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A relation between the F. and M. Riesz theorem
and the structure of LCA groups
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\S 1. Introduction

Let G be a locally compact Abelian group and M(G) the usual Banach
algebra of all complex bounded regular measures on G.

Let L^{1}(G) be a set of all functions intergrable on G with respect to
the Haar measure dx.

Suppose \Gamma is a LCA group. We shall call \Gamma is a topological ordered
group or simply ordered group if there exists a closed semigroup P of \Gamma

such that (i) P\cup(-P)=\Gamma and (ii) P\cap(-P)=\{0\} . Next we shall say that
\Gamma is an algebraically ordered group if there exists a semigroup P such that
(i) P\cup(-P)=\Gamma and (ii) P\cap(-P)=\{0\} . [(1)] .

Suppose \Gamma=G (the dual group of G) is an algebraically ordered group.
A measure \mu\in M(G) is said to be of analytic type if \hat{\mu}(\gamma)=.\backslash _{G}\cdot(-x, \gamma)d\mu

(x)=0 for all \gamma<0 .
We put M^{a}(G)= {\mu\in M(G);\mu is of analytic type}.
Call a semigroup S satisfies the condition (^{*}) if S\cup(-S)=\Gamma and S\cap

(-S)=\{0\} .
Our purpose is to prove the following theorem.
THEOREM 1. Let G be a non-compact LCA group with its dual \Gamma=

G is algebraically ordered.
If ( I) M^{a}(G)\subset L^{1}(G)

(II) for any closed subgroup H of G (but H\neq G) M(G/H) has
a non-zero analytic measure ( H^{\perp} (annihilator of H) becomes
naturally an algebraically ordered group.)

then, G=R. And moreover P=(0, \infty) or (-\infty, 0] , where P is a semi-
group which induces algebraically order into \Gamma r

REMARK 1. In the above theorem the condition (II) cannot be weakened.
Indeed, let F\neq\{0\} be a compact torsion-free group and D its dual. We
put G=T\oplus D, then G is a non-compact LCA group, where T is a circle
group.

Since \hat{D}=F is an algebraically ordered group, we can construct a semi-
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group P of G which induces algebraically order in G as follows.

Put P=\{(n,f)\in Z\oplus F;n>0 , or n=0 and f\geqq 0\}(

Since P is not dense in G, M(G) has non-zero analytic measure. More-
over the following proposition A is established.

PROPOSITION A.
M^{a}(G)\subset L^{1}(G)

[Proof] Let \mu be any measure of analytic type. Put d\mu=d\mu_{a}+d\mu_{s} ,
where d\mu_{a} is absolutely continuous and d\mu_{s} is singular. By [Lemma 1 of
(1)] , both \mu_{a} and \mu_{s} are of analytic type. Suppose \mu_{s}\neq 0 , then there exists
a non-negative integer n and f\in F such that

\hat{\mu}_{s}(n, f)\neq 0 . By Lemma 1 in \S 2, we have n\geqq 1 .
Put n_{0}= \inf { n\in Z;n\geqq 1,\hat{\mu}_{s}(n,f)\neq 0 for some f\in F}.
We define measures \lambda_{s}\in M(G) and \sigma\in L^{1}(G) as follows

\hat{\lambda}_{s}(n,f)=\hat{\mu}_{s}(n+n_{0},f) for n\in Z, f\in F

d\sigma=dxxd\delta_{0} ,

where dx is a Haar measure on T and d\delta_{0} is the unit point mass at 0 in
D. Put \nu=\lambda_{s}-\lambda_{s}*\sigma.

By the definition of n_{0} , \nu is of analytic type.
Therefore, by [Lemma 1 of (1)], \lambda_{s} is of analytic type, since \lambda_{s}*\sigma belongs

to L^{1}(G) . Hence, by Lemma 1 in \S 2, ’\wedge?\backslash s(0, f)=0 for all f\in F.
Since \hat{\mu}_{s}(n_{0},f)=\hat{P\iota}s(0, f)^{1} , we have a contradiction by the definition of

n_{0} . Hence \mu_{s}=0 and \mu belongs to L^{1}(G) .

\S 2. We state some propositions and lemmas before we
prove the theorem

PROPOSITION 1. Let P\subset G be a semigroup satisfying the condition (^{*}) .
Then, the following (a), (b) and (c) are equivalent.

(a) M(G) has no non-zero analytic measure
(b) P is dense in G

(c) -P is dense in G.
We omit the proof, since these facts are easily followed.
Lemma 1. Let G be a discrete Abelian group such that G is torsion-

free (hence G is an algebraically ordered group).

If P is any semigroup of G satisfying the condition (^{*}) , then P is dense
in G.
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[Proof]

Let m_{\hat{G}} be a normalized Haar measure on G. If P is not dense in G,

there exists an element \gamma_{0}\in G^{\backslash }{}_{\backslash }\overline{P} and a symmetric neighborhood U of 0 such
that \gamma_{0}+U+U\subset G\backslash \overline{P}\subset(-P)\backslash \{0\} .

Then, \{n\gamma_{0}+U\}(n=1,2,3, \cdots) are pairewise disjoint. Hence, 1 \geqq m_{\hat{G}}(\bigcup_{n=1}

\langle n\gamma_{0}+U))=\infty and we have a contradiction.
We state a definition for lemma 3.
DEFINITION 1. In this paper, non-empty subset E^{n} of R^{n}(n\geqq 2) is called

a RC set if E^{n} contains some U^{n}(S_{n}) . Where U^{n} is an unitary transforma-
tion in R^{n} and S_{n}=\{(x, y)\in R^{n} ; x\in R, y\in V_{n-1}\}(V_{n-1} is a non-empty open
set in R^{n-1}).

PROPOTISION 2. Let P\subset R be a semigroup satisfying the condition (^{*}) .
Then, P is (i) closed or (ii) dense in R.

Moreover, if P is closed, P is [0, \infty) or (-\infty, 0] .
[Proof]

Case (i). We suppose that P is closed.
It is sufficient to consider the following two cases.
Case 1. there exists an element x_{0}\in-P with x_{0}<0

Case 2. there exists an element x_{0}\in-P with x_{0}>0

Firstly we consider the case 1. Since P^{c} is open and x_{0} belongs to
P^{c} , there exists an open interval (-\delta+x_{0}, \delta+x_{0})\subset P^{c} with \delta+x_{0}<0 for some
\delta>0 .

Put x_{1}= \sup\{x<0; (-\delta+x_{0}, x)\subset P^{e}\} .
Then, x_{1}=0 . Hence [x_{0}, O)\subset P^{\epsilon}\backslash \{0\}\subset-P.
Since -P is closed, [x_{0},0]\subset-P.
Therefore -P=(-\infty, 0] , because -P is a semigroup.
That is P=[0, \infty) .
We can conclude P=(-\infty, 0] by the same discussion if case 2 happens.
Case (ii). We suppose that P is not closed.
From case (i) P\cap[0, \infty)\neq\phi and P\cap(-\infty, 0]\neq\phi .
Put a_{+}= \inf\{a\in P;a>0\} and

a_{-}= \sup\{a\in P;a<0\}

Then, a_{+}=a_{-}=0 . Hence, P is dense in R.
REMARK 2. Professor S. Koshi pointed out to the author that there

exists a semigroup S of R such that it is dense in R and satisfies the con-
dition (^{*}) .
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Lemma 2. Let P be a semigroup of R^{2} satisfying the condition (^{*}) .
Then, we have

(a) P contains a set which is transformed S_{2}=\{(x, y)\in R^{2} ; y\in

R, x\geqq a for some a\in R} by some unitary transformation
in R^{2} ,

or (b) P is dense in R^{2} .
[Proof] Suppose P is not dense in R^{2} .
Put F_{1}=\{(x, 0)\in R^{2} ; x\in R\} and F_{2}=\{(0, y)\in R^{2} ; y\in R\} . We define semi-

groups P_{1} and P_{2} of R^{2} by P_{1}=F_{1}\cap R(=F_{1}\cap R\oplus\{0\}) and P_{2}=F_{2}\cap R(=F_{2}

\cap R\oplus\{0\}) .
From proposition 2, it is sufficient to consider the following four case.

[case I] P_{1}\cong[0, \infty) and P_{2} is dense in R

[case II ] P_{1} is dense in R and P_{2} is dense in R

[case III] P_{1}\cong[0, \infty) and P_{2}\cong[0, \infty)

[case IV] P_{1}\cong[0, \infty) and P_{2}\cong(-\infty, 0] .
But since [case IV] can be proved as [case III], We consider only [case

I] , [case II] and [case III].
Step 1. We shall begin with [case II].

But it is easy to check that P is dense in R^{2} , because P is a semi-
group. Hence [case II] cannot be happened.

Step 2. We suppose that [case I] happens.
Then, -P_{2} is dense in F_{2} , because P_{2} is dense in F_{2} .
Hence -P is dense in \{(x, y);x\leqq 0, y\in R\} and P is dense in {(x, y) ;

x\geqq 0 , y\in R\} .
Since P is not dense in R^{2} , - P is so. Therefore, - P is not dense

in \{(x, y);x\geqq 0, y\in R\} .
Hence there exists a non-empty open set U\subset\{(x, y);x\geqq 0, y\in R\} such

that (-P)\cap U=\phi . Hence U\subset P and P contains a set \{(x, y);x\geqq a, y\in R\}

for some a\in R .
Step 3. Since P contains \{(x, y);x\geqq 0, y\geqq 0\} , it is sufficient to consider

the case that P contains an element z_{0}=(x_{0}, y_{0}) ( x_{0}>0 and y_{0}<0).

Put a= \frac{y_{0}}{x_{0}} , F_{a}=\{(x, ax) ; x\in R\} and P_{F_{a}}=P\cap F_{a} .

Then, P_{F_{a}} is dense in F_{a}\cdots(3)_{1} or not dense in F_{a}\cdots(3)_{2} . If the case
(3)_{1} happens, P contains \{(x, y) ; y>ax\} . Hence (a) is established.

If the case (3)_{2} happens, P contains \{(x, y) ; x\geqq 0, y>ax\} .
Now we put a^{\#}= \inf\{a<0;(x, ax)\in P, x>0\} , then P contains {(x, y) ;

y>a^{\#}x, x\in R\} .
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Where if fa^{f}=-\infty , P contains \{(x, y) ; x>0, y\in R\} .
Hence (a) is established.
Lemma 3. Let P be a closed semi-group of R^{n}(n\geqq 2) satisfying the

condition (^{*}) . Then, we have
(a) P contains a RC set E_{n} in R^{n}

or (b) P is dense in R^{n} .
[Proof] From proposition 2 and lemma 2, we can prove the Lemma

3 by using the induction.
We drop the detail.

\S 3. Proof of Theorem

Finally, we prove the theorem. Put \Gamma=\hat{G}, then by the structure the0-
rem [(4);p40] , \Gamma contains an open subgroup R^{n}\oplus F, where F is a compact
subgroup and n\geqq 0 .

Put H=F^{\perp} (annihilator of F), then \hat{G/}H=F. Hence, by lemma 1 and
proposition 1, we have F=\{0\} .

Hence \Gamma contains R^{n}(n\geqq 0) as an open subgroup.
Since G is non-compact, we have n\geqq 1 .
Let i be an identity map from R^{n} into itself. Then, there exists a

homomorphisim \phi from \Gamma into R^{n} such that \phi|R^{n}=i , because R^{n} is divisible.
Since R^{n} is an open subgroup, \phi is continuous. Hence by [(2);p59] ,

we have
\Gamma\cong R^{n}\oplus\Gamma/R^{n}

We put D=\Gamma/R^{n} , then \Gamma=R^{n}\oplus D, where D is discrete.
Step 1. Firstly, we shall prove that n=1 .
Suppose n\geqq 2 . Put P_{n}=P\cap P^{n}(=P\cap R^{n}\oplus\{0\}) , then by lemma 3, we

have
[1] P_{n} contains some RC set E_{n}\subset R^{n}

or [2] P_{n} is dense in R^{n} .
The case [2] cannot be happened because of the hypothysis (II) of the

theorem.
If the case [1] happens, then there exists a unitary transformation T_{n}

in R^{n} and a subset S_{n}=\{(x, y);x\in R, y\in V_{n-1}\} such that T_{n}(E_{n})=S_{n} .
Where V_{n-1} is a non-empty open set in R^{n-1} .
Then there exists a non-zero integrable function h\in L^{1}(R^{n-1}) such that

supp (\hat{h})\subset V_{n-1} . We define a measure \chi\in M(R^{n}) by

d\lambda’(x, y)=d\delta_{0}(x)\cross h(y)dy ,
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where \delta_{0} is a dirac measure at 0 in R.
Then we have supp (\hat{\lambda}’)\subset S_{n} .
We next define \chi_{\tau_{n}}\in M(R^{n}) by

\mathcal{X}_{\tau_{u}}(K)=\lambda’(T_{n}K) for a Borel measurable set K of R^{n} .

Then, since T_{n} is a unitary transformation, we have
\prime^{J}‘\tau_{n}\wedge\neg’(s)=\int_{R^{n}}e^{-i(st)}’ d\mathcal{X}_{\tau_{n}}(t)

=J_{R^{n}}e^{-i(s,t)}d\mathcal{X}(T_{n}t)

=\hat{\lambda}’(T_{n}s) for s\in R^{n} .

Hence we have supp (\hat{\lambda}_{T_{n}}’)\subset E_{n} . And \chi_{\tau_{n}} is a singular measure, because
\lambda’ is so. We define a measure \mu\in M(G) by

d\mu=d_{\grave{A}_{T_{n}}’}\cross dm_{rarrow}- ,

where m_{B} is a Haar measure on \hat{D} . Easily, we can check that \mu is a non-
zero singular measure and

supp (\hat{\mu})\subset E_{n}+\{0\}\subset P .

In other words, \mu(\neq 0) belongs to M^{a}(G)\backslash L^{1}(G) .
This contradicts to the hypothysis (I) of theorem.
Hence we have G=R\oplus D.
Step 2. Finally, we shall prove that G=R and that P=[0, \infty) or (–

\infty , 0].
Suppose P is closed. Then, by [(2); theorem 2], if D\neq\{0\} , there exists

a non-zero measure \mu\in M^{a}(G)\backslash L^{1}(G) .
This contradicts to the hypothysis. Hence we have D=\{0\} .
We next consider the case that P is not closed.
Suppose D\neq\{0\} . By the hypothysis, P_{R}=P\cap R(=R\oplus\{0\}\cap P) is closed.

We consider only the case P_{R}\cong[0, \infty) . Moreover, we may assume that
there exists no positive minimal element in D, because otherwise G is R\oplus Z

and we can prove as same way.
Then, there exists an element (x_{0}, - d_{0})\in P(x_{0}\in R, d_{0}\in D;x_{0}>0, d_{0}>0) .
Since P is a semigroup satisfying the condition (^{*}) , there exists a non-

negative real number a_{0}\in R such that P cotains \{(x, - nd_{0});x\geqq na_{0}, n=0,
1, 2, \cdots } \cup\{(x, - nd_{0});x>na_{0}, n=-1, -2, \cdots\} or \{(x, - nd_{0});x>na_{0} , n=1,2,
\ldots\}\cup\{(x, - nd_{0}) ; x\geqq na_{0}, n=0, -1, -2, \cdots\} .

Put \Lambda=\{(x, nd_{0});x\in R, n\in Z\} . Nextly, we define a homomorphism
\beta of \Lambda into itself as follows

\beta(x, nd_{0})=(na_{0}+x, nd_{0}) .
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Easily, we can check that \Lambda is an open subgroup of G and \beta is a con-
tinuous isomorphism with \beta(\Lambda)=\Lambda .

Let h\in L^{1}(R) be a non-zero integrable function such that supp (\hat{h})\subset(1 ,
\infty) . Let \Lambda_{d_{0}}=\{nd_{0} ; n\in Z\} be a subgroup of D and F=\Lambda_{a_{0}}^{\perp} an annihilator
of \Lambda_{l_{0}}, in \hat{D}.

Since D has not minimal positive element, F is an infinite compact sub-
group of \hat{D} .

We define a non-zero singular measure \lambda\in M(G)=M(R\oplus\hat{D}) by

d\lambda=h(x)dx\cross dm_{F} ,

where m_{F} is a Haar measure on F.
Since \hat{m}_{F}(d)=\chi_{A_{d_{0}}}(d) (characteristic function of \Lambda_{d_{0}}), we have

supp (\hat{\lambda})\subset[1, \infty)\oplus\Lambda_{d_{0}} .

We next define a non-zero measure \mu\in M(G) by
\hat{\mu}(t, d)=\hat{\lambda}0\beta(t, d)

=\{
\hat{\lambda}(\beta(t, d)) if (t, d)\in\Lambda

0 otherwise.
Then, we have
supp (\hat{\mu})\subset\{(x, nd_{0});n\in Z, x>-na_{0}+1\}\subset P .
Hence, \mu is of analytic type and, by Riemann-Lebesgue’s lemma, \mu does

not belong to L^{1}(G) .
This contradicts to the condition (I) of theorem.
Hence we have G=R. Moreover, by the condition (II) of theorem,

proposition 1 and proposition 2, P must be [0, \infty) or (–00, 0]. q.e.d.
COROLLARY 1. Let G be a non-compact LCA group with its dual G

is algebraically ordered. If this order is archimedean, then the condition
(II) of theorem can be weakened as follows.

(II)’ M(G) has a non-zero analytic measure.
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