscr{F}’ . Let \omega_{1} ,
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\ldots , \omega_{n}\in M be the generators of M. Then we have \sum_{i}\omega_{i}d_{ij}=0 for all j=1,
\ldots , m. By assumption M\otimes Uarrow M\otimes V is a monomorphism. Thus we have
\sum\omega_{i}\otimes u_{i}=\sum\omega_{i}\otimes\sum d_{ij}v_{j}=\sum\omega_{i}d_{if}\otimes v_{f}=0 . Therefore, we have \sum\omega_{i}\otimes u_{i}=0

in M\otimes U. By Lemma 2.3 of [3], there exist u_{1}’ , \cdots , u_{m}’\in U such that u_{i}=

\sum d_{if}u_{f}
’ for all i=1, \cdots , n .

(2) implies (1); We need to show that Oarrow M\otimes Uarrow M\otimes V is exact for
every M\in- F’, . We may assume that M is finitely generated, and since
every finitely generated module is a direct limit of finitely presented mod-

ules, we may even assume that M is finitely presented. Let R^{m}arrow R^{n}arrow Marrow\alpha

0 be exact. We represent \alpha=(d_{if})_{1\leq i\leq n,1\leq j\leq m} , d_{if}\in R . Since MI=0, we have
I^{n}\subset{\rm Im}\alpha . Thus \{d_{if}\} satisfies the condition (/). Consider the following
commutative diagram;

R^{m}\otimes Uarrow R^{n}\otimes Uarrow M\otimes Uarrow 0f

R^{m}\otimes V-arrow R^{n}\otimes Varrow M\otimes Varrow 0\downarrow g\psi\downarrow\rho\downarrow j

where the rows are exact. Since \psi is a monomorphism, \rho is a monomor-
phism if and only if Im g\cap{\rm Im}\psi={\rm Im}\psi f by Lemma 11.3 of [5]. Take
(v_{1}, \cdots, v_{m})\in V^{m}\cong R^{m}\otimes V. Put v=g(v_{1}, \cdots, v_{m})=(\sum d_{if} v_{f})_{i}\in V^{n} . If v\in{\rm Im}\psi,
then there exists (u_{1}, \cdots, u_{n})\in U^{n} such that u_{i}= \sum d_{if}v_{f} for all i=1, \cdots , n .
By assumption there exist u_{1}’ , \cdots , u_{m}’\in U such that u_{i}= \sum d_{ij}u_{f}’ for all i=1,
\ldots , n, that is, v\in{\rm Im}\psi f. Thus we have Im g\cap{\rm Im}\psi\subset{\rm Im}\psi f. But the
converse inclusion always holds. Hence we have Im g\cap{\rm Im}\psi={\rm Im}\psi f, so
that, \rho is a monomorphism.

COROLLARY 1-4. Let M be a finitely presented right R module such
that M\in,\mathscr{T}’, . Then M\cong N/K, where N and K are isomorphic to some finite
direct sums of R/I.

PROOF. Let R^{m}arrow R^{n}arrow Marrow 0\alpha be exact. We represent \alpha=(d_{ij})_{1\leq i\leq n,1\leq j\leq m} .
Since MI=0, we have I^{n}\subset{\rm Im}\alpha . Thus, for any x_{1} , \cdots , x_{n}\in I, there exist
r_{1} , \cdots , r_{m}\in R such that x_{i}= \sum d_{if} r_{j} . Hence \{d_{if}\} satisfies (I). Now, for
each (y_{1}, \cdots, y_{n})\in I^{n} , there exists (s_{1^{ }},\cdots, s_{m})\in R^{m} such that y_{i}= \sum d_{if}s_{j} for all
i=1, \cdots , n . It is easily shown that I is an I-pure left ideal of R. Thus
there exist z_{1}’ , \cdots , z_{m}\in I such that y_{i}= \sum d_{if}z_{j} by Theorem 1-3. Therefore,
\alpha(I^{m})=I^{n} . This implies that \overline{\alpha} : (R/I)^{m}-(R/I)^{n}, which is induced from \alpha,
is a monomorphism. Thus we have an exact sequence 0arrow(R/I)^{m}arrow(R/I)^{n}arrow

Marrow 0 . Hence M\cong N/K, where N\cong(R/I)^{n}, K\cong(R/I)^{m} .
COROLLARY 1-5. Let M,M’, and M’ be R-modules and M’\subset M’\subset M.
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(1) If M’ is an I-pure submodule of M and M’ is an I-pure sub-
module of M’. then M’ is an I-pure submodule of M and M’/M’ is an
I-pure submodule of M/M’.

(2) If M’ is an I-pure submodule of M, then M’ is an I-pure sub-
module of M’.

COROLLARY 1-6. Let N and P be submodules of M such that N\cap P

and N+P are I-pure submodules of M. Then N and P are I-pure in M.
PROOF. We shall prove the corollary for N. Take any z_{j}=x_{f}+y_{j}\in

N+P, x_{j}\in N, y_{j}\in P(1\leq j\leq m), a_{i}\in N(1\leq i\leq n), and d_{ij}\in R(1\leq i\leq n, 1\leq j\leq m),
where \{d_{if}\} satisfies (/). If a_{i}= \sum d_{ij} z_{f}= \sum d_{if} x_{f}+ \sum d_{if} y_{j} , then we put
b_{i}=a_{i}- \sum d_{ij}x_{j} . Since b_{i}\in P\cap N and y_{f}\in P, there exist y_{j}’\in P\cap N such that
b_{i}= \sum d_{if}y_{f}’ by assumption. Thus a_{i}= \sum d_{ij}(x_{f}+y_{f}’) and x_{j}+y_{f}’\in N. There-
fore, N is I-pure in N+P by Theorem 1-3. Hence N is I-pure in M by
Corollary 1-5 (1).

2. On \bm{I}-flat modules

Following Bland [2], we call a left R-module M codivisible if, for any
exact sequence Oarrow Carrow Barrow Aarrow 0, where C is torsionfree, the induced map
Hom (M, B)arrow Hom(M, A) is onto. A left R-module C is a codivisible cover
of M if C is codivisible and there exists an epimorphism Carrow M whose
kernel is small in C[2] .

In this section we investigate the I-flatness of left R/I modules which
are regarded as an R-module. Under a condition, we also give the char-
acterization of a ring whose I-flat modules are codivisible with respect to
(\mathscr{T}, \mathscr{F}) .

Lemma 2-1. R/I is an Iflat left R-module.
PROOF. Let M\in \mathscr{F}’ . Then we have an exact sequence Oarrow M\otimes Iarrow

M\otimes Rarrow M\otimes R/Iarrow 0 , since M\otimes I=0 . Hence R/I is I-fiat by Theorem 1-2.
COROLLARY 2-2. Every free R/I-module is I-ffiat as an R-module.
LEMMA 2-3. Let M be an R/I-module. M is an Iflat R-module if

and only if M is a flat R/I-module.
PROOF. Assume that M is I-flat. Let Oarrow A- B- C-0 be an exact

sequence of right R/I modules Then C\in,\mathscr{F}’ . Thus by assumption 0arrow

A\otimes Marrow B\otimes Marrow C\otimes Marrow 0 is exact.
Conversely, let Oarrow Aarrow Barrow Carrow 0 be an exact sequence of right R-

modules such that C\in \mathscr{F}’ . Take an exact sequence 0- K- Farrow Marrow 0, where
F is a free R/I-module. By Corollary 2-2 F is an I flat R-module. We
get the following commutative diagram;
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A\otimes Karrow B\otimes Karrow C\otimes Karrow 0

A\otimes Farrow B\otimes Farrow C\otimes Farrow 0\downarrow\psi\downarrow\phi\downarrow

A \bigotimes_{0}Marrow B\bigotimes_{0}Marrow C\bigotimes_{0}Marrow 0\downarrow\gamma\downarrow\downarrow\downarrow\downarrow\downarrow

with the exact rows and the columns. Since M is flat as an R/I-module,
\phi is a monomorphism. Since F is I-flat, \psi is a monomorphism. Thus \gamma

is a monomorphism by a diagram chase. Hence M is I flat as an R-module,

COROLLARY 2-4. If M is an Iflat R-module, then M/IM is a flat
R/I-module.

REMARK. If (\mathscr{T}, \mathscr{F}_{r}) is hereditary, then the converse holds as well (cf.
Theorem 2.4 of [1] ).

Finally, we shall prove the following theorem.
THEOREM2-5. If (\mathscr{T}, \mathscr{F}) is hereditary, then the following conditions

are equivalent.
(1) Every Iflat left R-module is codivisible with respect to (\mathscr{T}’, \mathscr{F}).
(2) Every left R-module M has a codivisible cover with respect to

(,\mathscr{T}, \mathscr{F}_{/}^{\backslash }.
(3) R/I is a left perfect ring.
PROOF. The equivalence of (2) and (3) is stated in Theorem 11 of [4].
(1) implies (3); We need to show that each flat R/I-module is projec-

tive. Let M be a flat R/I-module. Then M is an I flat R-module by
Lemma 2-3. By (1) M is codivisible with respect to (,\mathscr{T}, \mathscr{F}) . Hence M is
a projective R/I-module by Proposition 6 of [4].

(3) implies (1); Let M be an I flat left R-module. By Corollary 2-4
M/IM is a flat R/I-module. Thus M/IM is a projective R/I-module by (3).
Hence M is codivisible with respect to (\mathscr{T}, \mathscr{F}) by Theorem 8 of [4].

Addendum :

Recently the author has received a paper by H. Katayama entitled
“Flat and projective properties in a torsion theory, {\rm Res} . Rep. of Ube Tech.
Coll., No. 15. (1972)” where we have found that our Theorem 1-2 is also
obtained independently [cf. Proposition 2.4].
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