A relation between the F. and M. Riesz theorem and the structure of LCA groups

By Hiroshi OTAKI

(Received November 25, 1976)

§1. Introduction

Let G be a locally compact Abelian group and M(G) the usual Banach algebra of all complex bounded regular measures on G.

Let $L^{1}(G)$ be a set of all functions intergrable on G with respect to the Haar measure dx.

Suppose Γ is a *LCA* group. We shall call Γ is a topological ordered group or simply ordered group if there exists a closed semigroup P of Γ such that (i) $P \cup (-P) = \Gamma$ and (ii) $P \cap (-P) = \{0\}$. Next we shall say that Γ is an algebraically ordered group if there exists a semigroup P such that (i) $P \cup (-P) = \Gamma$ and (ii) $P \cap (-P) = \{0\}$. [(1)].

Suppose $\Gamma = \hat{G}$ (the dual group of G) is an algebraically ordered group. A measure $\mu \in M(G)$ is said to be of analytic type if $\hat{\mu}(\gamma) = \int_{G} (-x, \gamma) d\mu$ (x)=0 for all $\gamma < 0$.

We put $M^{a}(G) = \{ \mu \in M(G) ; \mu \text{ is of analytic type} \}.$

Call a semigroup S satisfies the condition (*) if $S \cup (-S) = \Gamma$ and $S \cap (-S) = \{0\}$.

Our purpose is to prove the following theorem.

THEOREM 1. Let G be a non-compact LCA group with its dual $\Gamma = \hat{G}$ is algebraically ordered.

If (I) $M^{a}(G) \subset L^{1}(G)$

(II) for any closed subgroup H of G (but $H \neq G$) M(G/H) has a non-zero analytic measure ($H^{\perp}(annihilator of H)$ becomes naturally an algebraically ordered group.)

then, G=R. And moreover $P=(0,\infty)$ or $(-\infty,0]$, where P is a semigroup which induces algebraically order into Γ .

REMARK 1. In the above theorem the condition (II) cannot be weakened. Indeed, let $F \neq \{0\}$ be a compact torsion-free group and D its dual. We put $G = T \oplus D$, then G is a non-compact LCA group, where T is a circle group.

Since $\hat{D} = F$ is an algebraically ordered group, we can construct a semi-

A relation between the F. and M. Riesz theorem and the structure of LCA groups 307

group P of \hat{G} which induces algebraically order in \hat{G} as follows.

Put
$$P = \{(n, f) \in \mathbb{Z} \oplus F; n > 0, \text{ or } n = 0 \text{ and } f \ge 0\}.$$

Since P is not dense in \hat{G} , M(G) has non-zero analytic measure. Moreover the following proposition A is established.

PROPOSITION A.

 $M^a(G) \subset L^1(G)$

[Proof] Let μ be any measure of analytic type. Put $d\mu = d\mu_a + d\mu_s$, where $d\mu_a$ is absolutely continuous and $d\mu_s$ is singular. By [Lemma 1 of (1)], both μ_a and μ_s are of analytic type. Suppose $\mu_s \neq 0$, then there exists a non-negative integer n and $f \in F$ such that

 $\hat{\mu}_s(n, f) \neq 0$. By Lemma 1 in §2, we have $n \ge 1$.

Put $n_0 = \inf \{n \in \mathbb{Z}; n \ge 1, \hat{\mu}_s(n, f) \neq 0 \text{ for some } f \in \mathbb{F}\}.$

We define measures $\lambda_s \in M(G)$ and $\sigma \in L^1(G)$ as follows

$$\hat{\lambda}_s(n,f) = \hat{\mu}_s(n+n_0,f) \text{ for } n \in \mathbb{Z}, f \in \mathbb{F}$$

 $d\sigma = dx \times d\delta_0,$

where dx is a Haar measure on T and $d\delta_0$ is the unit point mass at 0 in D. Put $\nu = \lambda_s - \lambda_s * \sigma$.

By the definition of n_0 , ν is of analytic type.

Therefore, by [Lemma 1 of (1)], λ_s is of analytic type, since $\lambda_s * \sigma$ belongs to $L^1(G)$. Hence, by Lemma 1 in § 2, $\hat{\lambda}_s(0, f) = 0$ for all $f \in F$.

Since $\hat{\mu}_s(n_0, f) = \hat{\lambda}_s(0, f)$, we have a contradiction by the definition of n_0 . Hence $\mu_s = 0$ and μ belongs to $L^1(G)$.

§2. We state some propositions and lemmas before we prove the theorem

PROPOSITION 1. Let $P \subset \hat{G}$ be a semigroup satisfying the condition (*). Then, the following (a), (b) and (c) are equivalent.

- (a) M(G) has no non-zero analytic measure
- (b) P is dense in \hat{G}
- (c) -P is dense in \hat{G} .

We omit the proof, since these facts are easily followed.

LEMMA 1. Let G be a discrete Abelian group such that \hat{G} is torsionfree (hence \hat{G} is an algebraically ordered group).

If P is any semigroup of \hat{G} satisfying the condition (*), then P is dense in \hat{G} .

[Proof]

Let $m_{\hat{G}}$ be a normalized Haar measure on \hat{G} . If P is not dense in \hat{G} , there exists an element $\gamma_0 \in \hat{G} \setminus \bar{P}$ and a symmetric neighborhood U of 0 such that $\gamma_0 + U + U \subset \hat{G} \setminus \bar{P} \subset (-P) \setminus \{0\}$.

Then, $\{n\gamma_0+U\}$ $(n=1, 2, 3, \cdots)$ are pairewise disjoint. Hence, $1 \ge m_{\hat{G}}(\bigcup_{n=1}^{n} (n\gamma_0+U)) = \infty$ and we have a contradiction.

We state a definition for lemma 3.

DEFINITION 1. In this paper, non-empty subset E^n of R^n $(n \ge 2)$ is called a RC-set if E^n contains some $U^n(S_n)$. Where U^n is an unitary transformation in R^n and $S_n = \{(x, y) \in R^n ; x \in R, y \in V_{n-1}\}$ $(V_{n-1} is a non-empty open$ $set in <math>R^{n-1}$).

PROPOTISION 2. Let $P \subset R$ be a semigroup satisfying the condition (*). Then, P is (i) closed or (ii) dense in R.

Moreover, if P is closed, P is $[0, \infty)$ or $(-\infty, 0]$.

[Proof]

Case (i). We suppose that P is closed.

It is sufficient to consider the following two cases.

Case 1. there exists an element $x_0 \in -P$ with $x_0 < 0$

Case 2. there exists an element $x_0 \in -P$ with $x_0 > 0$

Firstly we consider the case 1. Since P^c is open and x_0 belongs to P^c , there exists an open interval $(-\delta + x_0, \delta + x_0) \subset P^c$ with $\delta + x_0 < 0$ for some $\delta > 0$.

Put $x_1 = \sup \{x < 0; (-\delta + x_0, x) \subset P^c\}$. Then, $x_1 = 0$. Hence $[x_0, 0] \subset P^c \setminus \{0\} \subset -P$. Since -P is closed, $[x_0, 0] \subset -P$. Therefore $-P = (-\infty, 0]$, because -P is a semigroup. That is $P = [0, \infty)$. We can conclude $P = (-\infty, 0]$ by the same discussion if case 2 happens. Case (ii). We suppose that P is not closed. From case (i) $P \cap [0, \infty) \neq \phi$ and $P \cap (-\infty, 0] \neq \phi$.

Put $a_+ = \inf \{a \in P; a > 0\}$ and $a_- = \sup \{a \in P; a < 0\}$.

Then, $a_+=a_-=0$. Hence, P is dense in R.

REMARK 2. Professor S. Koshi pointed out to the author that there exists a semigroup S of R such that it is dense in R and satisfies the condition (*).

A relation between the F. and M. Riesz theorem and the structure of LCA groups 309

LEMMA 2. Let P be a semigroup of R^2 satisfying the condition (*). Then, we have

(a) P contains a set which is transformed $S_2 = \{(x, y) \in \mathbb{R}^2 ; y \in \mathbb{R}, x \ge a \text{ for some } a \in \mathbb{R}\}$ by some unitary transformation in \mathbb{R}^2 ,

or (b) P is dense in \mathbb{R}^2 .

[Proof] Suppose P is not dense in \mathbb{R}^2 .

Put $F_1 = \{(x, 0) \in \mathbb{R}^2; x \in \mathbb{R}\}$ and $F_2 = \{(0, y) \in \mathbb{R}^2; y \in \mathbb{R}\}$. We define semigroups P_1 and P_2 of \mathbb{R}^2 by $P_1 = F_1 \cap \mathbb{R} \ (=F_1 \cap \mathbb{R} \oplus \{0\})$ and $P_2 = F_2 \cap \mathbb{R} \ (=F_2 \cap \mathbb{R} \oplus \{0\})$.

From proposition 2, it is sufficient to consider the following four case. [case I] $P_1 \cong [0, \infty)$ and P_2 is dense in R

[case II] P_1 is dense in R and P_2 is dense in R

[case III] $P_1 \cong [0, \infty)$ and $P_2 \cong [0, \infty)$

[case IV] $P_1 \cong [0, \infty)$ and $P_2 \cong (-\infty, 0]$.

But since [case IV] can be proved as [case III], We consider only [case I], [case II] and [case III].

Step 1. We shall begin with [case II].

But it is easy to check that P is dense in R^2 , because P is a semigroup. Hence [case II] cannot be happened.

Step 2. We suppose that [case I] happens.

Then, $-P_2$ is dense in F_2 , because P_2 is dense in F_2 .

Hence -P is dense in $\{(x, y); x \leq 0, y \in R\}$ and P is dense in $\{(x, y); x \geq 0, y \in R\}$.

Since P is not dense in R^2 , -P is so. Therefore, -P is not dense in $\{(x, y); x \ge 0, y \in R\}$.

Hence there exists a non-empty open set $U \subset \{(x, y); x \ge 0, y \in R\}$ such that $(-P) \cap U = \phi$. Hence $U \subset P$ and P contains a set $\{(x, y); x \ge a, y \in R\}$ for some $a \in R$.

Step 3. Since P contains $\{(x, y); x \ge 0, y \ge 0\}$, it is sufficient to consider the case that P contains an element $z_0 = (x_0, y_0)$ $(x_0 > 0$ and $y_0 < 0)$.

Put $a = \frac{y_0}{x_0}$, $F_a = \{(x, ax); x \in R\}$ and $P_{F_a} = P \cap F_a$.

Then, P_{F_a} is dense in $F_a \cdots (3)_1$ or not dense in $F_x \cdots (3)_2$. If the case $(3)_1$ happens, P contains $\{(x, y); y > ax\}$. Hence (a) is established.

If the case (3)₂ happens, P contains $\{(x, y); x \ge 0, y > ax\}$.

Now we put $a^{\#}=\inf \{a < 0; (x, ax) \in P, x > 0\}$, then P contains $\{(x, y); y > a^{\#}x, x \in R\}$.

Where if $a^{\ddagger} = -\infty$, P contains $\{(x, y); x > 0, y \in R\}$. Hence (a) is established.

LEMMA 3. Let P be a closed semi-group of \mathbb{R}^n $(n \ge 2)$ satisfying the condition (*). Then, we have

(a) P contains a RC-set E_n in \mathbb{R}^n

or (b) P is dense in \mathbb{R}^n .

[Proof] From proposition 2 and lemma 2, we can prove the Lemma 3 by using the induction.

We drop the detail.

§ 3. Proof of Theorem

Finally, we prove the theorem. Put $\Gamma = \hat{G}$, then by the structure theorem $[(4); p 40], \Gamma$ contains an open subgroup $R^n \oplus F$, where F is a compact subgroup and $n \ge 0$.

Put $H=F^{\perp}$ (annihilator of F), then $\widehat{G/H}=F$. Hence, by lemma 1 and proposition 1, we have $F=\{0\}$.

Hence Γ contains \mathbb{R}^n $(n \ge 0)$ as an open subgroup.

Since G is non-compact, we have $n \ge 1$.

Let *i* be an identity map from R^n into itself. Then, there exists a homomorphism ϕ from Γ into R^n such that $\phi|R^n=i$, because R^n is divisible.

Since \mathbb{R}^n is an open subgroup, ϕ is continuous. Hence by [(2); p 59], we have

 $\Gamma \cong R^n \oplus \Gamma/R^n$.

We put $D = \Gamma/R^n$, then $\Gamma = R^n \oplus D$, where D is discrete.

Step 1. Firstly, we shall prove that n=1.

Suppose $n \ge 2$. Put $P_n = P \cap P^n (=P \cap R^n \bigoplus \{0\})$, then by lemma 3, we have

[1] P_n contains some RC-set $E_n \subset \mathbb{R}^n$

or [2] P_n is dense in \mathbb{R}^n .

The case [2] cannot be happened because of the hypothysis (II) of the theorem.

If the case [1] happens, then there exists a unitary transformation T_n in \mathbb{R}^n and a subset $S_n = \{(x, y); x \in \mathbb{R}, y \in V_{n-1}\}$ such that $T_n(E_n) = S_n$.

Where V_{n-1} is a non-empty open set in \mathbb{R}^{n-1} .

Then there exists a non-zero integrable function $h \in L^1(\mathbb{R}^{n-1})$ such that $supp(\hat{h}) \subset V_{n-1}$. We define a measure $\lambda \in M(\mathbb{R}^n)$ by

$$d\lambda'(x,y) = d\delta_0(x) imes h(y) \, dy$$
 ,

310

where δ_0 is a dirac measure at 0 in R.

Then we have $supp(\hat{\lambda}) \subset S_n$.

We next define $\lambda'_{T_n} \in M(\mathbb{R}^n)$ by

 $\lambda'_{T_n}(K) = \lambda'(T_n K)$ for a Borel measurable set K of \mathbb{R}^n .

Then, since T_n is a unitary transformation, we have

$$\hat{\lambda}'_{T_n}(s) = \int_{\mathbb{R}^n} e^{-i(s,t)} d\lambda'_{T_n}(t)$$

= $\int_{\mathbb{R}^n} e^{-i(s,t)} d\lambda' (T_n t)$
= $\hat{\lambda}' (T_n s)$ for $s \in \mathbb{R}^n$

Hence we have $supp(\hat{\lambda}'_{T_n}) \subset E_n$. And λ'_{T_n} is a singular measure, because λ' is so. We define a measure $\mu \in M(G)$ by

$$d\mu = d\lambda'_{T_n} \times dm_{\Xi},$$

where $m_{\hat{D}}$ is a Haar measure on \hat{D} . Easily, we can check that μ is a non-zero singular measure and

$$supp(\hat{\mu}) \subset E_n + \{0\} \subset P.$$

In other words, $\mu (\neq 0)$ belongs to $M^{a}(G) \setminus L^{1}(G)$.

This contradicts to the hypothysis (I) of theorem.

Hence we have $\hat{G} = R \oplus D$.

Step 2. Finally, we shall prove that G=R and that $P=[0,\infty)$ or $(-\infty, 0]$.

Suppose P is closed. Then, by [(2); theorem 2], if $D \neq \{0\}$, there exists a non-zero measure $\mu \in M^a(G) \setminus L^1(G)$.

This contradicts to the hypothysis. Hence we have $D = \{0\}$.

We next consider the case that P is not closed.

Suppose $D \neq \{0\}$. By the hypothysis, $P_R = P \cap R$ $(=R \oplus \{0\} \cap P)$ is closed. We consider only the case $P_R \cong [0, \infty)$. Moreover, we may assume that there exists no positive minimal element in D, because otherwise \hat{G} is $R \oplus Z$ and we can prove as same way.

Then, there exists an element $(x_0, -d_0) \in P$ $(x_0 \in R, d_0 \in D; x_0 > 0, d_0 > 0)$.

Since P is a semigroup satisfying the condition (*), there exists a nonnegative real number $a_0 \in \mathbb{R}$ such that P cotains $\{(x, -nd_0); x \ge na_0, n=0, 1, 2, \dots\} \cup \{(x, -nd_0); x \ge na_0, n=-1, -2, \dots\}$ or $\{(x, -nd_0); x \ge na_0, n=1, 2, \dots\} \cup \{(x, -nd_0); x \ge na_0, n=0, -1, -2, \dots\}$.

Put $\Lambda = \{(x, nd_0); x \in \mathbb{R}, n \in \mathbb{Z}\}$. Nextly, we define a homomorphism β of Λ into itself as follows

$$\beta(x, nd_0) = (na_0 + x, nd_0).$$

Easily, we can check that Λ is an open subgroup of \hat{G} and β is a continuous isomorphism with $\beta(\Lambda) = \Lambda$.

Let $h \in L^1(\mathbb{R})$ be a non-zero integrable function such that $supp(\hat{h}) \subset (1, \infty)$. ∞). Let $\Lambda_{d_0} = \{nd_0; n \in \mathbb{Z}\}$ be a subgroup of D and $F = \Lambda_{d_0}^{\perp}$ an annihilator of Λ_{d_0} in \hat{D} .

Since D has not minimal positive element, F is an infinite compact subgroup of \hat{D} .

We define a non-zero singular measure $\lambda \in M(G) = M(R \oplus \hat{D})$ by

 $d\lambda = h(x) \, dx \times dm_F,$

where m_F is a Haar measure on F.

Since $\widehat{m}_{F}(d) = \chi_{A_{d_{o}}}(d)$ (characteristic function of $\Lambda_{d_{o}}$), we have

$$supp(\hat{\lambda}) \subset [1,\infty) \bigoplus \Lambda_{d_0}.$$

We next define a non-zero measure $\mu \in M(G)$ by

$$\hat{u}(t, d) = \hat{\lambda} o \beta(t, d)$$

$$= \begin{cases} \hat{\lambda} (\beta(t, d)) & \text{if } (t, d) \in \Lambda \\ 0 & \text{otherwise.} \end{cases}$$

Then, we have

 $supp(\hat{\mu}) \subset \{(x, nd_0); n \in \mathbb{Z}, x > -na_0 + 1\} \subset P.$

Hence, μ is of analytic type and, by Riemann-Lebesgue's lemma, μ does not belong to $L^1(G)$.

This contradicts to the condition (I) of theorem.

Hence we have G=R. Moreover, by the condition (II) of theorem, proposition 1 and proposition 2, P must be $[0, \infty)$ or $(-\infty, 0]$. q.e.d.

COROLLARY 1. Let G be a non-compact LCA group with its dual \hat{G} is algebraically ordered. If this order is archimedean, then the condition (II) of theorem can be weakened as follows.

(II)' M(G) has a non-zero analytic measure.

References

- (1) R. Doss: On measures with small transforms, Pacific Journal of Math 26 (1968).
- (2) E. HEWITT and K. A. ROSS: Abstract harmonic analysis Vol. 1, Springer-Verlag, 1963.
- (3) H. OTAKI: Remarks on characterization of locally compact abelian groups; to appear.
- (4) W. RUDIN: Fourier analysis on groups, New York interscience, 1962.

Department of Mathematics, Hokkaido University

312