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\S 1. Introduction

In [2], DaO-Xing has shown that the following:
THEOREM A. Let H and G be real separable Hilbert spaces such that

H is a linear subspace of G and the inclusion mapping T from H into
G is continuous. Let \mathfrak{B} denote the totality of weak Borel sets in G, and
\mathfrak{F} the totality of weak Borel sets in the conjugate space H^{*} of H. Then,
the following conditions are equivalent.

(1) T is a Hilbert-Schmidt operator from H into G.
(2) There exists a H-quasi-invariant fifinite measure {non-trivial) on

(G, \mathfrak{B}) .
(3) For any positive defifinite continuous function f on G with f(0)=1,

there exists a unique probability measure \mu on (H^{*}, \mathfrak{F}) such that, for any
x\in H,

f(x)= \int_{H^{*}}e^{ix^{*}(x)}d\mu(x^{*}) .

In [20], the author has proven the following result. This is a gener-
alization of Theorem A.

THEOREM B. Let \Phi be a separable \sigma Hilbert space, with the inner
products (\varphi_{1}, \varphi_{2})_{n}^{\Phi} , and let \Psi be a linear subspace of \Phi, and suppose that \Psi

itself is a complete separable \sigma Hilbert space with respect to the inner prod-
ucts (\psi_{1}, \psi_{2})_{n}^{\psi} . Also, suppose that the inclusion mapping T from \Psi into \Phi

is continuous. For each n, let \Phi_{n} denote the completion of \Phi with respect
to the inner products (\varphi_{1}, \varphi_{2})_{n}^{\Phi} , and \Psi_{n} denote the completion of \psi with
respect to the inner products (\psi_{1}, \psi_{2})_{n}^{\psi} , respectively. Then, the following
conditions are equivalent.

(1) T is a Hilbert-Schmidt operator from \Psi into \Phi in \sigma Hilbert
spaces. Namely, for any m, there exists n such that T is a Hilbert-Schmidt
operator from \Psi_{n} into \Phi_{m} .

(2) For any n, there exists a \Psi-quasi-invariant fifinite measure (non-
trivial) on (\Phi_{n}, \mathfrak{B}_{n}) .

(3) For any positive defifinite continuous function L on \Phi with L(0)=1,
there exists a unique probability measure \mu on (\Psi^{*}, \mathfrak{F}) such that
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L( \psi)=\int_{\Psi^{*}}e^{iF_{(}\psi)}d\mu(F) for \psi\in\Psi

In this paper, we shall establish theorems analogous to Theorem A
(Theorem B) when G and H ( \Phi and \Psi) belongs to some suitable class of
separable Banach spaces (complete separable \sigma-normed spaces), respectively.
In Theorem A, if the condition (3) is satisfied for G and H, then we shall
call that Bochner-Minlos’ Theorem is valid for (H, G) .

Throughout this paper (except for \S 2. 1^{o} .), we shall assume that linear
spaces are with real coefficients.

\S 2. Basic definitions and well known results

1\circ . p-absolutely summing operators (1\leqq p<\infty)

Let E and F be Banach spaces.

A sequence \{x_{i}\} with values in E is called weakly p-summable (l_{p}(E))

if for all x^{*}\in E^{*} , the sequence \{x^{*}(x_{i})\}\in l_{p} .
A sequence \{x_{i}\} with values in E is called absolutely p-summable, (l_{p}

\{E\}) if the sequence \{||x_{i}||\}\in l_{p} .
DEFINITION 2. 1. 1. A linear operator T from E into F is called p-

absolutely summing if for each \{x_{i}\}\subset E which is weakly p-summable, \{T

(x_{i})\}\subset F is absolutely p-summable.
We shall say “absolutely summing” instead of “1-absolutely summing”.

THEOREM 2. 1. 1. (c.f. [11])

Let a linear operator T from E into F be p-absolutely summing. If
1\leqq p\leqq q<\infty , then T is q-absolutely summing.

THEOREM 2. 1. 2. (c.f. [11], [13])

Let H and G be Hilbert spaces and let T be a linear operator from
H into G. Then the following conditions are equivalent.

(1) T is p-absolutely summing.
(2) T is a Hilbert-Schmidt operator.

THEOREM 2. 1. 3. (c.f. [11])

Let H be a Hilbert space and E be a Banach space. Then the fol-
lowing conditions are equivalent.

(1) T is 2-absolutely summing.
(2) There exists a Hilbert space G such that

HGE\vec{U}\vec{V}
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T=V\circ U where U is a Hilbert-Schmidt operator and V is a continuous
linear operator.

EXAMPLE 2. 1. 1. identity operator I:l_{1}arrow l_{2} is absolutely summing.
EXAMPLE 2. 1. 2. identity operator I:l_{2}arrow l_{\infty} is not p absolutely sum-

ming, for 1\leqq p<\infty .
REMARK 2. 1. 1. From the Example 2. 1. 1. and 2. 1. 2., p absolutely

summing operators are not closed under conjugation.
Generally, p-absolutely summing operators are not necessarily compact

(c.f. Ex. 2. 1. 1).
But a p-absolutely summing operator T from a Hilbert space H into

a Banach space E is compact.
Next, we shall introduce the following theorem which plays an im-

portant role in the ensuing discussions.
Let X be a set and \mathfrak{B} be a \sigma-algebra in X, and let \mu be a positive

measure such that there exist positive constants C_{1}, C_{2} and pairwise dis-
joint measurable subsets \{X_{n}\}\subset X, which satisfy the following conditions:

C_{1}\leqq\mu(X_{n})\leqq C_{2} , for all n=1,2, \cdots

Let L_{p}(X, \mu) be a usual Banach space, then l_{p} (usual sequence space)
is a L_{p}(X, \mu)-space which satisfies the above conditions.

We shall denote L_{p} instead of L_{p}(X, \mu) in the following theorem.
THEOREM 2. 1. 4. (c.f. [21])
Let E be a Banach space, and 1\leqq p<\infty . Then the following condi-

tions are equivalent.
(1) For all Banach spaces F, if T is a p-absolutely summing operator

from E into F, then T^{*} {conjugate of T) is a p-absolutely summing op-
erator from F^{*} into E^{*} .

(2) If T is a p-absolutely summing operator from E into L_{p} , then
T^{*} is a p-absolutely summing operator from L_{p^{*}} into E^{*} .

(3) For any \{x_{n}^{*}\}\subset E^{*} with ||x_{n}^{*}||=1(n=1,2, \cdots) ,

\bigcap_{\alpha}l_{p}(\rho_{n,\alpha})=l_{p}

where \rho_{n,\alpha}=\sum_{i=1}^{\infty}|x_{n}^{*}(x_{i})|^{p}, with \{x_{i}\}\in l_{p}(E) .
(4) For any \{x_{n}^{*}\}\subset E^{*} with ||x_{n}^{*}||=1(n=1,2, \cdots) ,

\bigcap_{\tau\epsilon L(F,E)}l_{p}(||T^{*}x_{n}^{*}||^{p})=l_{p}

where the totality of continuous linear operators from F into E is denoted
by L(F, E), and F is denoted by the following,
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F=\{
l_{p^{*}} if p>1
c_{0} if p=1

(1/p+1/p^{*}=1) .

In the above theorem, if a Banach space E satisfies the condition (3)
(or equivalently (1), (2) and (4)), we shall call that E has the (*)_{p}-conditions.

In this sence, it is easily seen that if E^{*} is isomorphic to a subspace
of l_{p}, then E has the (*)_{p}-conditions. And also, by Theorem 2. 1. 1. and
Theorem 2. 1. 3., if E is isomorphic to a Hilbert space H, then E has the
(*)_{p} condition (1\leqq p\leqq 2) .

More generally, \mathscr{L}_{p^{*},\lambda}-space has the (*)_{p} condition (c. f. [1], [7], [21]).
The definition of this space is due to Lindenstrauss and Pelczy\tilde{n}ski (c.f.
[7] ), and that is the following:

Let E and F be Banach spaces. The distance d(E, F) between E and
F is defined by d(E, F)= \inf\{||T||\circ||T^{-1}||\} , where the infimum is taken over
all invertible operators in L(E, F). If no such T exists, i. e. , if E and F
are not isomorphic, d(E, F) is taken as \infty .

DEFINITION 2. 1. 2. Let 1\leqq p\leqq\infty , and 1\leqq\lambda<\infty . A Banach space E
is called an \mathscr{L}_{p,\lambda} space if for all fifinite dimensional subspaces M\subset E there
exists a fifinite dimensional subspace N containing M such that d(N, l_{p}^{n})\leqq\lambda,
where n=\dim(N) .

It can be shown (c.f. [7]) that every L_{p}(\mu) space is an \mathscr{L}_{p,\lambda} space for
all \lambda>1 and every space of type C(K), where K is a compact Hausdorff
space, is an \mathscr{L}_{\infty,\lambda}-space for all \lambda>1 . More generally, every Banach space
whose dual is isometric to an L_{1}(\mu) space (e.g. every M-space in the sense
of Kakutani [5] ) is an \mathscr{L}_{\infty,\lambda}, -space for every \lambda>1(c. f. [8]) .

2\circ . Cylinder sets and Cylinder measure
In this subsection, we describe certain \sigma-algebras which will often be

used in the ensuing discussion, and examine the relations between them.
DEFINITION 2. 2. 1. Let E be a real linar topological space and E^{*} be

a conjugate space of E. If A is a Borel set in real n dimensional space
R_{n}, and x_{1}, x_{2}, \cdots , x_{n}\in E, the set

\{x^{*}| (x^{*}(x_{1}), \cdots , x^{*}(x_{n}))\in A , x^{*}\in E^{*}\}

will be called the Borel cylinder with baes A corresponding to x_{1}, \cdots , x_{n} .
If the elements x_{1}, \cdots , x_{7l} generate the linear subspace M of E, then we

also call the above set a Borel cylinder corresponding to M, or a Borel
M-cylinder. The totality of Borel cylinders corresponding to a fifixed M
form a \sigma-algebra, which we denote by S(M), and the totality of dl Borel
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cylinders forms an algebra S. Let \mathfrak{F} denote the smallest \sigma algebra con-
taining S ; we call the elements of \mathfrak{F} weak Borel sets.

Similarly, let \mathfrak{F} be the smallest \sigma-algebra of subsets of E which con-
tains all sets of the form

\{x|x^{*}(x)<a\}-\infty<a<\infty , x^{*}\in E^{*} .

The elements of \mathfrak{F} will be called weak Borel sets.

The following lemma shows that the weak Borel sets constitute a
sufficiently wide class of sets.

LEMMA 2. 2. 1. (c.f. [3], [9])

If E is a separable \sigma-normed space, then every open (or closed) subset

of E is a weak Borel set.

Lemma 2. 2. 2. (c.f. [3], [9])

Let E be a separable \sigma-normed space, with the norm sequence \{||x_{n}||\} .
Then, S_{-n}(R)=\{||x^{*}||_{-n}\leqq R\} is a weak Borel set in E^{*} .

By this lemma, we can conclude that E_{n}^{*} is a weak Borel set in E^{*} .
DEFINITION 2. 2. 2. Let E be a linear topological space, and let S be

the algebra of all Borel cylinders in E^{*} . Suppose that P is a set function
on S having the following property: if M is any fifinite dimensional linear
subspace of E, and S(M) is the \sigma-algebra of Borel cylinders corresponding
to M, then the restriction of P to S(M) is a probab ility measure. Then
we call P a cylinder measure on E^{*} . Clearly, any cylinder measure P
also has the following properties :

(1) 0\leqq P(Z)\leqq 1 for all Z\in S

(2) P(E^{*})=1

(3) P is fifinitely additive.
However, P is not generally a-additive.
But if it happens that P is \sigma-additive, then, using well-known tech-

nique, we can extend P to a probability measure on the \sigma-algebra generated
by S.

Next, we shall show the continuity of cylinder measures.
DEFINITION 2. 2. 3. Let E be a linear topological space, and let P be

a cylinder measure on E^{*} . Suppose that, given any positive number \epsilon,

there exists a neighborhood V of zero in E such that

P(\{x^{*}||x^{*}(x)|>1 , x^{*}\in E^{*}\})<\epsilon

where x\in V. Then we say that P is continuous.
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Lemma 2. 2. 3. (c. f. [2], [3])

Let E be a linear topological space and let P be a cylinder measure on
E^{*} . Then the function

L(x)= \int_{E^{*}}e^{ix^{*}(x)}dP(x^{*}) for x\in E

is continuous iff P is continuous.
LEMMA 2. 2. 4. (c.f. [2], [3])
Let E be a linear topological space and let L(x) be a continuous

positive defifinite function on E with L(0)=1. Then, there is a unique con-
tinuous cylinder measure P on (E^{*}, S), such that

L(x)= \int_{E^{*}}e^{ix^{*}(x)}dP(x^{*}) for x\in E .

REMARK 2. 2. 1. In Lemma 2. 2. 4., if E is a nuclear space, then P is
a probability measure on (E^{*}, \mathfrak{F}) .

If E is a \sigma-Hilbert space and L(x) is continuous relative to the nuclear
topology, then also P is a probability measure.

(For details, c.f. [2], [3], [9], [19], [22])

3\circ . Minlos’ Theorem and Sazonov’s Theorem
THEOREM 2. 3. 1. (c.f. [9])
In order that every continuous cylinder measure, defifined in a space E^{*}

conjugate to a \sigma-Hilbert space E, be extendable to a \sigma-Mitive measure in
E^{*}, it is necessary and suffiffifficient that E be a nuclear space.

REMARK 2. 3. 1. In Theorem 2. 3. 1., if E is a nuclear (not necessarily
metrizable), then the sufficiency is valid (c.f. [22]).

In our sense (c.f. \S 1), if E is a nuclear space, then we can say that
Bochner-Minlos’ Theorem is valid for (E, E) .

THEOREM 2. 3. 2. (c.f. [3])
Let H and G be Hilbert spaces, and let T be a continuous linear op-

erator from H into G. Then the following conditions are equivalent.
(1) T is a Hilbert-Schmidt operator from H into G.
(2) Let \mu_{G} be the Gaussian measure, defifined in G^{*} by (x, y)_{G} , then the

measure T^{*}\mu_{G} in H^{*} is \sigma-additive.
(3) For any continuous cylinder measure \mu in G^{*}, the measure T^{*}\mu

in H^{*} is \sigma-additive.
REMARK 2. 3. 2. In Theorem 2. 3. 2., if H and G be \sigma Hilbert spaces,

then the condition (1), (2) and (3) are equivalent (c.f. [19]).
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However, if H is a Banach space and G is a Hilbert space, then the
condition (1), (2) and (3) are not necessarily equivalent.

The counter example shall be given in the next section.
THEOREM 2. 3. 3. (c.f. [14])

In order that a cylinder measure \mu in the Hilbert space H be \sigma-

additive, it is necessary and suffiffifficient that \mu be continuous relative to the
topology in H defifined by some sequence B_{1} , B_{2}, \cdots ofpositive-definite nuclear
operators.

The continuity of \mu means the follovoing: For any \epsilon>0 there exists
a \delta>0 and n such that the inequality (B_{n}x, x)\leqq\delta implies that \mu(\Gamma_{x})\leqq\epsilon,

where \Gamma_{x} denotes the strip defifined by |(x, y)|\geqq 1 .
We shall call that the topology defined in the above theorem is a nu-

clear topology.
REMARK 2. 3. 3. Theorem 2. 3. 3. is due to V. Sazonov, and \sigma Hilbert

case is due to the author and DaO-Xing (c.f. [2], [19]), and more general
case is due to Badrikian (c.f. [16]).

Throughout this subsection, we shall assume that linear spaces are
separable with real coefficients.

4\circ . Theorems for the existence of quasi-invariant measures

DEFINITION 2. 4. 1. Let E be a linear space, F be a linear subspace

of E, and \mathfrak{B} be a \sigma-algebra in E, which is invariant under translations.
A measure \mu on (E, \mathfrak{B}) is called F-quasi-invariant if

\mu(B)=0 implies \mu(B+x)=0 for every x\in F, B\in \mathfrak{B} .

DEFINITION 2. 4. 2. Let E be a linear topological space, E^{*} be a con-
jugate space of E, and let ||x||_{H} be a continuous Hilbertian norm on E.
It is easily seen that the follovoing L(x) is continuous positive defifinite func-
tion on E.

- \frac{||x||H^{2}}{2}

L(x)=e

The corresponding cylinder measure on E^{*} (by Lemma 2. 2. 4.) is called
a Gaussian measure, [mean zero, variance 1)

THEOREM 2. 4. 1. (c.f. [3], [22])

Let E be a nuclear space, and ||x||_{H} be a continuous Hilbertian norm
on E. Then, the corresponding Gaussian measure \mu_{H} on E^{*} is \sigma-additive
and E-quasi-invariant.

(E\subset H\cong H^{*}\subset E^{*})
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Next, we shall introduce a theorem which gives a necessary condition
for the existence of quasi-invariant measures.

THEOREM 2. 4. 2. (c.f. [20])

Let F be a Banach space, E be a linear subspace of F, and suppose
that E itself is a complete \sigma-normed space with the norm sequence ||x||_{n}

(n=1,2, \cdots) . Also, suppose that the inclusion mapping T from E into F
is continuous.

Then, the existence of a E-quasi-invariant fifinite measure (non-trivial)
\mu on (F, \mathfrak{F}) implies that, there exists n_{0} such that

(1) T^{*} is absolutely summing (T^{*} : F^{*}arrow E_{n_{0}}^{*})

(2) T^{*} is compact (T^{*} : F^{*}arrow E_{n_{0}}^{*}) .
REMARK 2. 4. 1. In the above theorem, \mathfrak{F} is a \sigma-algebra in F which

is invariant under translations and contrains all cylinder sets.
In virtue of Theorem 2. 4. 2., we obtain the following theorem which

gives a necessary and sufficient condition for the existence of quasi-
invariant measures.

THEOREM 2. 4. 3. (c. f. [20])

Let H be a separable Hilbert space, and let \mathfrak{F} be the totality of weak
Borel sets in H. Let E be a linear subspace of H, and suppose that E

itself is a complete \sigma-normed space with the norm sequence \{||x||_{n}\} .
Also, suppose that the inclusion mapping Tfrom E into H is continuous.
Then, the following conditions are equivalent.
(1) There exists a E-quasi-invariant fifinite measure (non-trivial) on

(H, \mathfrak{F}) .
(2) There exists n such that the conjugate operator T^{*}from H^{*} into

E_{n}^{*} is absolutely summing.
(3) There exists a separable Hilbert space H_{1} such that

E\subset H_{1}\subset HJK

T=K\circ J where injection map J is continuous and K is a Hilbert-Schmidt
operator respectively.

REMARK 2. 4. 2. Theorem 2. 4. 3. is due to the author, and that is
the generalization of the DaO-Xing’s theorem (c.f. [2]).

Finally, we shall introduce a theorem due to DaO-Xing, which gives

asufficient condition for the validity of Bochner-Minlos’ Theorem.

THEOREM 2. 4. 4. (c.f. [2])

Let F be a linear topological space, E be a linear subspace of F, and
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suppose that E itself is a linear topological space of the second category.
Also, suppose that the inclusion mapping from E into F is continuous. Let
\mathfrak{B} be the \sigma-algebra generated by the totality of closed subsets of F, and
suppose that there exists a E-quasi-invariant regular fifinite measure \mu on
(G, \mathfrak{B}) . Then, for each continuous positive defifinite function L(x) on F with
L(0)=1, there is a unique probability measure P on (E^{*}, \mathfrak{F}), such that

L(x)= \int_{E^{*}}e^{ix^{*}(x)}dP(x^{*}) , for x\in E .

REMARK 2. 4. 3. In the above theorem, let \mathfrak{F} denote the totality of
weak Borel sets in E^{*} . If the assumptions of Theorem 2. 4. 4. is satisfied,
then, in our sense, we can say that Bochner-Minlos’ Theorem is valid for
(E, F). However, if E is a nuclear space, then Bochner-Minlos’ Theorem
is valid for (E, E) , but the assumptions of Theorem 2. 4. 4. is not satisfied
(c.f. [17], [22]).

\S 3. Main theorems and other results

Throughout this section, we shall assume that linear spaces are sepa-
rable with real coefficient. However, by the similar manner, we can dis-
cuss for non-separable cases.

1\circ . General cases
In this subsection, we shall establish theorems analogous to Theorem

A (Theorem B, Theorem 2. 3. 1., Theorem 2. 3. 2., Theorem 2. 3. 3., etc.)
for complete \sigma-normed spaces.

LEMMA 3. 1. 1. Let E be a \sigma-normed space with the norm sequence
\{||x||_{n}\} , and E^{*} be a conjugate space of E. For each n, let E_{n} denote the
completion of E with respect to the norm ||x||_{n} . Then, if a cylinder meas-
ure \mu in E^{*} is \sigma-additive, \mu is continuous relative to the absolutely sum-
ming topology.

The continuity of \mu means the following: There exists the sequence
of continuous seminorms \{p_{n}\} in E such that the natural injection from
E_{n} into E_{p_{n}} is absolutely summing, and \mu is continuous relative to the
seminorms \{p_{n}\} ; namely, for any \epsilon>0 there exists n and \delta>0, such that
the inequality p_{n}(x)\leqq\delta implies that \mu(\Gamma_{x})\leqq\epsilon , where \Gamma_{x} denotes the strip
&fifined by |x^{*}(x)|\geqq 1 .

PROOF. Since \mu is \sigma-additive,
\{||x^{*}||_{-n}\leqq n\} is \mu-measurable.

We define p_{n} by setting

hence by Lemma 2. 2. 2., S_{-n}(n)=
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p_{n}(x)= \int_{s_{-n^{(n)}}}|x^{*}(x)|d\mu(x^{*}) for x\in E .

Then, obviously p_{n} is a continuous seminorm on E.
CLAIM (a): The natural injection from E_{n} into E_{p_{n}} is absolutely

summing.
For each \{x_{i}\}\subset E_{n} which is weakly summable, it is easily seen that

we have the following ;

C= \sup_{||x^{*}||_{n}\leqq 1}\{\sum_{i=1}^{\infty}|x^{*}(x_{i})|\}<\infty .

Hence, we have

\sum_{i=1}^{\infty}p_{n}(x_{i})=\sum_{i=1}^{\infty}\int_{s_{-n}(n)}|x^{*}(x_{i})|d\mu(x^{*})

\leqq nC\mu(S_{-n}(n))<\infty .
Thus, we have the assertion.

CLAIM (b): \mu is continuous relative to the seminorms \{p_{n}\rangle .
Without loss of generality, we may assume that ||x||_{1}\leqq||x||_{2}\leqq\cdots\cdots

Hence, we have

E^{*}= \bigcup_{n=1}S_{-n}(n)

S_{-n}(n)\subset S_{-(n+1)}(n+1) (n=1,2, \cdots) .
\grave{s}ince\mu is \sigma-additive and \mu(E^{*})=1 , for any \epsilon>0 there exists n such that
the complemet of S_{-n}(n) has measure less than \epsilon/2 .

Now consider any element x in E such that
p_{n}(x)\leqq\epsilon/2,

and let us estimate the measure of the strip \Gamma_{x} defined by |x^{*}(x)|\geqq 1 .
Obviously,

\mu(\Gamma_{x})=\mu(\Gamma_{x}’)+\mu(\Gamma_{x}’)

where \Gamma_{x}’ is that part of \Gamma_{x} contained in the ball S_{-n}(n) , and \Gamma_{x}’ is that
part lying outside S_{-n}(n) . In view of the choice of S_{-n}(n) we have \mu(\Gamma_{x}’)

\leqq\epsilon/2 . On the other hand, from the inequali ty |x^{*}(x)|\geqq 1 , which holds
for all x^{*}\in\Gamma_{x} and therefore for all x^{*}\in\Gamma_{x}’ , it follows that

\mu(\Gamma_{x}’)=\int_{\Gamma_{\acute{x}}}d\mu(x^{*})\leqq\int_{\tau_{\acute{x}}}|x^{*}(x)|d\mu(x^{*})

\leqq\int_{s_{-n^{(n)}}}|x^{*}(x)|d\mu(x^{*})=p_{n}(x)\leqq\epsilon/2 .
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Hence \mu(\Gamma_{x})\leqq\epsilon .
Thus we have the assertion. That completes the proof.
REMARK 3. 1. 1. For a cylinder measure \mu in E^{*}, Fourier transform

of \mu is defined by

\hat{\mu}(x)=\int_{E^{*}}e^{ix^{*}(x)}d\mu(x^{*}) , for x\in E .

Then, from Lemma 2. 2. 3., we can say that if a cylinder measure \mu is
\sigma-additive, \acute{\grave{\mu}}(x) is continuous relative to the absolutely summing topology.

LEMMA 3. 1. 2. Let E and F be Banach spaces, and T be a continuous
linear operator from E into F. Then, the following condition (1) implies
the condition (2).

(1) For any continuous cylinder measure \mu in F^{*} , the cylinder measure
T^{*}\mu in E^{*} is \sigma-additive.

(2) Let 1\leqq p\leqq 2 . Then, for each \{x_{i}\}\in l_{p}(E), and \{y_{n}^{*}\}\in l_{p}(F^{*}), we have

\sum_{i=1}^{\infty}\sum_{n=1}^{\infty}|\langle y_{n}^{*}, Tx_{i}\rangle|^{p}<\infty .

PROOF. If 1\leqq p\leqq 2, the function

exp (-|t|^{p}) , -\infty<t<\infty ,

is a positive definite continuous function on R(c.f. [2]).
Therefore, it is easily seen that for each \{y_{n}^{*}\}\in l_{p}(F^{*}), the function L(x)
defined by

L(x)= \exp(-\sum_{n=1}^{\infty}|\langle y_{n}^{*}, x\rangle|^{p}) , x\in F_{j}

is a positive definite continuous function on F.
From Lemma 2. 2. 4., there exists a unique continuous cylinder measure

\mu on F^{*} such that
L(x)=\hat{\mu}(x) , x\in F .

Now, let suppose that the condition (1) is hold, then the measure
T^{*}\mu on E^{*} is \sigma-additive. Hence, by the remark of Lemma 3. 1. 1., Fourier
transform of the measure T^{*}\mu is continuous relative to the absolutely
summing topology.

On the other hand, by easy calculations, we have

\hat{T^{*}\mu}(x)=\hat{\mu}(Tx)=\exp(-\sum_{n=1}^{\infty}|\langle y_{n}^{*}, Tx\rangle|^{p}) .

Next, we shall define the seminorm p(x) by
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p(x)=( \sum_{n=1}^{\infty}|\langle y_{n}^{*}, Tx\rangle|^{p})^{1/p}-
,

x\in E ,

then it is easily seen that the seminorm p(x) is continuous relative to the
seminorms \{p_{n}\} (c.f. Lemma 3. 1. 1.).
Hence we have that there exists a positive constant C and n, such that

p(x)\leqq Cp_{n}(x) , for x\in E .
Since the natural mapping from E into E_{p_{n}} is absolutely summing, by

Theorem 2. 1. 1., it is p-absolutely summing. Therefore, we have that for
any \{x_{i}\}\in l_{p}(E),

\sum_{i=1}^{\infty}p(x_{i})^{p}\leqq C^{p}\sum_{i=1}^{\infty}p_{n}(x_{i})^{p}<\infty .

This shows that the condition (2) is hold.
LEMMA 3. 1. 3. Let E be a Banach space, F be a \sigma-normed space with

the norm sequence \{||x||_{n}\} , and let T be a continuous linear operator from
E into F. For each n, let F_{n} denote the completion of F with respect to
the norm ||x||_{n} . Then, if for any continuous cylinder measure \mu in F^{*} ,
the measure T^{*}\mu in E^{*} is \sigma-additive, we have that the fallowings;

(1) If a Banach space E has the (*)_{p} condition (1 \leqq p\leqq 2), then, for each
n, the conjugate operator T^{*}from F_{n}^{*} into E^{*} is p-absolutely summing.

(2) If for each n, a Banach space F_{n}^{*} (dual of F_{n}) has the (*)_{p}-con-
ditions (1\leqq p\leqq 2), then, for each n, the operator T from E into F_{n} is p-
absolutely summing.

PROOF of (1). For each n, from Lemma 3. 1. 2., it is easily seen that
for each \{x_{i}\}\in l_{p}(E), and \{y_{f}^{*}\}\in l_{p}(F_{n}^{*}), we have that the following;

\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}|\langle y_{f}^{*}, Tx_{i}\rangle|^{p}<\infty .

Without loss of generality, we may assume that ||T^{**}y_{f}|| is not equal to
zero (j=1,2, \cdots) . Thus we have

, \sum_{j=1}^{\infty}||T^{**}y_{f}||^{p}(\sum_{i=1}^{\infty}|\langle x_{f}^{*}, x_{i}\rangle|^{p})<\infty ,

where x_{f}^{*}=T^{*}y_{f}*/||T^{**}y_{f}|| .
Since ||x_{j}^{*}||=1(j=1,2, \cdots), and a Banach space E has the (*)_{p}-condi-

thus (c.f. Theorem 2. 1. 4.), thus we have the following;

\sum_{j=1}^{\infty}||T^{**}y_{j}||^{p}<\infty

This shows that the operator T^{*} from F_{n}^{*} into E^{*} is p absolutely
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summing.

PROOF of (2). For each n, by the similar arguments for the proof
of (1), we have that the following ;
for each \{x_{i}\}\in l_{p}(E), and \{y_{f}^{*}\}\in l_{p}(F_{n}^{*}),

\sum_{i=1}^{\infty}||Tx_{i}||_{n}^{p}(\sum_{f=1}^{\infty}|\langle y_{f}^{*}, z_{i}\rangle|^{p})<\infty’.

where z_{i}=Tx_{i}/||Tx_{i}||_{n} .
Since a Banach space F_{n} is isometric to a subspace of F_{n}^{**} , ||z_{i}||_{n}=1

(i=1,2, \cdots), and a Banach space F_{n}^{*} has the (*)_{p}-conditions, thus we have
the following;

\sum_{i=1}^{\infty}||Tx_{i}||_{n}^{p}<\infty .

This shows that the operator T from E into F_{n} is p-absolutely sum-
ming. Thus, we complete the proof.

REMARK 3. 1. 1. Examples of Banach spaces which satisfy the (*)_{p}-

conditions, were given in Section 2.
Lemma 3. 1. 4. Let E and F be \sigma-normed spaces, and for each n, let

E_{n} denote the completion of E with respect to the norm ||x||_{n}^{E}, F_{n} denote the
completion of F with respect to the norm ||x||_{n}^{F}, respectively. Also, suppose
that T is a continuous linear operator from E into F. If a a-normed
space F satisfifies the following codition (*), then the following condition (1)
implies the condition (2).

(*) For each m, there exists a positive defifinite continuous function
L_{m}(x) on F_{m} (with L(0)=1), which satisfifies that the following;
For any \epsilon>0, there exists \delta>0, such that the inequality

|L_{m}(x)-1|<\delta implies that ||x||_{m}^{F}<\epsilon .
(1) For any continuous cylinder measure \mu in F^{*}, the cylinder meas-

ure T^{*}\mu in E^{*} is a-additive.
(2) For any m, there exists n such that the operator T can be ex-

tended to an absolutely summing operator from E_{n} into F_{m} .
PROOF. Since a \sigma-normed space F satisfies the condition (*), by the

similar arguments for the proof of Lemma 3. 1. 2., it is easily seen that the
following; for any m there exists a positive constant C and n, such that

||Tx||_{m}^{F}\leqq Cp_{n}(x) , for x\in E ,

where p_{n}(x) is a continuous seminorm on E, and the natural mapping from
E_{n} into E_{p_{n}} is absolutely summing (c.f. Lemma 3. 1. 1.).
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From this, it is easily seen that the operator T can be extended to

an absolutely summing operator from E_{n} into F_{m} .
REMARK 3. 1. 2. Let F be a \sigma-normed space, which satisfies that the

following; for any m, a Banach space F_{m} is isomorphic to a subspace of
l_{p}(1\leqq p\leqq 2). Then it is easily seen that a \sigma-normed space F satisfies the
above condition (*). In particular, if F is a K\"othe space defined by

F=, \bigcap_{\iota=1}^{\infty}l_{p}(a_{m,n}) , 1\leqq p\leqq 2 , 0<a_{m,n}\leqq a_{m,n+1}<\infty ,

(m, n=1,2, \cdots) ,

then a \sigma-normed space F satisfies the above condition (*).
And also, if F is a \sigma-Hilbert space, then F satisfies the above condition (*).

Now, we shall apply these lemmas in the ensuing discussions.
COROLLARY 3. 1. 1. Let E be a Banach space, which satisfifies one of

the following three conditions ;
(1) A Banach space E has the (*)_{p} conditions (1\leqq p\leqq 2) .
(2) A Banach space E^{*} {dual of E) has the (*)_{p} conditions (1\leqq p\leqq 2).
(3) A Banach space E satisfifies the condition (*) in Lemma 3. 1. 4.

Then, in order that every continuous cylinder measure \mu in E^{*} be a-ad-
ditive, it is necessary and suffiffifficient that E be a fifinite dimensional space.

PROOF. First we prove the necessity of the condition. Suppose that
every continuous cylinder measure in E^{*} be \sigma-additive.

If a Banach space E satisfies the condition (1), then by Lemma 3. 1. 3.,
the identity operator from E^{*} into E^{*} is p-absolutely summing, therefore
it is a nuclear operator (c.f. [11]). This shows that E be a finite dimen-
sional space.

If a Banach space E satisfies the condition (2), then by Lemma 3. 1. 3.,
the identity operator from E into E is p-absolutely summing, therefore, it
is nuclear. Thus we have the assertion.

If a Banach space E satisfies the condition (3), then by Lemma 3. 1. 4.,
the identity operator from E into E is absolutely snmming, therefore, it
is nuclear. Thus we have the assertion.

From classical Bochner’s Theorem, sufficiency is obvious.
Using Lemma 3. 1. 4., Theorem 2. 3. 1. can be generalized for tf-normed

spaces, that is the following.
THEOREM 3. 1. 1. Let E be a \sigma-normed space, which satisfifies the con-

dition (*) in Lemma 3. 1. 4.. Then, in order that every continuous cylinder
measure in E^{*} be extendable to a \sigma-additive one, it is necessary and
suffiffifficient that E be a nuclear space.
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PROOF. Using Lemma 3. 1. 4. and Pietsch’s Theorem (c. f. ([11]), it is
easy.

Next, we shall establish theorems analogous to Theorem 2. 3. 2. for
\sigma-normed spaces. From now, if E is a \sigma-normed space, we shall denote
E=\cap E_{n} , where E_{n} denote the completion of E with respet to the n\cdot th

norm.
THEOREM 3. 1. 2. Let H be a Hilbert space, and F=\cap F_{n} be a \sigma-

normed space, which satisfifies that for each n, a Banach space F_{n}^{*} has the
(*)_{p} conditions (1\leqq p\leqq 2) . Also, suppose that T is a continuous linear op-
erator from H into F. Then the following conditions are equivalent.

(1) For each n, T is a Hilbert-Schmidt operator from H into F_{n} .
(2) For any continuous cylinder measure \mu in F^{*} , the measure T^{*}\mu

in H^{*} is \sigma-additive.
PROOF.
(1)\Rightarrow(2) : By the similar arguments for Theorem 2. 3. 2., we have

easily the assertion.
(2)\Rightarrow(1) : By the assumption of F and Lemma 3. 1. 3., for each n,

the operator T from H into F_{n} is p-absolutely summing. Since 1\leqq p\leqq 2 ,
using Theorem 2. 1. 1. and Theorem 2. 1. 3., T is a Hilbert-Schmidt op-
erator from H into F_{n} .

THEOREM 3. 1. 3. Let \Phi=\cap\Phi_{n} be a \sigma-Hilbert space, and F=\cap F_{n} be
a \sigma-normed space, which satisfifies the condition,(*) in Lemma 3. 1. 4.. Also,
suppose that T is a continuous linear op-erator from \Phi into F. Then the
following conditions are equivalent.

(1) For any m, there exists n such that the operator T can be ex-
tended to a Hilbert-Schmidt operator from \Phi_{n} into F_{m} .

(2) For any continuous cylinder measure \mu in F^{*} , the measure T^{*}\mu

in \Phi^{*} is a-additive.
PROOF.
(1)\Rightarrow(2) : By the similar arguments for the proof of Theorem 2. 3. 2.,

we have easily the assertion.
(2)\Rightarrow(1) : By the assumption of F and Lemma 3. 1. 4., for any m,

there exists n such that the operator T can be extended to an absolutely
summing operator from \Phi_{n} into F_{m} . Thus, by Theorem 2. 1. 1. and TheO-
rem 2. 1. 3., we have the assertion.

THEOREM 3. 1. 4. Let E=\cap E_{n} be a \sigma-normed space, which satisfies
that for each n, a Banach space E_{n} has the (*)_{p} conditions (1\leqq p\leqq 2), and
let \Phi=\cap\Phi_{n} be a \sigma Hilbert space, and also suppose that T be a contin-
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uous linear operator from E into \Phi . Then the following conditions are
equivalent.

(1) For any m, there exists n such that the operator T can be ex-
tended to a Hilbert-Schmidt operator from E_{n} into \Phi_{m} .

(2) For any continuous cylinder measure \mu in \Phi^{*}, the measure T^{*}\mu

in E^{*} is a-additive.
(3) Let \mu_{m} be the Gaussian measure, defifined in \Phi^{*} by (\varphi, (p)_{m}^{\Phi} , then

for any m, the measure T^{*}\mu_{m} in E^{*} is a-additive.
PROOF.
(3)\Rightarrow(1) : For any m, a positive definite continuous function \hat{\mu}_{m}(\varphi)

on \Phi_{m} satisfies the condition (*) in Lemma 3. 1. 4., and therefore, by the
similar arguments for the proof of Lemma 3. 1. 4., there exists n such
that the operator T can be extended to an absolutely summing operator
from E_{n} into \Phi_{m} . Also, by the assumption, a Banach space E_{n} has the
(*)_{p}-conditions, therefore T^{*} (conjugate of T) is a p abso lutely summing
operator from \Phi_{m}^{*} into E_{n}^{*} (c.f. Theorem 2. 1. 1. and 2. 1. 4.). Since 1\leqq p

\leqq 2, by Theorem 2. 1. 1. and Theorem 2. 1. 3., T^{*} is a Hilbert-Schmidt
operator, and therefore, T is a Hilbert-Schmidt operator from E_{n} into \Phi_{m} .

For the part of (1)\Rightarrow(2) and (2)\Rightarrow(3), it is easy.
Next, we shall show the Sazonov’s Theorem concerning Gaussian

measures for \sigma-normed spaces (c.f. Theorem 2. 3. 3).

DEFINITION 3. 1. 1. (c.f. [16])

Let E be a locally convex Hausdorff space and H a Hilbert space.
We shall call a continuous linear map T:Earrow H a Hilbert-Schmidt map
if it can be factored into

EH_{1}H\vec{U}\vec{V} ,

there H_{1} is a Hilbert space, U is a continuous linear map and V is
a Hilbert-Schmidt map.

The Hilbert-Schmidt topology \tau_{HS} on E will be the coarsest topology
on E for which all Hilbert-Schmidt maps are continuous.

THEOREM 3. 1. 5. Let E=\cap E_{n} be a \sigma-normed space, which satisfifies
that for each n, a Banach space E_{n} has the (*)_{p} conditions (1\leqq p\leqq 2), and
let ||x||_{H} be a continuous Hilbertian norm on E.

Then, in order that a Gaussian measure \mu_{H} , defifined in E^{*} by ||x||H ,

be \sigma-additive, it is necessary and suffiffifficient that \hat{\mu}_{H}(x) be continuous relative
to the Hilbert-Schmidt topology.

PROOF. First we prove the necessity of the condition. Let H be
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a completion of E with respect to the Hilbertian norm ||x||_{H}.
Since \hat{\mu}_{H}(x) (Fourier transform of the measure \mu_{H}) is defined by

\hat{\mu}_{H}(x)=\exp (-||x||_{H}^{2}/2) , for x\in E ,

in order to prove that \hat{\mu}_{H}(x) is continuous relative to the Hilbert-Schmidt
topology, it is sufficient to show that the natural map from E into H is
a Hilbert-Schmidt map. Thus, by the assumption of E and Theorem
3. 1. 4., we have easily the assertion.

The sufficiency of the condition is obvious.
REMARK 3. 1. 3. In Theorem 3. 1. 5., if E is a \sigma-Hilbert space, then

the Hilbert-Schmidt topology on E coincide with the nuclear topology.
(For the nuclear topology on \sigma-Hilbert spaces, c.f. [2], [19])

Next, by Theorem 2. 1. 4. and Theorm 2. 4. 2., we obtain that the
following theorem for the existence of quasi-invariant measures. That is
the generalization of the author’s result (c.f. Theorem B in [20]).

THEOREM 3. 1. 6. Let E be a Banach space, and let \mathfrak{F} be the totality
of weak Borel sets in E. Let \Phi be a linear subspace of E, and suppose
that \Phi=\cap\Phi_{n} itself is a complete \sigma-Hilbert space.

Also, suppose that the inclusion mapping Tfrom \Phi into E is continuous.
Then, if E^{*} (dual of E) has the (*)_{p} conditions (1\leqq p\leqq 2), the following
conditions are equivalent.

(1) There exists a \Phi-quasi-invariant fifinite measure (non-trivial) on
(E, \mathfrak{F}) .

(2) There exists n such that the conjugate operator T^{*}from E^{*} into
\Phi_{n}^{*} is absolutely summing.

(3) There exists Hilbert spaces H_{1} and H_{2} such that

\Phi\subset H_{1}\subset H_{2}\subset EIJK

T=K\circ J\circ I where injection map I and K are continuous, J is a Hilbert-
Schmidt operator, respectively.

PROOF is easy.
Now, we shall establish main theorems analogous to Theorem A when

G and H belongs to some suitable class of complete separable \sigma-normed
spaces. In the ensuing discussions of this subsection, the totality of weak
Borel sets is denoted by \mathfrak{B} and \mathfrak{F} .

THEOREM 3. 1. 7. Let F=\cap F_{n} be a \sigma-normed space, which satisfifies
that for each n, a Banach space F_{n}^{*} (dual of F_{n}) has the (*)_{p} conditions
(1\leqq p\leqq 2) . Let H be a subspace of F, and suppose that H itself is a Hilbert



Bochner-Minlos’ theorem on infinite dimensional spaces 119

space. Also, suppose that the inclusion mapping T from H into F is con-
tinuous. Then, the following conditions are equivalent.

(1) For each n, T is a Hilbert-Schmidt operator from H into F_{n} .
(2) For each n, there exists H-quasi-invariant fifinite measure (non-

trivial) on (F_{n}, \mathfrak{B}) .
(3) For any positive defifinite continuous function L on F with L(0)

=1, there exits a unique probability measure \mu on (H^{*}, \mathfrak{F}) such that

L(x)= \int_{H^{*}}e^{ix^{*}(x)}d\mu(x^{*}) , for x\in H .

Namely, in our sense, Bochner-Minlos’ Theorem is valid for (H, F).
PROOF.
(1)\Rightarrow(2) : By the similar arguments for the proof of Theorem 2. 4. 3.,

it is obvious (c.f. [20]).
(2)\Rightarrow(1) : By the assumption of F, and by Theorem 2. 1. 4. and 2.4. 2.,

it is obvious.
(1)\Rightarrow(3) : By the similar arguments for the proof of Theorem 2. 3.2.,

and by Lemma 2. 2. 4., it is easily seen that we have the assertion.
(3)\Rightarrow(1) : By the assumption of F, and Lemma 2. 2. 4., Theorem

3. 1. 2., it is easily seen that we have the assertion.
That completes the proof.
REMARK 3. 1. 4. In the above theorem, we can not apply Theorem

2. 4. 4. for the proof of (2)\Rightarrow(3) . However, if we consider the following
condition (2)’ instead of the condition (2), then, by Theorem 2. 4. 4., we
can prove that the condition (2)’ implies the condition (2).

(2)’ There exists a H-quasi-invariant regular fifinite measure (non-
trivial) on (F, \mathfrak{B}) .

THEOREM 3. 1. 8. Let F=\cap F_{n} be a \sigma-normed spac, which satisfifies the
condition (*) in Lemma 3. 1. 4., and let \Phi be a linear subspace of F, and
suppose that \Phi=\cap\Phi_{n} itself is a complete \sigma-Hilbert space. Also, suppose
that the inclusion mapping T from \Phi into F. Then, the following condi-
tions are equivalent.

(1) For any m, there exists n such that the operator T can be ex-
tended to a Hilbert-Schmidt operator from \Phi_{n} into F_{m} .

(2) For each m, there exists a \Phi-quasi-invariant regular fifinite measure
{non-trivial) on (F_{m}, \mathfrak{B}) .

(3) For any positive defifinite continuous function L on F with L(0)

=1, there exists a unique probability measure \mu on (\Phi^{*}, \mathfrak{F}) such that
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L(x)= \int_{\Phi^{*}}e^{ix^{*}(x)}d\mu(x^{*}) , for x\in\Phi .

Namely, in our sense, Bochner-Minlos’ Theorem is valid for (\Phi, F).
PROOF.
(1)\Rightarrow(2) : By the similar arguments for the proof of Theorem 2. 4.3.,

it is obvious.
(2)\Rightarrow(1) : Let assume the condition (2), then by Theorem 2. 4. 4., we

have that the Bochner-Minlos’ Theorem is valid for (\Phi, F_{m}) . Hence, by
the assumption of F_{m} and Theorem 3. 1. 3., we have the assertion.

Since, by Lemma 2. 2. 4. and Theorem 3. 1. 3., the codition (1) and the
condition (3) are equivalent, thus we complete the proof.

REMARK 3. 1. 5. Since a Banach space F_{m} be separable (recall the
assumptions of this section), for any \sigma-additive cylinder measure \mu on
(F_{m}, \mathfrak{B}), by Lemma 2. 2. 1. and well known results, the measure \mu is
a regular Borel measure. Therefore, the regularity of the measure \mu is
not necessarily a essential condition.

THEOREM 3. 1. 9. Let \Phi=\cap\Phi_{n} be a \sigma-Hilbert space, E be a linear
subspace of \Phi, and suppose that E=\cap E_{n} itself is a complete a-normed
space, which satisfifies that for each n, a Banach space E_{n} has the (*)_{p}-con-
ditions (1\leqq p\leqq 2) . Also, suppose that the inclusion mapping T from E into
\Phi is continuous. Then, the following conditions are equivalent.

(1) For any m, there exists n such that the operator T can be ex-
tended to a Hilbert-Schmidt operator from E_{n} into \Phi_{m} .

(2) For each m, there exists a E-quasi-invariant regular fifinite measure
{non-trivial) on (\Phi_{m}, \mathfrak{B}) .

(3) For any positive defifinite continuous function L on \Phi with L(0)
=1, there exists a unique probability measure \mu on (E^{*}, \mathfrak{F}) such that

L(x)= \int_{E^{*}}e^{ix^{*}(x)}d\mu(x^{*}) , for x\in E .

Namely, in our sense, Bochner-Minlos’ Theorem is valid for (E, \Phi) .
PROOF. The assertion can be proved in a quite similar way as before,

so we omit it.

2\circ . L_{p}(X, \mu) and l_{p}(a_{n}) cases
In this subsection, we shall consider the special cases of the subsection

1^{o} . Then, we can obtain an interesting result.
Notations. Let X be a set, \sum be a \sigma-algebra in X, and let \mu and
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\nu_{n}(n=1,2, \cdots) be \sigma-finite measures on (X, \sum). Also, suppose that \nu_{n} satis-
fies the following conditions;

\nu_{n}(B)\leqq\nu_{n+1}(B) , for any B \in\sum

(n=1,2, \cdots) .
Then, L_{p}(X, \mu) be a Banach space, and \cap L_{p}(X, \nu_{n}) be a complete

\sigma-normed space with the norms ||f||_{n} defined by

||f||_{n}=( \int_{X}|f(x)|^{p}d\nu_{n}(x))^{1/p}, for f\in\cap L_{p}(X, \nu_{n}) .

Similarly, the sequence l_{p}(a_{n}) be a Banach space, and \bigcap_{n}l_{p}(a_{m,n}) be
a complete \sigma-normed space (K\"othe space).

Lemma 3. 2. 1. Let F=|\urcorner L_{p}(X, \nu_{n}) be a complete separable \sigma-normed
space, and L_{2}(X, \mu) be a separable Hilbert space, such that L_{2}(X, \mu) is
a linear subspace of F and the inclusion mapping T from L_{2}(X, \mu) into F
is continuous. Let \mathfrak{F} denote the totality of weak Borel sets in F. Then,
the following implications (1)\Rightarrow(2)\Rightarrow(3)\Rightarrow(4) holds.

(1) There exists a L_{2}(X, \mu)-quasi-invariant regular fifinite measure (non-
trivial) on (F, \mathfrak{F}).

(2) In our sense, Bochner-Minlos’ Theorem is valid for (L_{2}(X, \mu), F).
(3) For any n, the conjugate operator T^{*}from L_{p}(X, \nu_{n})^{*} into L_{2}(X,

\mu)^{*} is absolutely summing.
(4) For any n, and for any \{X_{f}\}\subset X which is measurable and pair-

wise disjoint with 0<\mu(X_{f})<\infty , 0<\nu_{n}(X_{j})<\infty , we have

\sum_{j=1}^{\infty}\frac{\mu(X_{j})}{\nu_{n}(X_{f})^{p2}},<\infty .
PROOF.
(1)\Rightarrow(2) : By Theorem 2. 4. 4., it is obvious.
(2)\Rightarrow(3) : Since a Hilbert space L_{2}(X, \mu) has the (*)_{1} conditions by

Lemma 3. 1. 3., we have the assertion.
(3)\Rightarrow(4) : The proof of this part can be found in [20].

REMARK 3. 2. 1. In Lemma 3. 2. 1., if 1\leqq p\leqq 2, then a Banach space
L_{p}(X, \nu_{n})^{*} has the (*)_{p}-conditions, and therefore, by Theorem 3. 1. 7., the
conditions (1)’, (2), (3), and (4)’ are equivalent; where the conditions (1)’
and (4)’ are defined by the following :

(1)’ For each n, there exists a L_{2}(X, \mu)-quasi-invariant fifinite measure
(non-trivial) on (L_{p}(X, \nu_{n}), \mathfrak{B}) .

(4)’ For each n, the operator \prime T from L_{2}(X, \mu) into L_{p} (X. \nu_{n}) is
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a Hilbert-Schmidt operator.
THEOREM 3. 2. 1. Let 1\leqq p<\infty , let \{a_{m,n}\} be a double sequence of

positive numbers, which satisfifies that 0<a_{m,n}\leqq a_{m,n+1}<\infty(m, n=1,2, \cdots) .
Let F=\cap l_{p}(a_{m,n}) denote the totality of real number sequences \xi=\{\xi_{m}\} which
satisfies the following conditions ;

|| \xi||_{n}=(\sum_{m=1}^{\infty}a_{m,n}|\xi_{m}|^{p})^{1/p}<\infty’. (n=1,2, \cdots) .

Then, F forms a complete separable \sigma-normed space (K\"othe space) with
respect to the sequence of norms ||\xi||_{n}(n=1,2, \cdots) .

Let \mathfrak{B} be the \sigma-algebra in F generated by the totality of Borel cylinders

\{\xi|(\xi_{1}, \xi_{2}, \cdots, \xi_{m})\in B\}

where B represents an arbitrary Borel sets in m-dimensional space.
Let l_{2} be a subspace of F, and suppose that the natural injection T

from l_{2} into F be continuous. Then, the following conditions are equivalent.
(1) There exists a l_{2}-quasi-invariant regular fifinite measure (non-

trivial) on (F, \mathfrak{B}) .
(2) In our sense, Bochner-Minlos’ Theorem is valid for (l_{2}, F) .
(3) For any n, the conjugate operator T^{*} from l_{p}(a_{m,n})^{*} into l_{2}^{*} is

absolutely summing.
(4) For any n, we have

\sum_{m=1}^{\infty}a_{m,n}<\infty\tau

PROOF.
(4)\Rightarrow(1) : Let \mu_{H} be a standard Gaussian mersure on l_{2}, then, by the

Kolmogorov’s extension theorem, \mu_{H} is a \sigma-additive measure on R^{\infty},

, which
is l_{2}-quasi-invariant (c.f. [2]). Now, if we assume the condition (4), then
it is easily seen (c.f. [2]) that for any n, we have

\mu_{H}(l_{p}(a_{m,n}))=1 .

Therefore, we have that \mu_{H}(F)=1 . Thus, restricting \mu_{H} to (F, \mathfrak{B}), we obtain
a regular finite measure which is l_{2}-quasi-inveariant, that is, the condition
(1) holds.

Since, by Lemma 3. 2. 1., the implications (1)\Rightarrow(2)\Rightarrow(3)\Rightarrow(4) is valid,
thus, we complete the proof.

REMARK 3. 2. 2. In Theorem 3. 2. 1., if 1\leqq p\leqq 2, the conditions (1),
(2), (3), (4) and (5) are equivalent (c.f. [20]) ; where the condition (5) is the
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following :
(5) For each n, the operator T from l_{2} into l_{p}(a_{m,n}) is a Hilbert-

Schmidt operator.
However, if 2<p<\infty , the condition (2) is not necessarily equivalent

to the condition (5) (c.f. [20]).

\S 4. Appendix

In this section, we shall consider the rotationally invariant measures
on separable Banach spaces. Throughout this section, we assume that
Banach spaces are separable with real coefficients.

DEFINITION 4. 1. (c.f. [22])
Let E be a Banach space, ||x||_{H} be a continuous Hilbertian norm on

E, and let H be the completion of E with respect to the norm ||x||_{H} . An
unitary operator u on H is called a rotation of E, if it satisfifies;

(1) u maps E onto E.
(2) u is homeomorphic on E.

Whole of rotations of E forms a group, which we call the rotation group
of E and denote it with O_{H}(E) .

For any u\in O_{H}(E), its conjugate operator u^{*} becomes a homeomorphic
transformation on E^{*} . Thus, identifying u^{*} with u^{-1}, (i.e. identifying u
with u^{-1^{*}}), O_{H}(E) can be regarded as a transformation group on E^{*} .

Next, let \mathfrak{F} be the totality of weak Borel sets in E^{*}, and let \mu be
a measure on (E^{*}, \mathfrak{F}) . Then, we say that \mu is O_{H}(E) invariant if u^{*}\mu=\mu

for all u\in O_{H}(E) .
REMARK 4. 1. Let E be a Banach space, ||x||_{F} be a continuous norm

on E, and let F be the completion of E with respect to the norm ||x||_{F} .
Then, similarly in the case of Hilbertian norm, whole of rotations of E
forms a group, which we call the rotaion group of E and denote it with
O_{F}(E).

DEFINITION 4. 2. (c.f. [15])

Let E be a Banach space, and 1\leqq p<\infty .
(2) We say that a cylinder measure \mu on E is of type p, if there

exists a positive constant C such that the following inequality holds;

\int_{E}|x^{*}(x)|^{p}d\mu(x)\leqq C||x^{*}||^{p}, for all x^{*}\in E^{*} .

(2) We say that a probability Radon measure \mu on E is of order p_{\succ}

if the following inequality holds;
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\int_{E}||x||^{p}d\mu(x)<\infty .

EXAMPLE 4. 1. (c.f.[15])
Let H be a Hilbert space, then, a standard Gaussian measure \mu on

H is of type p, for all 1\leqq p<\infty .
LEMMA 4. 1. (c.f. [15])
Let H be a Hilbert space, E be a Banach space, and suppose that \mu_{H}

be a standard Gaussian measure on H. Also, suppose that the operator
T from H into E be a Hilbert-Schmidt operator. Then, we have that the
measure T\mu_{H} on E is a Radon measure of order p, (1\leqq p<\infty) .

LEMMA 4. 2. Let E be a Banach space, ||x||_{H} be a continuous Hilber-
tian norm on E, and let H be the completion of E with respect to the
norm ||x||_{H} . Then, if there exists a O_{H}(E)-invariant Radon measure of
order p on E^{*} (except the Dirac measure, 1\leqq p<\infty ), we have that the
natural injection from E into H is p-absolutely summing.

PROOF. Suppose that \mu is a O_{H}(E)-invariant Radon measure (except
the Dirac measure) of order p on E^{*} .

CLAIM (a): For any x, y\in E, if ||x||_{H}=||y||_{H}, then we have

\int_{E^{*}}|\langle x^{*}, x\rangle|^{p}d\mu(x^{*})=\int_{E^{*}}|\langle x^{*}, y\rangle|^{p}d\mu(x^{*})<\infty .

REASON: For any x, y\in E, let R be the tw0-dimensional subspace of
E which is generated by \{x, y\} . If ||x||_{H}=||y||_{H} , x is mapped to y by
a suitable rotation u_{R} of R. However, since R is finite dimensional, u_{R} can
be extended to a rotation u of E, i.e. to an unitary operator on H which
is homeomorphic on E. Since \mu is O_{H}(E)-invariant, we have easily the
equality, and also, since \mu is of order p, therefore we have the inequality.

CLAIM (b) : There exists a positive constant C_{1} such that

C_{1}= \int_{E^{*}}|\langle x^{*}, x\rangle|^{p}d\mu(x^{*}) , for all x\in E with ||x||_{H}=1 .

REASON: To prove this, by claim (a), it is sufficient to show that C_{1}

be positive.
If we assume that C_{1} is equal to zero. Then, we have

(*) \int_{E^{*}}|\langle x^{*}, x\rangle|^{p}d\mu(x^{*})=0 , for all x\in E .

Since a Banach space E be separable (recall that the assumption of
this section), it is easily seen that there exists a weakly p-summable se-



Bochner-Minlos’ theorem on infinite dimensional spaces 125

quence \{x_{i}\} in E such that the totality of its linear combinations is dense
in E. Let f(x^{*}) be a real valued function on E^{*} defined by

f(x^{*})= \sum_{i=1}^{\infty}|\langle x^{*}, x_{i}\rangle|^{p}\backslash
, for x^{*}\in E^{*} .

then, by the assumptions of \{x_{i}\} , it is easily seen that we have
(**) f(x^{*})>0 for all x^{*}\in E^{*}-\{0\} .

Thus, by the condition (*), we have

\int_{E^{*}}f(x^{*})d\mu(x^{*})=0 .

From this and condition (**), it can be shown that \mu be the Dirac measure
concentrated to {0}. That is a contradiction.

Now, we shall prove that the natural injection from E into H is p-
absolutely summing.

Let { x_{i}\rangle\subset E be weakly p-summable, namely, the following inquality is
satisfied ;

\sum_{i=1}^{\infty}|\langle x^{*}, x_{i}\rangle|^{p}<\infty , for all x^{*}\in E^{*} .

Putting
p(x^{*})=( \sum_{i=1}^{\infty}|\langle x^{*}, x_{i}\rangle|^{p})^{1/p}, for x^{*}\in E^{*} ,

obviously p(x^{*}) is a lower semicontinuous seminorm on E^{*} .
Since a Banach space E^{*} be second category, using Gelfand’s theorem,

p(x^{*}) is continuous. Therefore, there exists a positive number C_{2} such
that

p(x^{*})\leqq C_{2}||x^{*}|| : for x^{*}\in E^{*} .

Next, from claim (b), we have that

C_{1}||x_{i}||_{H}^{p}= \int_{E^{*}}|\langle x^{*}, x_{i}\rangle|^{p}d\mu(x^{*}) , (i=1,2, \cdots) .

Hence, we have

C_{1} \sum_{i=1}^{\infty}||x_{i}||_{H}^{p}=\sum_{i=1}^{\infty}\int_{E^{*}}|\langle x^{*}, x_{i}\rangle|^{p}d\mu(x^{*})

\leqq C_{2}^{p}\int_{E^{*}}||x^{*}||^{p}d\mu(x^{*}) .

Since the measure \mu be of order p, and C_{1} be positive, therofore, we have

\sum_{i=1}^{\infty}||x_{i}||_{H}^{p}<\infty .
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This shows that the natural injection from E into H is p-absolutely
smming.

REMARK 4. 2. Throughout this section, we assume that a Banach
space E be separable. However, if E is not necessarily separable, under
the assumption that E^{*} (dual of E) be separable, we can prove Lemma
4. 2. in a similar way.

THEOREM 4. 1. Let G be a Hilbert space, ||x||_{H} be a continuous Hil-
bertian norm on G, and let H be the completion of G with respect to the
norm ||x||_{H}. Then, the following conditions are equivalent.

(1) The natural injection from G into H is a Hilbert-Schmidt operator.
(2) There exists a O_{H}(G)-invariant Radon measure of order p on G^{*}

{except the Dirac measure, 1\leqq p<\infty ).

PROOF.
(1)\Rightarrow(2) : Let assume the condition (1), then the natural injection

from H^{*} into G^{*} is a Hilbert-Schmidt operator. Let \mu_{H} be a standard
Gaussian measure on H^{*}, then, by Lemma 4. 1., the measure \mu_{H} on G^{*} is
a Radon measure of order p. Since \mu_{H} is O_{H}(G)-invariant (c.f. [22]), thus
we have the assertion.

(2)\Rightarrow(1) : Let assume the condition (2), then, by Lemma 4. 2., the
natural injection from G into H is a p-absolutely summing operator, and
therefore, by Theorem 2. 1. 2., it is a Hilbert-Schmidt operator.

THEOREM 4. 2. Let 1\leqq p\leqq 2 . Let E be a Banach space, which has
the (*)_{p} conditions ||x||_{H} be a continuous Hilbertian norm on E, and let H
be the completion of E with respect to the norm ||x||_{H}. Then, the following
conditions are equivalent.

(1) The natural injection from E into H is a Hilbert-Schmidt operator.
(2) Let \mu_{H} be a standard Gaussian measure on H^{*}, then the measure

\mu_{H} on E^{*} is a Radon measure of order p.
(3) There exists a O_{B}(E)-invariant Radon measure of order p on E^{*}

{execpt the Dirac measure).

PROOF.
(3)\Rightarrow(1) : Let assume the condition (3), then, by Lemma 4. 2., the

natural injection from E into H is p-absolutely summing, and therefore,
by the assumption of E, the conjugate operator from H^{*} into E^{*} is p-
absolutely summing (c. f. Theorem 2. 1. 4.). Since 1\leqq p\leqq 2, then, by TheO-
rem 2. 1. 1. and 2. 1. 3., the operator from H^{*} into E^{*} is a Hilbert-Schmidt
operator, and therefore, the natural injection from E into H is a Hilbert-
Schmidt operator.
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Next, by Lemma 4. 1., the implications (1)\Rightarrow(2)\Rightarrow(3) holds. That com-
pletes the proof.

REMARK 4. 3. In Theorem 4. 2., if 2<p<\infty , and E has the (*)_{p}-

conditions, then, the implications (1)\Rightarrow(2)\Rightarrow(3) is valid, however, (3)\Rightarrow(1) is
not valid. The following example shows this.

EXAMPLE 4. 2. Let l_{p}(a_{n}) be a Banach space with the norm ||\xi|| &-
fifined by

|| \xi||=(\sum_{n=1}^{\infty}a_{n}|\xi_{n}|^{p})^{1/p}, for \xi=\{\xi_{n}\}\in l_{p}(a_{n}) ,

where 1\leqq p<\infty , and 0<a_{n}<\infty(n=1,2, \cdots) . Suppose that l_{2} be a subspace
of l_{p}(a_{n}), and the natural injection from l_{2} into l_{p}(a_{n}) be continuous. Then,
the following conditions are equivalent.

(1) There exists a O_{l_{2}}(l_{p}(a_{n}))-invariant Radon measure of or&r p on
l_{p}(a_{n}) {except the Dirac measure).

(2) The conjugate operator from l_{p}(a_{n})^{*}into l_{2}^{*} is p-absolutely summing.

(3) \sum_{n=1}^{\infty}a_{n}<\infty .

PROOF.
(1)\Rightarrow(2) : By the similar arguments for the proof of Lemma 4. 2., it

is obvious.
(2)\Rightarrow(3) : The proof of this part can be found in [20].
(3)\Rightarrow(1) : Let \mu_{H} be a standard Gaussian measure on l_{2} . If we assume

that the condition (3) holds, then, it is easily seen that the measure \mu_{H} can
be extended to a Radon measure on l_{p}(a_{n})(c.f. [2]). Then, by easy calcu-
lations, we can show that a Radon measure \mu_{H} on l_{p}(a_{n}) is O_{l_{2}}(l_{p}(a_{n}))-

invariant and of order p. That is the assertion.
REMARK 4. 4.
(1) In the above example, O_{l_{[mathring]_{\sim}}}(l_{p}(a_{n})) means that the following: An

linear operator u on l_{p}(a_{n}) belongs to O_{l_{2}}(l_{p}(a_{n})), if it satisfies;
(a) u is homeomorphic on l_{p}(a_{n}) .
(b) u is a unitary operator on l_{2} .

Then, a Radon measure \mu on l_{p}(a_{n}) is called O_{l_{2}}(l_{p}(a_{n}))-invariant, if it
satisfies that

u\mu=\mu , for all u\in O_{l_{2}}(l_{p}(a_{n})) .

(2) In the above example, if 1\leqq p\leqq 2 , then, these conditions are
equivalent to the following condition (*) ;

(*) The natural injection from l_{2} into l_{p}(a_{n}) is a Hilbert-Schmidt



128 Y. Takahashi

operator.
However, if 2<p<\infty , then, these conditions are not necessarily equivalent
to the condition (*)(c. f. [20]).
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