
Hokkaido Mathematical Journal Vol. 6 (1977) p. 302-305

On Harnack’s pseudo-distance

By Hiroshi TANAKA\star )

(Received December 17, 1976)

1. Introduction and terminology

In this paper we shall give a sufficient condition for which the Harnack’s
pseud0-distance h_{R} (denoted by d_{R} in [5]) on an arbitrary Riemann surface R

is a real distance and we shall investigate a relation among the Harnack’s
pseud0-distance h_{R} , the Kobayashi’s distance d_{R}([4]) and the Carath\’eodory’s
distance c_{R} (cf. [4]).

For an arbitrary (open or closed) Riemann surface R, we denote by
HP=HP(R) the family of all positive harmonic functions on R. For any
a, b\in R , we set

k_{R}(a, b)= \inf\{c;c^{-1}u(a)\leqq u(b)\leqq cu(a) for any u\in HP(R)\}

(Harnack’s constant).
It is easy to see that 1\leqq k_{R}(a, b)<\infty and (a, b)arrow k_{R}(a, b) is continuous.

Furthermore the following properties are easy to see :

k_{R}(a, b)=k_{R}(b, a) and k_{R}(a, b)\leqq k_{R}(a, c)k_{R}(c, b) .
The following definition is due to J. K\"ohn (cf. [2]).

DEFINITION 1. For any a, b\in R , we set h_{R}(a, b)=\log k_{R}(a, b) .
By definition, we see that (a, b)arrow h_{R}(a, b) is continuous and R\in O_{HP}

if and only if h_{R}=0 . Furthermore h_{R} is a (real) distance if and only if
HP(R) separates points of R, i . e. , for any a, b\in R(a\neq b) , we can find u\in

HP(R) with u(a)\neq u(b) .
The following theorem is due to J. K\"ohn [5].

THEOREM 1 (An extension of Schwartz-Pick’s theorem). Let R, R’

be two open Riemann surfaces. If f is an analytic mapping of R into
R’ then

h_{R}(a, b)\geqq h_{R’}(f(a), f(b)) for any a, b\in R .

In particular, if HP(R) separates points of R and R’ is hyperbolic, then
the equality holds if and only if f is an onto conformal mapping.
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Lemma 1 ([5]). In the case of R=\{|z|<1\} , h_{R}(a, b) equals the Poin-
ar\’e-Bergman metric on R, i. e. ,

h_{R}(a, b)= \log\frac{1+r}{1-r}’.
where r=| \frac{b-a}{1-\overline{a}b}| (a, b\in R) .

2. Class \mathscr{A}

In the following we denote by \partial E the relative boundary of a subset
E of a Riemann surface R. Furthermore, for a closed set X, we denote
by C(X) the family of all real-valued continuous functions on X. For an
open set G in R and f\in C(\partial G) , we refer to [3] for the definition and pr0-

perties of Dirichlet solution H_{f}^{G} .
DEFINITION 2. We denote by \mathscr{A} the family of all hyperbolic Riemann

surfaces R which satisfy the following condition:
For any closed disk K in R, L_{oR-K}f^{l)}=H_{f}^{R-K} in R–K (f\in C(\partial K))

implies f=0.
Lemma 2. Let R’ be an arbitrary Riemann surface. If K’ is a closed

disk in R_{:}’ then R=R’-K’ belongs to \mathscr{A} .
PROOF. Let K be any closed disk in R. Let f be any function in

C(\partial K) with L_{oR-K}f=H_{f}^{R-K} in R-K. We denote by u the common func-
tion. Let D be an open disk in R with D\cap K=\emptyset and K’\subset D . By the aid
of consistencies of operators L_{o} and H, we can show that

u=L_{oR-(D\cup\partial D)}u=H_{u}^{R-(D\cup\partial D)} in D-K .
Thus we see that \partial u/\partial\nu=0 and u=0 on \partial K. This implies that u=0 in
D–K. Hence u=0 in R– K and f=0.

Let R be a hyperbolic Riemann surface. Let R_{D}^{*} be the Royden com-
pactification of R and let \Delta_{D}=R_{D}^{*}-R (cf. [3]). For a\in R, we denote by \mu_{a}

the harmonic measure on \Delta_{D} with respect to a. Let a_{0}\in R be fixed once
for all and let \mu\equiv\mu_{a_{0}} . It is known that there exists a uniquely determined
normal derivative, say \psi[g_{a}] , of g_{a} with respect to \mu in the sense of F-Y.
Maeda [6]. The existence and uniqueness of \psi[g_{a}] are \mu-a . e . For f\in
C(\Delta_{D}) , we denote by H_{f}^{R^{*}} the Dirichlet solution of f on R_{D}^{*} .

Lemma 3 (cf. [6]). Let f be a continuous fuction on \Delta_{D} . Then

H_{f}^{R^{*}}(a)= \frac{1}{2\pi}\int_{\Delta_{D}}f(\xi)\psi[g_{a}](\xi)d\mu(\xi) (a\in R) .

1) See [1] for the definition and properties of the operator L_{0} .
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THEOREM 2. If a Riemann surface R belongs to the class \mathscr{A} , then h_{R}

is a distance.
PROOF. It is sufficient to prove that HB(R) separates points of R. Let

a and b be any points in R such that H_{f}^{R^{*}}(a)=H_{f}^{R^{*}}(b) for any f\in C(\Delta_{D}) .
It follows from Lemma 3 that \psi[g_{a}]=\psi[g_{b}] or \psi[g_{a}-g_{b}]=0 on \Delta_{D}\mu-a . e .
By the aid of Theorem 8 in [6], we see that there is a closed disk K in
R such that K-\partial K\ni a, b and L_{oR-K}(g_{a}-g_{b})^{2)}=g_{a}-g_{b}=H_{(q_{a}-g_{b})}^{R-K} in R-K. By
the assumption on R, we see that g_{a}-g_{b}=0 in R–K. Thus we obtain
that a=b. This completes the proof.

COROLLARY. If a Riemann surface R belongs to \mathscr{A} , then HBD(R)

separates points of R.
PROOF. Let a, b be points in R with a\neq b . Then there is an f\in

C(\Delta_{D}) with H_{f}^{R^{*}}(a)\neq H_{f}^{R^{*}}(b) . Since C_{D}(\Delta_{D})=\{f\in C(\Delta_{D}) ; H_{f}^{R^{*}}\in HD(R)\} is
dense in C(\Delta_{D}) with respect to the uniform convergence topology on \Delta_{D} (cf.

[6] ) , we have the Corollary.

3. Invariant distances

Let R be an arbitrary Riemann surface. We denote by c_{R} (resp. d_{R})

the Carath\’eodory’s distance (resp. the Kobayashi’s distance) on R (cf. [4]).

THEOREM 3. For an arbitrary Riemann surface R, we have the fol-
lowing inequalities :

d_{R}(a, b)\geqq h_{R}(a, b)\geqq c_{R}(a, b) (a, b\in R) .
Furthermore these invariant pseudO-distances do not identically equal one
another.

PROOF. The inequalities follow from Proposition 1. 4 and Proposition
2. 5 of IV in [4]. Let R be a closed Riemann surface with genus \geqq 2 . Then
d_{R} is a distance (cf. Corollary 4. 13, IV, in [4]) but h_{R}=0 . Hence d_{R}\neq h_{R}

for such an R. On the other hand, let D=\{|z|<1\} and D_{o}=\{0<|z|<1\} .
Then it is easy to see that h_{D}\neq h_{D_{0}} and c_{D}=c_{D_{0}} . This completes the proof.
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