Bochner-Minlos' theorem on infinite dimensional spaces

By Yasuji TAKAHASHI

(Received May 10, 1976)

§ 1. Introduction

In $[2]$, Dao-Xing has shown that the following:

THEOREM A. Let H and G be real separable Hilbert spaces such that H is a linear subspace of ^G and the inclusion mapping T from H into G is continuous. Let \mathfrak{B} denote the totality of weak Borel sets in G, and \mathfrak{F} the totality of weak Borel sets in the conjugate space H^{*} of H. Then, the following conditions are equivalent.

 (1) T is a Hilbert-Schmidt operator from H into G.

 (2) There exists a H-quasi-invariant finite measure (non-trivial) on (\mathbf{G}, \mathbf{W}) .

(3) For any positive definite continuous function f on G with $f(0)=1$,
cerists a unique probability measure u on (H^*,\mathbb{R}) such that for any there exists a unique probability measure μ on (H^{*}, \mathfrak{F}) such that, for any $x\in H$,

$$
f(x) = \int_{H^*} e^{ix^*(x)} d\mu(x^*).
$$

In [\[20\],](#page-27-0) the author has proven the following result. This is a generalization of Theorem A.

THEOREM B. Let Φ be a separable σ -Hilbert space, with the inner products $(\varphi_{1}, \varphi_{2})_{n}^{\bullet}$, and let Ψ be a linear subspace of Φ , and suppose that Ψ itself is a complete separable σ -Hilbert space with respect to the inner products $(\phi_{1}, \phi_{2})_{n}^{\phi}$. Also, suppose that the inclusion mapping T from Ψ into $\pmb{\Phi}$ is continuous. For each n, let Φ_{n} denote the completion of Φ with respect to the inner products $(\varphi_{1}, \varphi_{2})_{n}^{\bullet} ,$ and Ψ_{n} denote the completion of ϕ with respect to the inner products $(\phi_{1}, \phi_{2})_{n}^{\phi},$ respectively. Then, the following conditions are equivalent.

(1) T is a Hilbert-Schmidt operator from Ψ into Φ in σ -Hilbert spaces. Namely, for any m, there exists n such that T is a Hilbert-Schmidt operator from Ψ_{n} into $\varPhi_{m}.$

 (2) For any n, there exists a Ψ -quasi-invariant finite measure (nontrivial) on $(\Phi_{n}, \mathfrak{B}_{n})$.

(3) For any positive definite continuous function L on Φ with $L(0)=1$, there exists a unique probability measure μ on (Ψ^{*}, \mathfrak{F}) such that

$$
L(\phi) = \int_{\mathbf{F}^*} e^{i F(\phi)} d\mu(F) \quad \text{for} \quad \phi \in \Psi.
$$

In this paper, we shall establish theorems analogous to Theorem A (Theorem B) when G and H (Φ and Ψ) belongs to some suitable class of separable Banach spaces (complete separable σ -normed spaces), respectively. In Theorem A , if the condition (3) is satisfied for G and H , then we shall call that Bochner-Minlos' Theorem is valid for (H, G) .

Throughout this paper (except for $\S 2. 1^{\circ}$), we shall assume that linear spaces are with real coefficients.

\S 2. Basic definitions and well known results

1°. p-absolutely summing operators $(1\leq p<\infty)$

Let E and F be Banach spaces.

A sequence $\{x_{i}\}$ with values in E is called weakly p-summable $(l_{p}(E))$ if for all $x^{*} \in E^{*}$, the sequence $\{x^{*}(x_{i})\} \in l_{p}$.

A sequence $\{x_{i}\}$ with values in E is called absolutely p-summable, (l_{p}) $\{E\})$ if the sequence $\{\|x_{i}\|\}\in l_{p}.$

DEFINITION 2.1.1. A linear operator T from E into F is called p absolutely summing if for each $\{x_i\}\subset E$ which is weakly p-summable, $\{T\}$ $(x_{i})\subset F$ is absolutely p-summable.

We shall say "absolutely summing" instead of "1-absolutely summing". THEOREM 2. 1. 1. (c.f. [11])

Let a linear operator T from E into F be p-absolutely summing. If $1\leq p\leq q<\infty$, then T is q-absolutely summing.

THEOREM 2. 1. 2. (c.f. [11], [13])

Let H and G be Hilbert spaces and let T be a linear operator from H into G. Then the following conditions are equivalent.

 (1) T is p-absolutely summing.

(2) T is a Hilbert-Schmidt operator.

THEOREM 2. 1. 3. (c.f. [11])

Let H be a Hilbert space and E be a Banach space. Then the following conditions are equivalent.

 (1) T is 2-absolutely summing.

(2) There exists a Hilbert space G such that

$$
H \xrightarrow{U} G \xrightarrow{V} E
$$

104 Y. Takahashi

 $T=V\circ U$ where U is a Hilbert-Schmidt operator and V is a continuous linear operator.

EXAMPLE 2.1.1. identity operator $I: l_{1} \rightarrow l_{2}$ is absolutely summing.

EXAMPLE 2.1.2. identity operator $I: l_{2} \rightarrow l_{\infty}$ is not p-absolutely summing, for $1 \leq p < \infty$.

REMARK 2.1.1. From the Example 2.1.1. and 2.1.2., p -absolutely summing operators are not closed under conjugation.

Generally, p-absolutely summing operators are not necessarily compact $(c. f. Ex. 2. 1. 1).$

But a p -absolutely summing operator T from a Hilbert space H into a Banach space E is compact.

Next, we shall introduce the following theorem which plays an important role in the ensuing discussions.

Let X be a set and \mathfrak{B} be a σ -algebra in X, and let μ be a positive measure such that there exist positive constants C_{1} , C_{2} and pairwise disjoint measurable subsets $\{X_{n}\}\subset X$, which satisfy the following conditions:

 $C_{1}\leq\mu(X_{n})\leq C_{2}$, for all $n=1,2, \cdots$

Let $L_{p}(X, \mu)$ be a usual Banach space, then l_{p} (usual sequence space) is a $L_{p}(X, \mu)$ -space which satisfies the above conditions.

We shall denote L_{p} instead of $L_{p}(X, \mu)$ in the following theorem.

THEOREM 2. 1. 4. (c.f. [21])

Let E be a Banach space, and $1 \leq p < \infty$. Then the following conditions are equivalent.

 (1) For all Banach spaces F, if T is a p-absolutely summing operator from E into F, then T^{*} (conjugate of T) is a p-absolutely summing operator from F^{*} into E^{*} .

(2) If T is a p-absolutely summing operator from E into L_{p} , then T^{*} is a p-absolutely summing operator from $L_{p^{*}}$ into $E^{*}.$

(3) For any $\{x_{n}^{*}\}\subset E^{*}$ with $||x_{n}^{*}||=1$ $(n=1, 2, \ldots)$,

 $\bigcap_{p}l_{p}(\pmb{\rho}_{n,\alpha})=l_{p}$ where $\rho_{n,\alpha}=\sum_{i}|x_{n}^{*}(x_{i})|^{p}$, with $\{x_{i}\}\in l_{p}(E)$. (4) For any $\{x_{n}^{*}\}\subset E^{*}$ with $||x_{n}^{*}||=1$ $(n=1, 2, \ldots)$, $\bigcap_{T\in I(F,F)}l_{p}(\|T^{*}x_{n}^{*}\|^{p})=l_{p}$

where the totality of continuous linear operators from F into E is denoted by $L(F, E)$, and F is denoted by the following,

Bochner-Minlos' theorem on infinite dimensional spaces 105

$$
F = \begin{cases} l_{p^*} & \text{if } p > 1 \\ c_0 & \text{if } p = 1 \end{cases} \quad (1/p + 1/p^* = 1).
$$

In the above theorem, if a Banach space E satisfies the condition (3) (or equivalently (1), (2) and (4)), we shall call that E has the $(*)_{p}$ -conditions.

In this sence, it is easily seen that if E^{*} is isomorphic to a subspace of l_{p} , then E has the $(*)_{p}$ -conditions. And also, by [Theorem](#page-1-0) 2.1.1. and [Theorem](#page-1-0) 2. 1. 3., if E is isomorphic to a Hilbert space H , then E has the (*)_p-conditions (1 $\leq p\leq 2$).

More generally, $\mathcal{L}_{p^{*},\lambda}$ -space has the $(*)_{p}$ -conditions (c. f. [1], [7], [21]). The definition of this space is due to Lindenstrauss and Pelczyňski (c.f. [\[7\]\)](#page-26-1), and that is the following:

Let E and F be Banach spaces. The distance $d(E, F)$ between E and F is defined by $d(E, F) = \inf\{\|T\|\cdot\|T^{-1}\| \}$, where the infimum is taken over all invertible operators in $L(E, F)$. If no such T exists, i.e., if E and F are not isomorphic, $d(E,F)$ is taken as ∞ .

DEFINITION 2.1.2. Let $1{\leq}\rho{\leq}\infty ,$ and $1{\leq}\lambda{<}\infty .$ A Banach space E is called an $\mathcal{L}_{p,\lambda}$ -space if for all finite dimensional subspaces $M\subset E$ there exists a finite dimensional subspace N containing M such that $d(N, l_{p}^{n})\leqq\lambda,$ where $n = \dim(N)$.

It can be shown (c.f. [7]) that every $L_{p}(\mu)$ space is an $\mathcal{L}_{p,\lambda}$ -space for all $\lambda>1$ and every space of type $C(K)$, where K is a compact Hausdorff space, is an $\mathcal{L}_{\infty,\lambda}$ -space for all $\lambda>1$. More generally, every Banach space whose dual is isometric to an $L_{1}(\mu)$ -space (e.g. every M-space in the sense of Kakutani [\[5\]](#page-26-2)) is an $\mathcal{L}_{\infty,\lambda}$ -space for every $\lambda>1$ (c. f. [8]).

2°. Cylinder sets and Cylinder measure

In this subsection, we describe certain σ -algebras which will often be used in the ensuing discussion, and examine the relations between them.

DEFINITION 2.2.1. Let E be a real linar topological space and E^{*} be a conjugate space of E. If A is a Borel set in real n-dimensional space R_{n} , and x_{1} , x_{2} , \cdots , $x_{n}\in E,$ the set

$$
\left\{x^*\Big|\Big(x^*(x_1),\,\cdots,\,x^*(x_n)\Big)\in A,\ x^*\in E^*\right\}
$$

will be called the Borel cylinder with baes A corresponding to x_{1},\cdots , $x_{n}.$

If the elements x_1, \dots, x_{n} generate the linear subspace M of E, then we also call the above set a Borel cylinder corresponding to M, or a Borel M-cylinder. The totality of Borel cylinders corresponding to a fixed M form a σ -algebra, which we denote by $S(M)$, and the totality of all Borel cylinders forms an algebra S. Let \mathfrak{F} denote the smallest σ -algebra containing S; we call the elements of \mathfrak{F} weak Borel sets.

Similarly, let \mathfrak{F} be the smallest σ -algebra of subsets of E which contains all sets of the form

$$
\{x|x^*(x)|
$$

The elements of \mathfrak{F} will be called weak Borel sets.

The following lemma shows that the weak Borel sets constitute a sufficiently wide class of sets.

LEMMA 2. 2. 1. (c.f. [3], [9])

If E is a separable σ -normed space, then every open (or closed) subset of E is a weak Borel set.

Lemma 2. 2. 2. (c.f. [3], [9])

Let E be a separable σ -normed space, with the norm sequence $\{\|x_{n}\|\}.$ Then, $S_{-n}(R)$ $=$ $\{ \|x^{*}\|_{-n} \leq R\}$ is a weak Borel set in $E^{*}.$

By this lemma, we can conclude that E_{n}^{*} is a weak Borel set in E^{*} .

DEFINITION 2.2.2. Let E be a linear topological space, and let S be the algebra of all Borel cylinders in ^E^{*} . Suppose that P is a set function on S having the following property: if M is any finite dimensional linear subspace of E, and $S(M)$ is the σ -algebra of Borel cylinders corresponding to M, then the restriction of P to $S(M)$ is a probabtility measure. Then we call P a cylinder measure on ^E^{*} . Clearly, any cylinder measure P also has the following properties :

- (1) $0 \leq P(Z) \leq 1$ for all $Z \in S$
- (2) $P(E^{*})=1$

 (3) P is finitely additive.

However, P is not generally σ -additive.

But if it happens that P is σ -additive, then, using well-known technique, we can extend P to a probability measure on the σ -algebra generated by S.

Next, we shall show the continuity of cylinder measures.

DEFINITION 2.2.3. Let E be a linear topological space, and let P be a cylinder measure on $E^{*}.$ Suppose that, given any positive number $\varepsilon,$ there exists a neighborhood V of zero in E such that

$$
P(\left\{x^* \middle| |x^*(x)| > 1, \ x^* \in E^*\right\}) < \varepsilon
$$

where $x \in V$. Then we say that P is continuous.

Lemma 2. 2. 3. (c. f. [2], [3])

Let E be a linear topological space and let P be a cylinder measure on E^{*} . Then the function

$$
L(x) = \int_{E^*} e^{ix^*(x)} dP(x^*) \quad \text{for} \quad x \in E
$$

is continuous iff P is continuous.

LEMMA 2. 2. 4. (c.f. [2], [3])

Let E be a linear topological space and let $L(x)$ be a continuous positive definite function on E with $L(0)=1$. Then, there is a unique continuous cylinder measure P on (E^{*}, S) , such that

$$
L(x) = \int_{E^*} e^{ix^*(x)} dP(x^*) \quad \text{for} \quad x \in E.
$$

REMARK 2. 2. 1. In [Lemma](#page-5-0) 2. 2. 4., if E is a nuclear space, then P is a probability measure on (E^{*}, \mathfrak{F}) .

If E is a σ -Hilbert space and $L(x)$ is continuous relative to the nuclear topology, then also P is a probability measure.

(For details, c.f. [\[2\],](#page-26-0) [\[3\],](#page-26-3) [\[9\],](#page-26-4) [\[19\],](#page-27-1) [\[22\]\)](#page-27-2)

3°. Minlos' Theorem and Sazonov's Theorem

THEOREM 2. 3. 1. (c.f. [9])

In order that every continuous cylinder measure, defined in a space E^{*} conjugate to a σ -Hilbert space E, be extendable to a σ -additive measure in $E^{*},\;it\;$ is necessary and sufficient that E be a nuclear space.

REMARK 2.3.1. In [Theorem](#page-5-1) 2.3.1., if E is a nuclear (not necessarily metrizable), then the sufficiency is valid (c.f. [22]).

In our sense (c.f. $\S 1$), if E is a nuclear space, then we can say that Bochner-Minlos' Theorem is valid for (E, E) .

THEOREM 2. 3. 2. (c.f. [3])

Let H and G be Hilbert spaces, and let T be a continuous linear operator from H into G. Then the following conditions are equivalent.

 (1) T is a Hilbert-Schmidt operator from H into G.

(2) Let μ_{G} be the Gaussian measure, defined in G^{*} by $(x, y)_{G}$, then the measure $T^{*}\mu_{G}$ in H^{*} is σ -additive.

(3) For any continuous cylinder measure μ in G^{*} , the measure $T^{*}\mu$ in H^{*} is *g*-additive.

REMARK 2. 3. 2. In [Theorem](#page-5-2) 2. 3. 2., if H and G be σ -Hilbert spaces, then the condition (1) , (2) and (3) are equivalent $(c. f. [19])$.

However, if H is a Banach space and G is a Hilbert space, then the condition (1), (2) and (3) are not necessarily equivalent.

The counter example shall be given in the next section.

THEOREM 2. 3. 3. (c.f. [14])

In order that a cylinder measure μ in the Hilbert space H be σ additive, it is necessary and sufficient that μ be continuous relative to the topology in H defined by some sequence $B_{\scriptscriptstyle{1}}, B_{\scriptscriptstyle{2}}, \cdots$ of positive-definite nuclear operators.

The continuity of μ means the following: For any $\epsilon>0$ there exists a $\delta>0$ and n such that the inequality $(B_{n}x, x)$ \leq δ implies that $\mu(\Gamma_{x})$ \leq $\varepsilon,$ where Γ_{x} denotes the strip defined by $|(x, y)| \geq 1$.

We shall call that the topology defined in the above theorem is a nuclear topology.

REMARK 2. 3. 3. [Theorem](#page-6-0) 2. 3. 3. is due to V. Sazonov, and σ -Hilbert case is due to the author and DaO-Xing (c.f. [2], [19]), and more general case is due to Badrikian (c.f. [16]).

Throughout this subsection, we shall assume that linear spaces are separable with real coefficients.

4°. Theorems for the existence of quasi-invariant measures

DEFINITION 2.4.1. Let E be a linear space, F be a linear subspace of E, and \mathfrak{B} be a σ -algebra in E, which is invariant under translations. A measure μ on (E, \mathfrak{B}) is called F-quasi-invariant if

 $\mu(B)=0 \quad implies \quad \mu(B+x)=0 \quad for \; every \quad x\!\in\! F, B\!\in \! \mathfrak{B}\,.$

DEFINITION 2.4.2. Let E be a linear topological space, E^{*} be a conjugate space of E, and let $||x||_{H}$ be a continuous Hilbertian norm on E. It is easily seen that the following $L(x)$ is continuous positive definite function on E.

$$
L(x) = e^{-\frac{||x||\frac{2}{H}}{2}}
$$

The corresponding cylinder measure on E^{*} (by Lemma 2. 2. 4.) is called a Gaussian measure. (mean zero, variance 1)

THEOREM 2. 4. 1. (c.f. [3], [22])

Let E be a nuclear space, and $||x||_{H}$ be a continuous Hilbertian norm on E. Then, the corresponding Gaussian measure μ_{H} on E^{*} is σ -additive and E-quasi-invariant.

$$
(E\subset H\cong H^*\subset E^*)
$$

Next, we shall introduce a theorem which gives a necessary condition for the existence of quasi-invariant measures.

THEOREM 2. 4. 2. (c.f. [20])

Let F be a Banach space, E be a linear subspace of F , and suppose that E itself is a complete σ -normed space with the norm sequence $||x||_{n}$ $(n=1, 2, \ldots)$. Also, suppose that the inclusion mapping T from E into F is continuous.

Then, the existence of a E-quasi-invariant finite measure (non-trivial) μ on (F, \mathfrak{F}) implies that, there exists n_{0} such that

(1) T^{*} is absolutely summing $(T^{*} : F^{*} \rightarrow E_{n_{0}}^{*})$

(2) T^{*} is compact $(T^{*} : F^{*} \rightarrow E_{n_{0}}^{*})$.

REMARK 2. 4. 1. In the above theorem, \mathfrak{F} is a σ -algebra in F which is invariant under translations and contrains all cylinder sets.

In virtue of [Theorem](#page-7-0) 2. 4. 2., we obtain the following theorem which gives a necessary and sufficient condition for the existence of quasiinvariant measures.

THEOREM 2. 4. 3. (c. f. [20])

Let H be a separable Hilbert space, and let \mathfrak{F} be the totality of weak Borel sets in H. Let E be a linear subspace of H, and suppose that E itself is a complete σ -normed space with the norm sequence $\{\|x\|_{n}\}.$

Also, suppose that the inclusion mapping T from E into H is continuous. Then, the following conditions are equivalent.

 (1) There exists a E-quasi-invariant finite measure (non-trivial) on $(\mathbf{F1}, \ \mathbf{\tilde{7}} \mathbf{S}).$

(2) There exists n such that the conjugate operator T^{*} from H^{*} into E_{n}^{*} is absolutely summing.

(3) There exists a separable Hilbert space H_{1} such that

$$
E\underset{J}{\subset}H_1\underset{\kappa}{\subset}H
$$

 $T=K\circ J$ where injection map J is continuous and K is a Hilbert-Schmidt operator respectively.

REMARK 2. 4. 2. [Theorem](#page-7-1) 2. 4. 3. is due to the author, and that is the generalization of the Dao-Xing's theorem (c.f. [2]).

Finally, we shall introduce ^a theorem due to DaO-Xing, which gives asufficient condition for the validity of Bochner-Minlos' Theorem.

THEOREM 2. 4. 4. (c.f. [2])

Let F be a linear topological space, E be a linear subspace of F , and

110 Y. Takahashi

suppose that E itself is a linear topological space of the second category. Also, suppose that the inclusion mapping from E into F is continuous. Let \mathfrak{B} be the σ -algebra generated by the totality of closed subsets of F, and suppose that there exists a E-quasi-invariant regular finite measure μ on (G, \mathfrak{B}) . Then, for each continuous positive definite function $L(x)$ on F with $L(0)=1,$ there is a unique probability measure P on (E^{*}, \mathfrak{F}) , such that

$$
L(x) = \int_{E^*} e^{ix^*(x)} dP(x^*), \quad \text{for} \quad x \in E.
$$

REMARK 2.4.3. In the above theorem, let \mathcal{F} denote the totality of weak Borel sets in E^{*} . If the assumptions of [Theorem](#page-7-2) 2. 4. 4. is satisfied, then, in our sense, we can say that Bochner-Minlos' Theorem is valid for (E, F) . However, if E is a nuclear space, then Bochner-Minlos' Theorem is valid for (E, E) , but the assumptions of [Theorem](#page-7-2) 2.4.4. is not satisfied (c.f. [17], [22]).

\S 3. Main theorems and other results

Throughout this section, we shall assume that linear spaces are separable with real coefficient. However, by the similar manner, we can discuss for non-separable cases.

1[°]. General cases

In this subsection, we shall establish theorems analogous to Theorem A (Theorem B, Theorem 2. 3. 1., [Theorem](#page-5-2) 2. 3. 2., [Theorem](#page-6-0) 2. 3. 3., etc.) for complete σ -normed spaces.

LEMMA 3.1.1. Let E be a σ -normed space with the norm sequence $\{\|x\|_{n}\},$ and E^{*} be a conjugate space of E. For each n, let E_{n} denote the completion of E with respect to the norm $||x||_{n}$. Then, if a cylinder measure μ in E^{*} is σ -additive, μ is continuous relative to the absolutely summing topology.

The continuity of μ means the following: There exists the sequence of continuous seminorms $\{p_{n}\}\$ in E such that the natural injection from E_{n} into $E_{p_{n}}$ is absolutely summing, and μ is continuous relative to the seminorms $\{p_{n}\}$; namely, for any $\varepsilon>0$ there exists n and $\delta>0$, such that the inequality $p_{n}(x){\leq}\delta$ implies that $\mu(\Gamma_{x}){\leq}\varepsilon,\,$ where Γ_{x} denotes the strip defined by $|x^{*}(x)| \geq 1$.

PROOF. Since μ is σ -additive, hence by [Lemma](#page-4-0) 2.2.2., $S_{-n}(n)=$ $\{|x^{*}||_{-n}\leq n\}$ is μ -measurable.

We define p_{n} by setting

$$
p_n(x) = \int_{S_{-n}(n)} |x^*(x)| d\mu(x^*) \quad \text{for} \quad x \in E.
$$

Then, obviously p_{n} is a continuous seminorm on E.

CLAIM (a): The natural injection from E_n into E_{p_n} is absolutely summing.

For each $\{x_{i}\}\subset E_{n}$ which is weakly summable, it is easily seen that we have the following ;

$$
C = \sup_{\|x^*\|_{n}} \left\{ \sum_{i=1}^{\infty} \left| x^*(x_i) \right| \right\} < \infty.
$$

Hence, we have

$$
\sum_{i=1}^{\infty} p_n(x_i) = \sum_{i=1}^{\infty} \int_{S_{-n}(n)} |x^*(x_i)| d\mu(x^*)
$$

\n
$$
\leq nC\mu(S_{-n}(n)) < \infty.
$$

Thus, we have the assertion.

CLAIM (b): μ is continuous relative to the seminorms $\{p_n\}.$

Without loss of generality, we may assume that $||x||_{1}\leq||x||_{2}\leq\cdots$ Hence, we have

$$
E^* = \bigcup_{n=1}^{\infty} S_{-n}(n)
$$

$$
S_{-n}(n) \subset S_{-(n+1)}(n+1) \qquad (n=1, 2, \cdots).
$$

Since μ is σ -additive and $\mu(E^{*})=1$, for any $\varepsilon>0$ there exists n such that the complemet of $S_{-n}(n)$ has measure less than $\varepsilon/2$.

Now consider any element x in E such that

$$
p_n(x) \le \varepsilon/2,
$$

and let us estimate the measure of the strip Γ_{x} defined by $|x^{*}(x)| \geq 1$. Obviously,

$$
\mu(\Gamma_x) = \mu(\Gamma_x') + \mu(\Gamma_x'')
$$

where Γ_{x}' is that part of Γ_{x} contained in the ball $S_{-n}(n)$, and Γ_{x}'' is that part lying outside $S_{-n}(n)$. In view of the choice of $S_{-n}(n)$ we have $\mu(\Gamma_{x}')$ $\leq \epsilon/2$. On the other hand, from the inequalitty $|x^{*}(x)| \geq 1$, which holds for all $x^{*}\!\in\!\varGamma_{x}$ and therefore for all $x^{*}\!\in\!\varGamma_{x}'$, it follows that

$$
\mu(\Gamma'_x) = \int_{r'_x} d\mu(x^*) \le \int_{r'_x} |x^*(x)| d\mu(x^*)
$$

$$
\le \int_{S_{-n}(n)} |x^*(x)| d\mu(x^*) = p_n(x) \le \varepsilon/2.
$$

Hence $\mu(\varGamma_{x}){\leq}\varepsilon.$

Thus we have the assertion. That completes the proof.

REMARK 3.1.1. For a cylinder measure μ in E^{*} , Fourier transform of μ is defined by

$$
\hat{\mu}(x) = \int_{E^*} e^{ix^*(x)} d\mu(x^*), \quad \text{for} \quad x \in E.
$$

Then, from [Lemma](#page-5-3) 2. 2. 3., we can say that if a cylinder measure μ is σ -additive, $\hat{\mu}(x)$ is continuous relative to the absolutely summing topology.

LEMMA 3.1.2. Let E and F be Banach spaces, and T be a continuous linear operator from E into F . Then, the following condition (1) implies the condition (2).

 (1) For any continuous cylinder measure μ in F^{*} , the cylinder measure $T^{*}\mu$ in E^{*} is σ -additive.

(2) Let $1 \leq p \leq 2$. Then, for each $\{x_{i}\}\in l_{p}(E)$, and $\{y_{n}^{*}\}\in l_{p}(F^{*})$, we have

$$
\sum_{i=1}^{\infty}\sum_{n=1}^{\infty}\left|\left\langle y_{n}^{*}, Tx_{i}\right\rangle\right|^{p}<\infty.
$$

PROOF. If $1\leq p\leq 2$, the function

$$
\exp(-|t|^p), -\infty \!<\! t \!<\! \infty,
$$

is a positive definite continuous function on R (c.f. [2]). Therefore, it is easily seen that for each $\{y_{n}^{*}\}\in l_{p}(F^{*})$, the function $L(x)$ defined by

$$
L(x) = \exp\left(-\sum_{n=1}^{\infty} \left| \langle y_n^*, x \rangle \right|^p \right), \qquad x \in F,
$$

is a positive definite continuous function on F.

From [Lemma](#page-5-0) 2. 2. 4., there exists a unique continuous cylinder measure μ on F^{*} such that

$$
L(x) = \hat{\rho}(x), \qquad x \in F.
$$

Now, let suppose that the condition (1) is hold, then the measure $T^{*}\mu$ on E^{*} is σ -additive. Hence, by the remark of Lemma 3. 1. 1., Fourier transform of the measure $T^{*}\mu$ is continuous relative to the absolutely summing topology.

On the other hand, by easy calculations, we have

$$
\widehat{T^* \mu}(x) = \widehat{\mu}(Tx) = \exp\left(-\sum_{n=1}^{\infty} \left| \langle y_n^*, Tx \rangle \right|^p\right).
$$

Next, we shall define the seminorm $p(x)$ by

$$
p(x) = \left(\sum_{n=1}^{\infty} \left| \left\langle y_n^*, T x \right\rangle \right|^p \right)^{1/p}, \qquad x \in E,
$$

then it is easily seen that the seminorm $p(x)$ is continuous relative to the seminorms $\{p_{n}\}$ (c.f. Lemma 3. 1. 1.).

Hence we have that there exists a positive constant C and n , such that

$$
p(x) \leq C p_n(x), \quad \text{for} \quad x \in E.
$$

Since the natural mapping from E into $E_{p_{n}}$ is absolutely summing, by [Theorem](#page-1-1) 2.1.1., it is p-absolutely summing. Therefore, we have that for any $\{x_{i}\}\!\in\! l_{p}(E)$,

$$
\sum_{i=1}^{\infty} p(x_i)^p \leq C^p \sum_{i=1}^{\infty} p_n(x_i)^p < \infty.
$$

This shows that the condition (2) is hold.

LEMMA 3.1.3. Let E be a Banach space, F be a σ -normed space with the norm sequence $\{\|x\|_{n}\}$, and let T be a continuous linear operator from E into F. For each n, let F_{n} denote the completion of F with respect to the norm $\|x\|_{n}.$ Then, if for any continuous cylinder measure μ in $F^{*},$ the measure $T^{*}\mu$ in E^{*} is σ -additive, we have that the followings;

(1) If a Banach space E has the $(*)_{p}$ -conditions (1 $\leq p\leq 2$), then, for each n, the conjugate operator T^{*} from F_{n}^{*} into E^{*} is p-absolutely summing.

(2) If for each n, a Banach space F_{n}^{*} (dual of F_{n}) has the $(*)_{p}$ -conditions ($1\leq p\leq 2$), then, for each n, the operator T from E into F_{n} is pabsolutely summing.

PROOF of (1) . For each *n*, from [Lemma](#page-11-0) 3.1.2, it is easily seen that for each $\{x_{i}\}\in l_{p}(E)$, and $\{y_{j}^{*}\}\in l_{p}(F_{n}^{*})$, we have that the following;

$$
\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\left|\langle y_j^*, T x_i \rangle\right|^p < \infty.
$$

Without loss of generality, we may assume that $||T^{*}y_{j}^{*}||$ is not equal to zero $(j=1, 2, \cdots)$. Thus we have

$$
\sum_{j=1}^{\infty} \|T^* y_j^*\|^{p} \left(\sum_{i=1}^{\infty} \left| \langle x_j^*, x_i \rangle \right|^p \right) < \infty,
$$

 $\text{where}\;\; x_{j}^{*}\!=\!T^{*}y_{j}^{*}/\!\|T^{*}y_{j}^{*}\|$.

Since $||x_{j}^{*}||=1$ (j=1, 2, \cdots), and a Banach space E has the $(*)_{p}$ -condi-tions (c.f. [Theorem](#page-1-0) 2.1.4.), thus we have the following;

$$
\sum_{j=1}^{\infty} \|T^* y_j^*\|^{p} < \infty.
$$

This shows that the operator T^{*} from F_{n}^{*} into E^{*} is p-absolutely

summing.

PROOF of (2) . For each *n*, by the similar arguments for the proof of (1) , we have that the following; ${\rm for\ \ each\ \ } \{x_{i}\}\!\!\in\!\! l_{p}(E)\!, \ \ {\rm and\ \ } \{y_{\ j}^{*}\}\!\!\in\!\! l_{p}(F_{\ n}^{*}\!)$

$$
\sum_{i=1}^{\infty} \|Tx_i\|_n^p \left(\sum_{j=1}^{\infty} \left|\langle y_j^*, z_i\rangle\right|^p\right) < \infty,
$$

where $z_{i}=Tx_{i}/||Tx_{i}||_{n}$.

Since a Banach space F_{n} is isometric to a subspace of F_{n}^{**} , $||z_{i}||_{n}=1$ $(i=1, 2, \dots)$, and a Banach space F_{n}^{*} has the $(*)_{p}$ -conditions, thus we have the following;

$$
\sum_{i=1}^{\infty}||Tx_i||_n^p<\infty.
$$

This shows that the operator T from E into F_{n} is p-absolutely summing. Thus, we complete the proof.

REMARK 3. 1. 1. Examples of Banach spaces which satisfy the $(*)_{p}$ conditions, were given in Section 2.

LEMMA 3.1.4. Let E and F be σ -normed spaces, and for each n, let E_{n} denote the completion of E with respect to the norm $\|x\|_{n}^{E},$ F_{n} denote the completion of F with respect to the norm $\|x\|_{n}^{F}$, respectively. Also, suppose that T is a continuous linear operator from E into F . If a σ -normed space F satisfies the following codition $(*)$, then the following condition (1) implies the condition (2).

 $(*)$ For each m, there exists a positive definite continuous function $L_{m}(x)$ on F_{m} (with $L(0)=1$), which satisfies that the following; For any $\epsilon>0$, there exists $\delta>0$, such that the inequality

 $|L_{m}(x)-1|<\delta$ implies that $||x||_{m}^{F}<\varepsilon$.

 (1) For any continuous cylinder measure μ in F*, the cylinder measure $T^{*}\mu$ in E^{*} is σ -additive.

 (2) For any m, there exists n such that the operator T can be extended to an absolutely summing operator from E_n into $F_{m}.$

PROOF. Since a σ -normed space F satisfies the condition (*), by the similar arguments for the proof of [Lemma](#page-10-0) 3. 1. 2., it is easily seen that the following; for any m there exists a positive constant C and n , such that

$$
||Tx||_m^F \leq C p_n(x), \qquad \text{for } x \in E,
$$

where $p_{n}(x)$ is a continuous seminorm on E, and the natural mapping from E_{n} into $E_{p_{n}}$ is absolutely summing (c.f. [Lemma](#page-8-0) 3. 1. 1.).

From this, it is easily seen that the operator T can be extended to an absolutely summing operator from E_{n} into F_{m} .

REMARK 3.1.2. Let F be a σ -normed space, which satisfies that the following; for any m, a Banach space F_{m} is isomorphic to a subspace of $l_{p}(1\leq p\leq 2)$. Then it is easily seen that a σ -normed space F satisfies the above condition $(*)$. In particular, if F is a Köthe space defined by

$$
F = \bigcap_{n=1}^{\infty} l_p(a_{m,n}), \quad 1 \leq p \leq 2, \quad 0 < a_{m,n} \leq a_{m,n+1} < \infty,
$$

(m, n = 1, 2, ...),

then a σ -normed space F satisfies the above condition (*).

And also, if F is a σ -Hilbert space, then F satisfies the above condition (*). Now, we shall apply these lemmas in the ensuing discussions.

COROLLARY 3.1.1. Let E be a Banach space, which satisfies one of the following three conditions ;

(1) A Banach space E has the $(*)_{p}$ -conditions $(1\leq p\leq 2)$.

(2) A Banach space E^{*} (dual of E) has the $(*)_{p}$ -conditions (1 $\leq p\leq 2$).

(3) A Banach space E satisfies the condition $(*)$ in Lemma 3.1.4. Then, in order that every continuous cylinder measure μ in E^{*} be σ -additive, it is necessary and sufficient that E be a finite dimensional space.

PROOF. First we prove the necessity of the condition. Suppose that every continuous cylinder measure in E^{*} be σ -additive.

If a Banach space E satisfies the condition (1) , then by [Lemma](#page-11-0) 3.1.3., the identity operator from E^{*} into E^{*} is p-absolutely summing, therefore it is a nuclear operator (c.f. [11]). This shows that E be a finite dimensional space.

If a Banach space E satisfies the condition (2) , then by Lemma 3.1.3., the identity operator from E into E is p -absolutely summing, therefore, it is nuclear. Thus we have the assertion.

If a Banach space E satisfies the condition (3) , then by [Lemma](#page-12-0) 3.1.4., the identity operator from E into E is absolutely snmming, therefore, it is nuclear. Thus we have the assertion.

From classical Bochner's Theorem, sufficiency is obvious.

Using [Lemma](#page-12-0) 3.1.4., [Theorem](#page-5-1) 2.3.1. can be generalized for σ -normed spaces, that is the following.

THEOREM 3.1.1. Let E be a σ -normed space, which satisfies the condition $(*)$ in Lemma 3.1.4.. Then, in order that every continuous cylinder measure in E^{*} be extendable to a σ -additive one, it is necessary and sufficient that E be a nuclear space.

PROOF. Using [Lemma](#page-11-0) 3.1.4. and Pietsch's Theorem (c. f. [\(\[11\]\)](#page-26-5), it is easy.

Next, we shall establish theorems analogous to [Theorem](#page-5-2) 2. 3. 2. for σ -normed spaces. From now, if E is a σ -normed space, we shall denote $E=\bigcap E_{n}$, where E_{n} denote the completion of E with respet to the n-th norm.

THEOREM 3.1.2. Let H be a Hilbert space, and $F=\bigcap F_{n}$ be a σ normed space, which satisfies that for each n, a Banach space F_{n}^{*} has the $(*)_{p}$ -conditions $(1\leq p\leq 2)$. Also, suppose that T is a continuous linear operator from H into F. Then the following conditions are equivalent.

 (1) For each n, T is a Hilbert-Schmidt operator from H into F_{n} .

(2) For any continuous cylinder measure μ in F*, the measure $T^{*}\mu$ in H^{*} is σ -additive.

PROOF.

 $(1) \Rightarrow (2)$: By the similar arguments for [Theorem](#page-5-2) 2. 3. 2., we have easily the assertion.

 $(2) \Rightarrow (1)$: By the assumption of F and [Lemma](#page-11-0) 3. 1. 3., for each n, the operator T from H into F_{n} is p-absolutely summing. Since $1\leq p\leq 2$, using [Theorem](#page-1-0) 2. 1. 1. and Theorem 2. 1. 3., T is a Hilbert-Schmidt operator from H into F_{n} .

THEOREM 3.1.3. Let $\Phi=\cap\Phi_{n}$ be a σ -Hilbert space, and $F=\cap F_{n}$ be a σ -normed space, which satisfies the condition (*) in Lemma 3. 1. 4.. Also, suppose that T is a continuous linear operator from Φ into F. Then the following conditions are equivalent.

 (1) For any m, there exists n such that the operator T can be extended to a Hilbert-Schmidt operator from \varPhi_{n} into $F_{m}.$

(2) For any continuous cylinder measure μ in F*, the measure $T^{*}\mu$ in Φ^{*} is *o*-additive.

PROOF.

 $(1) \Rightarrow (2)$: By the similar arguments for the proof of [Theorem](#page-5-2) 2. 3. 2., we have easily the assertion.

 $(2) \Rightarrow (1)$: By the assumption of F and [Lemma](#page-11-0) 3. 1. 4., for any m, there exists n such that the operator T can be extended to an absolutely summing operator from \mathcal{D}_n into F_{m} . Thus, by [Theorem](#page-1-0) 2.1.1. and Theorem 2. 1. 3., we have the assertion.

THEOREM 3.1.4. Let $E=\bigcap E_{n}$ be a s-normed space, which satisfies that for each n, a Banach space E_{n} has the $(*)_{p}$ -conditions (1 $\leq p\leq 2$), and let $\Phi=\bigcap\Phi_{n}$ be a σ -Hilbert space, and also suppose that T be a contin-

uous linear operator from E into \varPhi . Then the following conditions are equivalent.

(1) For any m, there exists n such that the operator T can be extended to a Hilbert-Schmidt operator from E_n into $\varPhi_{m}.$

(2) For any continuous cylinder measure μ in \varPhi^{*} , the measure $T^{*}\mu$ in E^{*} is σ -additive.

(3) Let μ_{m} be the Gaussian measure, defined in \varPhi^{*} by $(\varphi, \psi)_{m}^{\bullet}$, then for any m, the measure $T^{*}\mu_{m}$ in E^{*} is *o-additive*.

PROOF.

 $(3) \Rightarrow (1)$: For any m, a positive definite continuous function $\hat{\mu}_{m}(\varphi)$ on Φ_{m} satisfies the condition (*) in [Lemma](#page-11-0) 3. 1. 4., and therefore, by the similar arguments for the proof of [Lemma](#page-12-0) 3.1.4., there exists n such that the operator T can be extended to an absolutely summing operator from E_{n} into Φ_{m} . Also, by the assumption, a Banach space E_{n} has the (*)_p-conditions, therefore T^{*} (conjugate of T) is a p-abso lutely summing operator from Φ_{m}^{*} into E_{n}^{*} (c.f. [Theorem](#page-1-1) 2. 1. 1. and 2. 1. 4.). Since $1\leq p$ \leq 2, by [Theorem](#page-1-0) 2. 1. 1. and Theorem 2. 1. 3., T^{*} is a Hilbert-Schmidt operator, and therefore, T is a Hilbert-Schmidt operator from E_{n} into Φ_{m} .

For the part of $(1) \Rightarrow (2)$ and $(2) \Rightarrow (3)$, it is easy.

Next, we shall show the Sazonov's Theorem concerning Gaussian measures for σ -normed spaces (c.f. [Theorem](#page-6-0) 2. 3. 3).

DEFINITION 3. 1. 1. (c.f. [16])

Let E be a locally convex Hausdorff space and H a Hilbert space. We shall call a continuous linear map $T: E\rightarrow H$ a Hilbert-Schmidt map if it can be factored into

$$
E\frac{\partial}{\partial U}H_1\frac{\partial}{\partial V}H,
$$

where H_{1} is a Hilbert space, U is a continuous linear map and V is a Hilbert-Schmidt map.

The Hilbert-Schmidt topology τ_{HS} on E will be the coarsest topology on E for which all Hilbert-Schmidt maps are continuous.

THEOREM 3.1.5. Let $E=\bigcap E_{n}$ be a s-normed space, which satisfies that for each n, a Banach space E_{n} has the $(*)_{p}$ -conditions $(1\leq p\leq 2)$, and let $||x||_{H}$ be a continuous Hilbertian norm on E.

Then, in order that a Gaussian measure μ_{H} , defined in E^{*} by $||x||_H$, be σ -additive, it is necessary and sufficient that $\hat{\mu}_{H}(x)$ be continuous relative to the Hilbert-Schmidt topology.

PROOF. First we prove the necessity of the condition. Let H be

118 Y. Takahashi

a completion of E with respect to the Hilbertian norm $||x||_{H}$.

Since $\hat{\mu}_{H}(x)$ (Fourier transform of the measure μ_{H}) is defined by

 $\hat{\mu}_{H}(x)=\exp (-||x||_{H}^{2}/2)$, for $x\in E$,

in order to prove that $\hat{\mu}_{H}(x)$ is continuous relative to the Hilbert-Schmidt topology, it is sufficient to show that the natural map from E into H is a Hilbert-Schmidt map. Thus, by the assumption of E and [Theorem](#page-14-0) 3. 1. 4., we have easily the assertion.

The sufficiency of the condition is obvious.

REMARK 3. 1. 3. In [Theorem](#page-15-0) 3. 1. 5., if E is a σ -Hilbert space, then the Hilbert-Schmidt topology on E coincide with the nuclear topology. (For the nuclear topology on σ -Hilbert spaces, c.f. [\[2\],](#page-26-0) [\[19\]\)](#page-27-1)

Next, by [Theorem](#page-1-0) 2. 1. 4. and Theorm 2. 4. 2., we obtain that the following theorem for the existence of quasi-invariant measures. That is the generalization of the author's result (c.f. Theorem B in [\[20\]\)](#page-27-0).

THEOREM 3.1.6. Let E be a Banach space, and let \mathfrak{F} be the totality of weak Borel sets in E. Let Φ be a linear subspace of E, and suppose that $\Phi=\bigcap\Phi_{n}$ itself is a complete σ -Hilbert space.

Also, suppose that the inclusion mapping T from Φ into E is continuous. Then, if E^{*} (dual of E) has the $(*)_{p}$ -conditions (1 $\leq p\leq 2$), the following conditions are equivalent.

 (1) There exists a \varPhi -quasi-invariant finite measure (non-trivial) on (L, δ) .

(2) There exists n such that the conjugate operator T^{*} from E^{*} into Φ_{n}^{*} is absolutely summing.

(3) There exists Hilbert spaces H_{1} and H_{2} such that

$$
\varPhi \subsetneq H_1 \subsetneq H_2 \subsetneq E
$$

 $T=K\circ J\circ I$ where injection map I and K are continuous, J is a Hilbert-Schmidt operator, respectively.

PROOF is easy.

Now, we shall establish main theorems analogous to Theorem A when G and H belongs to some suitable class of complete separable σ -normed spaces. In the ensuing discussions of this subsection, the totality of weak Borel sets is denoted by \mathfrak{B} and $\mathfrak{F}.$

THEOREM 3.1.7. Let $F = \bigcap F_{n}$ be a s-normed space, which satisfies that for each n, a Banach space F_{n}^{*} (dual of F_{n}) has the $(*)_{p}$ -conditions $(1\leq p\leq 2)$. Let H be a subspace of F, and suppose that H itself is a Hilbert

space. Also, suppose that the inclusion mapping T from H into F is continuous. Then, the following conditions are equivalent.

 (1) For each n, T is a Hilbert-Schmidt operator from H into F_{n} .

 (2) For each n, there exists H-quasi-invariant finite measure (nontrivial) on $(F_{n}, \mathfrak{B}).$

(3) For any positive definite continuous function L on F with $L(0)$ =1, there exits a unique probability measure μ on (H^{*}, \mathfrak{F}) such that

$$
L(x) = \int_{H^*} e^{ix^*(x)} d\mu(x^*), \quad \text{for} \quad x \in H.
$$

Namely, in our sense, Bochner-Minlos' Theorem is valid for (H, F). PROOF.

 $(1) \Rightarrow (2)$: By the similar arguments for the proof of [Theorem](#page-7-1) 2.4.3., it is obvious (c.f. [20]).

 $(2) \Rightarrow (1)$: By the assumption of F, and by Theorem 2.1.4. and 2.4. 2., it is obvious.

 $(1) \Rightarrow (3)$: By the similar arguments for the proof of [Theorem](#page-5-2) 2.3.2., and by [Lemma](#page-5-0) 2. 2. 4., it is easily seen that we have the assertion.

 $(3) \Rightarrow (1)$: By the assumption of F, and [Lemma](#page-5-0) 2. 2. 4., [Theorem](#page-14-0) 3. 1. 2., it is easily seen that we have the assertion.

That completes the proof.

REMARK 3. 1. 4. In the above theorem, we can not apply [Theorem](#page-7-2) 2. 4. 4. for the proof of $(2) \Rightarrow (3)$. However, if we consider the following condition $(2)'$ instead of the condition (2) , then, by [Theorem](#page-7-2) 2.4.4., we can prove that the condition (2)' implies the condition (2).

 $(2)'$ There exists a H-quasi-invariant regular finite measure (nontrivial) on $(F, \mathfrak{B}).$

THEOREM 3.1.8. Let $F = \bigcap F_{n}$ be a s-normed spac, which satisfies the condition $(*)$ in Lemma 3.1.4, and let Φ be a linear subspace of F, and suppose that $\Phi=\cap\Phi_{n}$ itself is a complete *o*-Hilbert space. Also, suppose that the inclusion mapping T from Φ into F. Then, the following conditions are equivalent.

 (1) For any m, there exists n such that the operator T can be extended to a Hilbert-Schmidt operator from $\pmb{\varPhi}_{n}$ into F_{m} .

(2) For each m, there exists a Φ -quasi-invariant regular finite measure $(non-trivial)$ on $(F_{m}, \mathfrak{B}).$

(3) For any positive definite continuous function L on F with $L(0)$ =1, there exists a unique probability measure μ on (Φ^{*}, \mathfrak{F}) such that

120 Y. Takahashi

$$
L(x) = \int_{\mathfrak{g}^*} e^{ix^*(x)} d\mu(x^*), \quad \text{for} \quad x \in \mathfrak{D}.
$$

Namely, in our sense, Bochner-Minlos' Theorem is valid for (Φ, F) .

PROOF.

 $(1) \Rightarrow (2)$: By the similar arguments for the proof of [Theorem](#page-7-1) 2.4.3., it is obvious.

 $(2) \Rightarrow (1)$: Let assume the condition (2), then by [Theorem](#page-7-2) 2.4.4., we have that the Bochner-Minlos' Theorem is valid for (\varPhi, F_{m}) . Hence, by the assumption of F_{m} and Theorem 3. 1. 3., we have the assertion.

Since, by [Lemma](#page-5-0) 2. 2. 4. and Theorem 3. 1. 3., the codition (1) and the condition (3) are equivalent, thus we complete the proof.

REMARK 3.1.5. Since a Banach space F_{m} be separable (recall the assumptions of this section), for any σ -additive cylinder measure μ on $(F_{m}, \, \mathfrak{B}), \,$ by [Lemma](#page-4-1) 2.2.1. and well known results, the measure μ is a regular Borel measure. Therefore, the regularity of the measure μ is not necessarily a essential condition.

THEOREM 3.1.9. Let $\Phi=\cap\Phi_{n}$ be a σ -Hilbert space, E be a linear subspace of $\varPhi,$ and suppose that $E{=}\cap E_{n}$ itself is a complete $\sigma\text{-}normed$ space, which satisfies that for each n, a Banach space E_{n} has the $(*)_{n}$ -conditions $(1\leq p\leq 2)$. Also, suppose that the inclusion mapping T from E into Φ is continuous. Then, the following conditions are equivalent.

 (1) For any m, there exists n such that the operator T can be extended to a Hilbert-Schmidt operator from E_{n} into $\pmb{\varPhi}_{m}$.

 (2) For each m, there exists a E-quasi-invariant regular finite measure $(non-trivial)$ on $(\Phi_{m}, \mathfrak{B}).$

(3) For any positive definite continuous function L on Φ with $L(0)$ =1, there exists a unique probability measure μ on (E^{*}, \mathfrak{F}) such that

$$
L(x) = \int_{E^*} e^{ix^*(x)} d\mu(x^*), \quad \text{for} \quad x \in E.
$$

Namely, in our sense, Bochner-Minlos' Theorem is valid for (E, Φ) .

PROOF. The assertion can be proved in a quite similar way as before, so we omit it.

2°. $L_{p}(X, \mu)$ and $l_{p}(a_{n})$ cases

In this subsection, we shall consider the special cases of the subsection 1° . . Then, we can obtain an interesting result.

Notations. Let X be a set, \sum be a σ -algebra in X, and let μ and

 $\nu_{n}(n=1, 2, \cdots)$ be σ -finite measures on (X, Σ) . Also, suppose that ν_{n} satisfies the following conditions;

$$
\nu_n(B) \leq \nu_{n+1}(B), \quad \text{for any} \quad B \in \Sigma
$$

$$
(n=1, 2, \cdots).
$$

Then, $L_{p}(X, \mu)$ be a Banach space, and $\bigcap L_{p}(X, \nu_{n})$ be a complete σ -normed space with the norms $||f||_{n}$ defined by

$$
||f||_n = \left(\int_x |f(x)|^p d\nu_n(x)\right)^{1/p}, \quad \text{for } f \in \bigcap L_p(X, \nu_n).
$$

Similarly, the sequence $l_{p}(a_{n})$ be a Banach space, and $\bigcap_{p}l_{p}(a_{m,n})$ be a complete σ -normed space (Köthe space).

LEMMA 3. 2. 1. Let $F = \bigcap L_{p}(X, \nu_{n})$ be a complete separable *o*-normed space, and $L_{2}(X, \mu)$ be a separable Hilbert space, such that $L_{2}(X, \mu)$ is a linear subspace of F and the inclusion mapping T from $L_{2}(X, \mu)$ into F is continuous. Let \mathfrak{F} denote the totality of weak Borel sets in F. Then, the following implications $(1)\Rightarrow(2)\Rightarrow(3)\Rightarrow(4)$ holds.

(1) There exists a $L_{2}(X, \mu)$ -quasi-invariant regular finite measure (nontrivial) on (F, \mathfrak{F}) .

(2) In our sense, Bochner-Minlos' Theorem is valid for $(L_{2}(X, \mu), F)$.

(3) For any n, the conjugate operator T^{*} from $L_{p}(X, \nu_{n})^{*}$ into $L_{2}(X, \nu_{n})$ μ ^{*} is absolutely summing.

(4) For any n, and for any $\{X_{j}\}\subset X$ which is measurable and pairwise disjoint with $0<\mu(X_{j})<\infty$, $0<\nu_{n}(X_{j})<\infty$, we have

$$
\sum_{j=1}^\infty \frac{\mu(X_j)}{\nu_n(X_j)^{p/2}} < \infty \, .
$$

PROOF.

 $(1) \Rightarrow (2)$: By [Theorem](#page-7-2) 2. 4. 4., it is obvious.

(2) \Rightarrow (3): Since a Hilbert space $L_{2}(X, \mu)$ has the (*)₁-conditions, by Lemma 3. 1. 3., we have the assertion.

 $(3) \Rightarrow (4)$: The proof of this part can be found in [\[20\].](#page-27-0)

REMARK 3. 2. 1. In Lemma 3. 2. 1., if $1 \leq p \leq 2$, then a Banach space $L_{p}(X, \nu_{n})^{*}$ has the $(*)_{p}$ -conditions, and therefore, by [Theorem](#page-16-0) 3. 1. 7., the conditions (1)', (2), (3), and (4)' are equivalent; where the conditions (1)' and (4)' are defined by the following :

(1)' For each n, there exists a $L_2(X, \mu)$ -quasi-invariant finite measure (non-trivial) on $(L_p(X, \nu_{n}), \mathfrak{B}).$

(4)' For each n, the operator T from $L_{2}(X, \mu)$ into $L_{p} (X, \nu_{n})$ is

a Hilbert-Schmidt operator.

THEOREM 3. 2. 1. Let $1 \leq p < \infty$, let $\{a_{m,n}\}\$ be a double sequence of positive numbers, which satisfies that $0 \lt a_{m,n} \leq a_{m,n+1} \lt \infty$ $(m, n=1, 2, \cdots)$. Let $F=\bigcap l_{p}(a_{m,n})$ denote the totality of real number sequences $\xi=\{\xi_{m}\}$ which satisfies the following conditions;

$$
\|\xi\|_{n} = \left(\sum_{m=1}^{\infty} a_{m,n} |\xi_m|^p\right)^{1/p} < \infty, \qquad (n = 1, 2, \cdots).
$$

Then, F forms a complete separable σ -normed space (Köthe space) with respect to the sequence of norms $\|\xi\|_{n}(n=1,2, \cdots)$.

Let \mathfrak{B} be the σ -algebra in F generated by the totality of Borel cylinders

$$
\left\{\xi \Big| (\xi_1,\xi_2,\,\cdots,\,\xi_m) \!\in\! B \right\}
$$

where B represents an arbitrary Borel sets in m-dimensional space.

Let l_{2} be a subspace of F, and suppose that the natural injection T from l_{2} into F be continuous. Then, the following conditions are equivalent.

(1) There exists a l_{2} -quasi-invariant regular finite measure (nontrivial) on $(F, \mathfrak{B}).$

(2) In our sense, Bochner-Minlos' Theorem is valid for (l_{2}, F) .

(3) For any n, the conjugate operator T^{*} from $l_{p}(a_{m,n})^{*}$ into l_{2}^{*} is absolutely summing.

(4) For any n, we have

$$
\sum_{m=1}^{\infty} a_{m,n} < \infty.
$$

PROOF.

 $(4) \Rightarrow 1)$: Let μ_{H} be a standard Gaussian mersure on l_{2} , then, by the Kolmogorov's extension theorem, μ_{H} is a σ -additive measure on R^{∞} , which is l_{2} -quasi-invariant (c.f. [2]). Now, if we assume the condition (4), then it is easily seen (c.f. $[2]$) that for any *n*, we have

$$
\mu_{H}\bigl(l_{p}(a_{m,n})\bigr)=1.
$$

Therefore, we have that $\mu_{H}(F)=1$. Thus, restricting μ_{H} to (F, \mathfrak{B}) , we obtain a regular finite measure which is l_{2} -quasi-inveariant, that is, the condition (1) holds.

Since, by Lemma 3. 2. 1., the implications $(1)\Rightarrow (2)\Rightarrow (3)\Rightarrow (4)$ is valid, thus, we complete the proof.

REMARK 3. 2. 2. In [Theorem](#page-20-0) 3. 2. 1., if $1 \leq p \leq 2$, the conditions (1), (2) , (3) , (4) and (5) are equivalent $(c. f. [20])$; where the condition (5) is the following :

(5) For each n, the operator T from l_{2} into $l_{p}(a_{m,n})$ is a Hilbert-Schmidt operator.

However, if $2 < p < \infty$, the condition (2) is not necessarily equivalent to the condition (5) (c.f. [20]).

\S 4. Appendix

In this section, we shall consider the rotationally invariant measures on separable Banach spaces. Throughout this section, we assume that Banach spaces are separable with real coefficients.

DEFINITION 4.1. $(c. f. [22])$

Let E be a Banach space, $||x||_{H}$ be a continuous Hilbertian norm on E, and let H be the completion of E with respect to the norm $||x||_{H}$. An unitary operator u on H is called a rotation of E , if it satisfies ;

- (1) u maps E onto E.
- (2) u is homeomorphic on E.

Whole of rotations of E forms a group, which we call the rotation group of E and denote it with $O_{H}(E)$.

For any $u\in O_{H}(E)$, its conjugate operator u^{*} becomes a homeomorphic transformation on E^{*} . Thus, identifying u^{*} with u^{-1} , (i.e. identifying u with $u^{-1^{*}}$), $O_{H}(E)$ can be regarded as a transformation group on E^{*} .

Next, let \mathfrak{F} be the totality of weak Borel sets in E^{*} , and let μ be a measure on (E^{*}, \mathfrak{F}) . Then, we say that μ is $O_{H}(E)$ -invariant, if $u^{*}\mu=\mu$ for all $u \in O_{H}(E)$.

REMARK 4.1. Let E be a Banach space, $||x||_{F}$ be a continuous norm on E, and let F be the completion of E with respect to the norm $||x||_{F}$. Then, similarly in the case of Hilbertian norm, whole of rotations of E forms a group, which we call the rotaion group of E and denote it with $O_{F}(E).$

DEFINITION 4.2. $(c. f. [15])$

Let E be a Banach space, and $1 \leq p < \infty$.

 (1) We say that a cylinder measure μ on E is of type p, if there exists a positive constant C such that the following inequality holds;

$$
\int_{E} \left| x^*(x) \right|^p d\mu(x) \leq C \|x^*\|^p, \quad \text{for all} \quad x^* \in E^*.
$$

(2) We say that a probability Radon measure μ on E is of order p, if the following inequality holds;

$$
\int_{\mathbb{R}} \|x\|^p \, d\mu(x) < \infty \, .
$$

EXAMPLE 4.1. (c.f. [15])

Let H be a Hilbert space, then, a standard Gaussian measure μ on H is of type p, for all $1 \leq p < \infty$.

LEMMA 4. 1. (c.f. [15])

Let H be a Hilbert space, E be a Banach space, and suppose that μ_{H} be a standard Gaussian measure on H. Also, suppose that the operator T from H into E be a Hilbert-Schmidt operator. Then, we have that the measure $T\mu_{H}$ on E is a Radon measure of order p, $(1\leq p<\infty)$.

LEMMA 4.2. Let E be a Banach space, $||x||_{H}$ be a continuous Hilbertian norm on E, and let H be the completion of E with respect to the norm $||x||_H$. Then, if there exists a $O_H(E)$ -invariant Radon measure of order p on E^{*} (except the Dirac measure, $1 \leq p < \infty$), we have that the natural injection from E into H is p-absolutely summing.

PROOF. Suppose that μ is a $O_{H}(E)$ -invariant Radon measure (except the Dirac measure) of order p on E^{*} .

CLAIM (a): For any $x, y \in E$, if $||x||_{H} = ||y||_{H}$, then we have

$$
\int_{E^*} \left| \left\langle x^*, x \right\rangle \right|^p d\mu(x^*) = \int_{E^*} \left| \left\langle x^*, y \right\rangle \right|^p d\mu(x^*) < \infty.
$$

REASON: For any $x, y \in E$, let R be the two-dimensional subspace of E which is generated by $\{x, y\}$. If $||x||_{H} = ||y||_{H}$, x is mapped to y by a suitable rotation u_{R} of R. However, since R is finite dimensional, u_{R} can be extended to a rotation u of E , i.e. to an unitary operator on H which is homeomorphic on E. Since μ is $O_{H}(E)$ -invariant, we have easily the equality, and also, since μ is of order p , therefore we have the inequality.

CLAIM (b): There exists a positive constant C_{1} such that

$$
C_1 = \int_{E^*} \left| \left\langle x^*, x \right\rangle \right|^p d\mu(x^*), \quad \text{for all} \quad x \in E \quad \text{with} \quad ||x||_H = 1 \, .
$$

REASON: To prove this, by claim (a), it is sufficient to show that C_{1} be positive.

If we assume that C_{1} is equal to zero. Then, we have

$$
(*)\qquad \int_{E^*} \left| \langle x^*, x \rangle \right|^p d\mu(x^*) = 0, \qquad \text{for all} \quad x \in E.
$$

Since a Banach space E be separable (recall that the assumption of this section), it is easily seen that there exists a weakly p -summable sequence $\{x_{i}\}\$ in E such that the totality of its linear combinations is dense in E. Let $f(x^{*})$ be a real valued function on E^{*} defined by

$$
f(x^*) = \sum_{i=1}^{\infty} \left| \langle x^*, x_i \rangle \right|^p
$$
, for $x^* \in E^*$,

then, by the assumptions of $\{x_i\}$, it is easily seen that we have (**) $f(x^{*})>0$ for all $x^{*}\in E^{*}-\{0\}$.

Thus, by the condition (*), we have

$$
\int_{\mathbb{R}^*} f(x^*) \, d\mu(x^*) = 0 \, .
$$

From this and condition (**), it can be shown that μ be the Dirac measure concentrated to {0}. That is a contradiction.

Now, we shall prove that the natural injection from E into H is p absolutely summing.

Let $\{x_i\}\subset E$ be weakly p-summable, namely, the following inquality is satisfied ;

$$
\sum_{i=1}^{\infty} \left| \left\langle x^*, x_i \right\rangle \right|^p < \infty, \qquad \text{for all} \quad x^* \in E^*.
$$

Putting

$$
p(x^*) = \left(\sum_{i=1}^{\infty} \left| \langle x^*, x_i \rangle \right|^p \right)^{1/p}, \quad \text{for} \quad x^* \in E^*,
$$

obviously $p(x^{*})$ is a lower semicontinuous seminorm on $E^{*}.$

Since a Banach space E^{*} be second category, using Gelfand's theorem, $p(x^{*})$ is continuous. Therefore, there exists a positive number C_{2} such that

$$
p(x^*) \leq C_2 ||x^*||, \qquad \text{for} \quad x^* \in E^*.
$$

Next, from claim (b), we have that

$$
C_1||x_i||_H^p = \int_{E^*} \left| \langle x^*, x_i \rangle \right|^p d\mu(x^*), \qquad (i=1, 2, \cdots).
$$

Hence, we have

$$
C_1 \sum_{i=1}^{\infty} \|x_i\|_H^p = \sum_{i=1}^{\infty} \int_{E^*} \left| \langle x^*, x_i \rangle \right|^p d\mu(x^*)
$$

$$
\leq C_2^p \int_{E^*} \|x^*\|^p d\mu(x^*).
$$

Since the measure μ be of order p , and C_{1} be positive, therofore, we have

$$
\sum_{i=1}^{\infty}||x_i||_H^p<\infty.
$$

This shows that the natural injection from E into H is p -absolutely smming.

REMARK 4.2. Throughout this section, we assume that a Banach space E be separable. However, if E is not necessarily separable, under the assumption that E^{*} (dual of E) be separable, we can prove [Lemma](#page-22-0) 4. 2. in a similar way.

THEOREM 4.1. Let G be a Hilbert space, $||x||_{H}$ be a continuous Hilbertian norm on G, and let H be the completion of ^G with respect to the norm $\|x\|_{\scriptscriptstyle H}$. Then, the following conditions are equivalent.

(1) The natural injection from ^G into H is a Hilbert-Schmidt operator.

(2) There exists a $O_{H}(G)$ -invariant Radon measure of order p on G^{*} (except the Dirac measure, $1 \leq p < \infty$).

PROOF.

 $(1) \Rightarrow (2)$: Let assume the condition (1), then the natural injection from H^{*} into G^{*} is a Hilbert-Schmidt operator. Let μ_{H} be a standard Gaussian measure on H^{*} , then, by [Lemma](#page-22-1) 4. 1., the measure μ_{H} on G^{*} is a Radon measure of order p. Since μ_{H} is $O_{H}(G)$ -invariant (c.f. [22]), thus we have the assertion.

 $(2) \Rightarrow (1)$: Let assume the condition (2), then, by [Lemma](#page-22-0) 4. 2., the natural injection from G into H is a p-absolutely summing operator, and therefore, by [Theorem](#page-1-2) 2. 1. 2., it is a Hilbert-Schmidt operator.

THEOREM 4.2. Let $1 \leq p \leq 2$. Let E be a Banach space, which has the $(*)_{p}$ -conditions, $||x||_{H}$ be a continuous Hilbertian norm on E, and let H be the completion of E with respect to the norm $||x||_{H}$. Then, the following conditions are equivalent.

 (1) The natural injection from E into H is a Hilbert-Schmidt operator.

(2) Let μ_{H} be a standard Gaussian measure on $H^{*},$ then the measure μ_{H} on E^{*} is a Radon measure of order p.

(3) There exists a $O_{H}(E)$ -invariant Radon measure of order p on E^{*} (execpt the Dirac measure).

PROOF.

 $(3) \Rightarrow (1)$: Let assume the condition (3), then, by [Lemma](#page-22-0) 4. 2., the natural injection from E into H is p -absolutely summing, and therefore, by the assumption of E, the conjugate operator from H^{*} into E^{*} is pabsolutely summing (c. f. Theorem 2. 1. 4.). Since $1 \leq p \leq 2$, then, by Theorem 2. 1. 1. and 2. 1. 3., the operator from H^{*} into E^{*} is a Hilbert-Schmidt operator, and therefore, the natural injection from E into H is a Hilbert-Schmidt operator.

Next, by [Lemma](#page-22-1) 4. 1., the implications $(1)\Rightarrow(2)\Rightarrow(3)$ holds. That completes the proof.

REMARK 4.3. In [Theorem](#page-24-0) 4.2, if $2 < p < \infty$, and E has the $(*)_{p}$ conditions, then, the implications $(1)\Rightarrow(2)\Rightarrow(3)$ is valid, however, $(3)\Rightarrow(1)$ is not valid. The following example shows this.

EXAMPLE 4. 2. Let $l_{p}(a_{n})$ be a Banach space with the norm $\|\xi\|$ defined by

$$
\|\xi\| = \left(\sum_{n=1}^{\infty} a_n |\xi_n|^p\right)^{1/p}, \quad \text{for} \quad \xi = \{\xi_n\} \in l_p(a_n),
$$

where $1\leq p<\infty$, and $0 $(n=1, 2, \ldots)$. Suppose that l_{2} be a subspace$ of $l_{p}(a_{n})$, and the natural injection from l_{2} into $l_{p}(a_{n})$ be continuous. Then, the following conditions are equivalent.

(1) There exists a $O_{l_{2}}(l_{p}(a_{n}))$ -invariant Radon measure of order p on $l_{p}(a_{n})$ (except the Dirac measure).

(2) The conjugate operator from $l_{p}(a_{n})^{*}$ into l_{2}^{*} is p-absolutely summing.

 $(3) \quad \sum a_{n} < \infty$.

PROOF.

 $(1) \Rightarrow (2)$: By the similar arguments for the proof of [Lemma](#page-22-0) 4. 2., it is obvious.

 $(2) \Rightarrow (3)$: The proof of this part can be found in [\[20\].](#page-27-0)

 $(3) \Rightarrow (1)$: Let μ_{H} be a standard Gaussian measure on l_{2} . If we assume that the condition (3) holds, then, it is easily seen that the measure μ_{H} can be extended to a Radon measure on $l_{p}(a_{n})$ (c.f. [2]). Then, by easy calculations, we can show that a Radon measure μ_{H} on $l_{p}(a_{n})$ is $O_{l_{p}}(l_{p}(a_{n}))$ invariant and of order p . That is the assertion.

REMARK 4. 4.

(1) In the above example, $O_{l_{n}}(l_{p}(a_{n}))$ means that the following: An linear operator u on $l_{p}(a_{n})$ belongs to $O_{l_{p}}(l_{p}(a_{n}))$, if it satisfies;

(a) u is homeomorphic on $l_{p}(a_{n})$.

 (b) u is a unitary operator on l_{2} .

Then, a Radon measure μ on $l_{p}(a_{n})$ is called $O_{l_{p}}(l_{p}(a_{n}))$ -invariant, if it satisfies that

 $u\mu=\mu , \qquad \text{for all} \quad u\!\in\! O_{l_{2}}(l_{p}(a_{n})).$

(2) In the above example, if $1\leq p\leq 2$, then, these conditions are equivalent to the following condition (*) ;

(*) The natural injection from l_{2} into $l_{p}(a_{n})$ is a Hilbert-Schmidt

operator.

However, if $2 < p < \infty$, then, these conditions are not necessarily equivalent to the condition $(*)$ (c. f. [20]).

References

- [1] J.S. COHEN: Absolutely p -summing, p -nuclear operators and their conjugates, Math. Ann. 201, 177-200 (1973).
- [2] XIA DAO-XING: Measure and integration theory on infinite dimensional spaces, Academic Press New York (1972).
- [3] I. M. GELFAND and N. J. VILENKIN: Generalized Functions, Vol. 4 (1961).
- [4] A. GROTHENDIECK: Sur certaines classes de suites dans les espaces de Banach et le théorème de Dvoretzky-Rogers, Boletim Soc. Mat. Sao Paulo 8, 81-110 (1956).
- [5] S. KAKUTANI: Concrete representation of abstract M-spaces, ibidem 42, 994- 1024 (1941).
- [6] H. H. KUO: Gaussian measures in Banach spaces, Springer-Verlag Berlin. Heidelberg. New York (1975).
- [7] J. LINDENSTRAUSS and A. PELCZYŃSKI: Absolutely summing operators between \mathscr{L}_{p} -spaces, Studia Math. 29, 275-326 (1968).
- [8] A. J. LAZAR and J. LINDENSTRAUSS: On Banach spaces whose duals are L_{1} spaces, Israel J. Math. 4, 205-207 (1966).
- [9] R. A. MINLOS: Generalized random processes and their extension to measures, (in Russian) Trudy Moskov. Obsc. 8, 497-518 (1959).
- [10] K. R. PARTHASARATHY: Probability measures on metric spaces, Academic Press, (1967).
- [11] A. PIETSCH: Absolut p-summierende Abbildungen in normierten ^R\"aumen, Studia Math. 28, 333-353 (1967).
- [12] A. PIETSCH: Nuclear Locally Convex Spaces, Springer-Verlag Berlin. Heidelberg. New York (1972).
- [13] A. PELCZYŃSKI: A characterization of Hilbert-Schmidt operators, Studia Math. 28, 355-360 (1967).
- [14] V. SAZONOV: A remark on characteristic functionals, Teor. Veroj. i. Prim. 3, 201-205 (1958).
- [15] L. SCHWARTZ: Probabilites cylindriques et applications radonifiantes, J. Fac. Sci. Uni. Tokyo Sect. ¹ A 18, 139-286 (1971).
- [16] L. SCHWARTZ: Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures, Tata Inst. of Fun. Res. Oxford Uni. Press (1973).
- [17] V. N. SUDAKOV: Linear sets with quasi-invariant measure, (in Russian) Doklady Akademii Nauk 127, 524-525 (1959).
- [18] S. KOSHI and Y. TAKAHASHI: A Remark on quasi-invariant measure, Proc. Japan Acad., Vol. 50, No. 7, 428-429 (1974).
- [19] Y. TAKAHASHI: A note on Sazonov's Theorem, J. Fac. Sci. Hokkaido Univ. Ser. 1, Vol. 22, No. 3-4, 126-131 (1972).
- [20] Y. TAKAHASHI: Quasi-invarint measures on linear topological spaces, Hokkaido Math. Jour. Vol. 4, No. 1, 59-81 (1975).
- [21] Y. TAKAHASHI: Some remarks on p-absolutely summing operators, Hokkaido Math. Jour. Vol. 5 (1976) (to appear).
- [22] Y. UMEMURA: Measures on infinite dimensional vector spaces, Publ. Res. Inst. Mat. Sci. Kyoto Univ. Vol. 1, No. 1, 1-47 (1965).

Department of Mathematics Hokkaido University