Fusion and groups admitting an automorphism of prime order fixing a solvable subgroup

By Masahiko Miyamoto

(Received April 24, 1976)

1. Introduction.

In this paper, we prove the following theorem:
Theorem 1. Let G be a finite group. Assume that G admits an automorphism α of order s, s a prime. Assume further that $C_{G}(\alpha)$ is a (solvable) $\{2,3, s\}^{\prime}$-group. Then G is solvable.

This is a generalization of a theorem of B. Rickman [7], where he took up the case that $C_{G}(\alpha)$ is a cyclic q-group for some prime $q \geq 5$ distinct from s.

Since $C_{G}(\alpha)$ is a s^{\prime}-group, G is a s^{\prime}-group. Hence, it is well known that $\langle\alpha\rangle$ leaves invariant a Sylow q-subgroup for each prime divisor q of the order of G. Since $C_{G}(\alpha)$ is of odd order, $C_{G}(\alpha)$ is solvable by the wellknown result of Feit-Thompson [3]. The proof of Theorem 1] depends on the anaysis of the fusion in G. Therefore, we need the following theorems: (For the definitions and notations, see § 2.)

Theorem 2. Let G be a finite group and W_{1}, \cdots, W_{n} be conjugacy functors for a prime p. Assume that $\left\{W_{1}, \cdots, W_{n}\right\}$ controls p-fusion in every p-local of G. Then $\left\{W_{1}, \cdots, W_{n}\right\}$ controls p-fusion in G.

Theorem 3. Let G be a finite group and W_{1}, \cdots, W_{n} be conjugacy functors for a prime p such that $W_{i}(P) \supseteq Z(P)$ for each i and each p-group P. Assume that $\left\{W_{1}, \cdots, W_{n}\right\}$ controls p-fusion in every p-constrained p local of G, then $\left\{W_{1}, \cdots, W_{n}, Z\right\}$ controls p-fusion in G.

These theorems are generalizations of a well-known theorem of AlperinGorenstein [2].

Corollary 1. Let W_{1} and W_{2} be conjugacy functors satisfying W_{1} $\supseteq Z(i=1,2)$. Assume that $N=N_{N}\left(W_{1}\left(P_{0}\right)\right) N_{N}\left(W_{2}\left(P_{0}\right)\right) O_{p^{\prime}}(N)$ for every p constrained p-local N of a finite group G and a Sylow p-subgroup P_{0} of N. Then $\left\{W_{1}, W_{2}, Z\right\}$ controls p-fusion in G.

Corollary 2. Assume that G is S_{4}-free and $Z(S) \unlhd N_{G}(J(S))$ for a Sylow 2-subgroup S of G. Then $N_{G}(Z(S))$ controls 2 -fusion in G. In par-
ticular, $Z(S)$ is a strrongly closed abelian 2 -subgroup in S with respect to G. Remark. Theorem 1 follows from this corollary 2.

2. Notation and Preliminary results.

All groups considered in this paper are assumed to be finite. For a prime q, let $\operatorname{Syl}_{q}(G)$ denote the set of Sylow q-subgroups of the group G and $\operatorname{Syl}_{q,\langle\alpha\rangle}(G)$ denote the set of $\langle\alpha\rangle$-invariant Sylow q-subgroups of G. A conjugacy functor on G is a mapping W which satisfies the following three conditions for every p-subgroup T :
i) $W(T) \subseteq T$; ii) $W(T) \neq 1$ if $T \neq 1$; and
iii) $W\left(T^{g}\right)=W(T)^{g}$ for every element g in G

Let P be a Sylow p-subgroup of the group G, p a prime, and W_{1}, \cdots, W_{n} be conjugacy functors on G. We say that $\left\{N_{G}\left(W_{1}(P)\right), \cdots, N_{G}\left(W_{n}(P)\right)\right.$ (or $\left.\left.C_{G}\left(W_{i}(P)\right)\right)\right\}$ connects A with B, for two subsets A and B in P, if there are subsets A_{0}, \cdots, A_{m} in P such that $A_{0}=A, A_{m}=B$, and for each $i=0, \cdots, m-1$, A_{i} is conjugate to A_{i+1} in $N_{G}\left(W_{j}(P)\right)$ (or $C_{G}\left(W_{j}(P)\right)$) for some j in $\{1, \cdots, n\}$. We say that $\left\{W_{1}, \cdots, W_{n}\right\}$ controls p-fusion in G if there is a Sylow p subgroup P of G satisfying the following property; whenever A and B are subsets of P and A is conjugate to B in G, then $\left\{N_{G}\left(W_{1}(P)\right), \cdots, N_{G}\left(W_{n}(P)\right)\right\}$ connects A with B. The notation Z denotes the conjugacy functor which maps each p-group to its center. $W_{1} \supseteq W_{2}$ means that $W_{1}(T) \supseteq W_{2}(T)$ for every p-subgroup T of G. Suppose T is a p-group for some prime p. Let $d(T)$ be the maximum of the orders of the Abelian subgroups of T. Let $A(T)$ be the set of all Abelian subgroups of T of order $d(T)$. Let $J(T)=\langle A(T)\rangle$. Thus, $J(T)$ is the Thompson subgroup of T.

We need the following lemmas:
Lemma 1. (Shult, [8], Theorem 3.1)
Let V be a group of order p (p a prime) of operators acting on a group G and $(|G|, 2 p)=1$. Let A be a faithful $K G V$-module where the characteristic of the field K does not divide $|G V|$. If $C_{A}(V)=0$, then V centralizes G.
Lemma 2. (Thompson [9])
Let V be a group of order p (p a prime) of operators acting on a group G. If $C_{G}(V)=1$, then G is nilpotent.
Lemma 3. (Glauberman [4], Corollary 3)
Let G be a group, p a prime, P a Sylow p-subgroup of G, and Q a subgroup of $Z(P)$. If $Q \unlhd N_{G}(J(P))$ and if p is odd and $p-1$ does not
divide the index $\left|N_{G}(Q): C_{G}(Q)\right|$ then Q is weakly closed in P with respect to G.
Lemma 4. (Glauberman [5], Corollary 10)
Let S be a Sylow 2 -subgroup of the group G. Suppose that $C_{G}\left(O_{2}(G)\right)$ $\subseteq O_{2}(G)$ and G is S_{4}-free. Then

$$
G=\left\langle C_{G}(Z(S)), N_{G}(J(S))\right\rangle
$$

Lemma 5. (Goldschmidt [6])
Let G be a finite non-abelian simple group. Assume that G has a strongly closed abelian 2 -subgroup. Then G is isomorphic to one of the following groups:
a) $\quad L_{2}\left(2^{n}\right) n \geq 3, S z\left(2^{2 n+1}\right) n \geq 1, U_{3}\left(2^{n}\right) n \geq 2$,
b) $L_{2}(q) q \equiv 3,5(\bmod 8)$, and
c) the groups of type Janko-Ree.

Lemma 6.
Suppose that a solvable group G admits an automorphism V of order s, s a prime. Assume that $C_{G}(V)$ is a $\{2,3, s\}^{\prime}$-group. Then $G=0_{q^{\prime}, q}(G) C_{G}(V)$ for each prime $q \in \pi(G)-\pi\left(C_{G}(V)\right)$.
Proof. Let G be a minimal counterexample to Lemma 6. Then we may assume that $O_{q^{\prime}}(G)=1$, so that $O_{q}(G)=F(G) \supseteq C_{G}(F(G))$. Let T be a V-invariant Hall q-subgroup of G. We will show that V centralizes T. Let $T_{2} \in S y l_{2, V}(T)$. If $T_{2} \neq 1$, then $q \neq 2$. Since $C_{G}(V)$ is odd order, V acts on $T_{2} F(G)$ as a fixed point free automorphism group. Thus, $T_{2} F(G)$ is nilpotent by Thompson's theorem [9], a contradiction. Thus T is of odd order. Applying Lemma 1 to $G F(q) T V$ acting on $O_{q}(G)$, we have [T, V] $\subseteq C_{G}(F(G)) \cap T \subseteq F(G) \cap T=1$, so $T \subseteq C_{G}(V)$. Let $Q \in S y l_{q, V}(G)$, then we have $G=T Q$ and $G \unrhd[G, V]=[Q, V]=Q$. Therefore, $G=O_{q}(G) C_{G}(V)$, a contradiction.

3. Proof of Theorem 1.

In this section, we assume that Corollary 2 is true. Let G be a minimal counterexample to the Theorem 1.
(I) G is a simple group.

Proof. By minimality of $G, G=G_{1} \times G_{1}^{\alpha} \times \cdots \times G_{1}^{\alpha^{\alpha-1}}$ or G is simple. If $G=G_{1} \times \cdots \times G_{1}^{\alpha^{3-1}}$, then $C_{G}(\alpha) \cong G_{1}$ is a non-abelian simple group, a contradiction.
(II) For each prime $q \in \pi(G)-\left\{\pi\left(C_{G}(\alpha)\right), 2\right\}$ and $Q \in S y l_{q,\langle\alpha\rangle}(G), Z(Q)$ is weakly closed in Q with respect to G.
Proof. By minimality and simplicity of $G, N_{G}(J(Q))$ and $N_{G}(Z(Q))$ are solv-
able. Thus by Lemma 6, $N_{G}(J(Q))=O_{q^{\prime}}\left(N_{G}(J(Q))\right) N_{G}(Q)$, so we have $Z(Q)$ $\unlhd N_{G}(J(Q))$. Set $N=N_{G}(Z(Q))$, then $N=O_{q^{\prime}}(N) N_{N}(Q)=C_{G}(Z(Q)) C_{N}(\alpha)$. Thus we have that $N_{G}(Z(Q)) / C_{G}(Z(Q))$ is $\pi\left(C_{G}(\alpha)\right)$-group, in particular, $q-1$ does not divide the index $\left|N_{G}(Z(Q)): C_{G}(Z(Q))\right|$. Hence, by Lemma 3, we have that $Z(Q)$ is weakly closed in Q with respect to G.
(III) G is S_{3}-free. In particular, G is S_{4}-free.

Proof. Let $Q \in S y l_{3,\langle\alpha\rangle}(G)$. By (II), $N_{G}(Z(Q))$ controls 3 -fusion in G. Since $N_{G}(Z(Q)) / O_{3^{\prime}}\left(N_{G}(Z(Q))\right)$ is of odd order by Lemma 6, G is $S_{3^{\prime}}$-free.
(IV) $Z(S) \unlhd N_{G}(J(S))$ for some $S \in S y l_{2,\langle\alpha\rangle}(G)$.

Proof. By minimality of $G, N_{G}(J(S))$ is solvable, so we have that $N_{G}(J(S))=O_{2^{\prime}}\left(N_{G}(J(S))\right) N_{G}(S) \unrhd Z(S)$, by Lemma 6.
(V) A contradiction.

Proof. Since G is S_{4}-free and $Z(S) \unlhd N_{G}(J(S))$ for some Sylow 2 -subgroup S of G, we have that $Z(S)$ is a strongly closed Abelian 2 -subgroup in S with respect to G, by Corollary 2. Since G is simple, we have that G is isomorphic to one of the following groups:

$$
\begin{aligned}
& L_{2}\left(2^{n}\right) n \geq 3, \quad S z\left(2^{2 n+1}\right) n \geq 1, \quad U_{3}\left(2^{n}\right) n \geq 2, \quad L_{2}(q) q \equiv 3,5 \\
& (\bmod 8) \text {, and the groups of type Janko-Ree, }
\end{aligned}
$$

by the result of Goldschmidt [6]. However, it is easily proved that none of these groups have automorphisms satisfying the conditions of Theorem 1 , a contradiction.

4. Proof of Theorem 2 and Theorem 3.

In this section, we will only prove Theorem 3. But, by a slight change, we can get a proof of Theorem 2.

Suppose that Theorem 3 is false and let G be a counterexample to Theorem 3. Let W_{1}, \cdots, W_{n} be the conjugacy functors with $W_{i} \supseteq Z$ for every i. Then there are two subsets A and B in P which are conjugate in G, but $\left\{N_{G}\left(W_{1}(P)\right), \cdots, N_{G}\left(W_{n}(P)\right), C_{G}(Z(P))\right\}$ cannot connect A with B, where P is a Sylow p-sugroup of G. By Alperin's theorem [1], we may assume that A and B are contained in a p-constrained p-local $N_{G}(H)$ with $1 \neq H \leq P$ and A is conjugate to B in $N_{G}(H)$, namely, there is a p-constrined p-local $N_{G}(H)(1 \neq H \leq P)$ satisfying that $N_{P}(H)$ has two subsets A and B which a are conjugate in $N_{G}(H)$ but $\left\{N_{G}\left(W_{1}(P)\right), \cdots, N_{G}\left(W_{n}(P)\right), C_{G}(Z(P))\right\}$ cannot connect A with B. Moreover, we may assume that $C_{G}(H)=Z(H) \times$ $O_{p^{\prime}}\left(N_{G}(H)\right.$). Choose such a subgroup H in P satisfying the following conditions :
i) $\quad N_{P}(H)$ is maximal in such groups,
ii) H is of maximal order subject to i).

We will show that $N_{P}(H) \in S y l_{p}\left(N_{G}(H)\right)$. Suppose false, then $H \neq P$ and P contains a conjugate L of H which satisfies $N_{P}(L) \in S y l_{p}\left(N_{G}(L)\right)$. Then, by Alperin's theorem [1] there are an integer m and elements x_{1}, \cdots, x_{m} in G and subgroups K_{1}, \cdots, K_{m} in P such that $x_{i} \in N_{G}\left(K_{i}\right) \quad(i=1, \cdots, m)$, $C_{G}\left(K_{i}\right)=Z\left(K_{i}\right) \times O_{p^{\prime}}\left(N_{G}\left(K_{i}\right)\right)$ for each $i, N_{p}(H) \subseteq K_{1}, N_{P}(H)^{x_{1} \cdots x_{i}} \subseteq K_{i+1} \quad(i=1$, $\cdots, m-1), N_{P}(H)^{x_{1} \cdots x_{m}} \subseteq N_{P}(L)$ and $H^{x_{i} \cdots x_{m}}=L$. Since $\left|N_{P}\left(K_{i}\right)\right| \geq\left|N_{P}(H)\right|$, $\left\{N_{G}\left(W_{1}(P)\right), \cdots, N_{G}\left(W_{n}(P)\right), C_{G}(Z(P))\right\}$ connects A with $A^{x_{1} \cdots x_{m}}$ and $B^{x_{1} \cdots x_{m}}$ with B, by maximality of H. But, since $\left|N_{P}(L)\right| \geq\left|N_{P}(H)\right|,\left\{N_{G}\left(W_{1}(P)\right), \cdots\right.$, $\left.N_{g}\left(W_{n}(P)\right), C_{G}(Z(P))\right\}$ connects $A^{x_{1} \cdots x_{m}}$ with $B^{x_{i} \cdots x_{m}}$, by maximality of H, so $\left\{N_{G}\left(W_{1}(P)\right), \cdots, N_{G}\left(W_{n}(P)\right), C_{G}(Z(P))\right\}$ connects A with B, a contradiction. So we have that $N_{P}(H) \in S y l_{p}\left(N_{g}(H)\right)$. By the hypothesis of Theorem 3, $\left\{W_{1}, \cdots, W_{n}\right\}$ controls p-fusion in $N_{G}\left(W_{1}\left(P_{0}\right)\right)$, where $P_{0}=N_{P}(H)$. If $C_{p}\left(W_{1}\left(P_{0}\right)\right)$ $\notin S y l_{p}\left(C_{G}\left(W_{\mathbf{1}}\left(P_{0}\right)\right)\right)$, then there is an element y in $C_{G}(Z(P))$ such that $N_{P}\left(W_{1}\left(P_{0}\right)\right)^{y} \subseteq P \quad$ and $\quad N_{P}\left(W_{1}\left(P_{0}\right)^{y}\right) \in S y l_{p}\left(N_{C_{G}(Z(P))}\left(W_{1}\left(P_{0}\right)^{y}\right)\right)$, in particular, $C_{P}\left(W_{1}\left(P_{0}\right)^{y}\right) \in S y l_{p}\left(C_{G}\left(W_{1}\left(P_{0}\right)^{y}\right)\right)$. Then P contains two subsets A^{y} and B^{y} which are conjugate in $N_{G}\left(W_{1}\left(P_{0}\right)^{y}\right)$ and $C_{P}\left(W_{1}\left(P_{0}\right)^{y}\right) \in S y l_{p}\left(C_{G}\left(W_{1}\left(P_{0}\right)^{y}\right)\right)$. Since $y \in C_{G}(Z(P)),\left\{N_{G}\left(W_{1}(P)\right), \cdots, N_{G}\left(W_{n}(P)\right), C_{G}(Z(P))\right\}$ connects A with A^{y} and B^{y} with B. So we may assume that $C_{P}\left(W_{1}\left(P_{0}\right)\right) \in S y l_{p}\left(C_{G}\left(W_{1}\left(P_{0}\right)\right)\right)$. Set $N=N_{G}\left(W_{1}\left(P_{0}\right)\right)$, then $N=N_{N}\left(C_{P}\left(W_{1}\left(P_{0}\right)\right) W_{1}\left(P_{0}\right) \cdot C_{N}\left(W_{1}\left(P_{0}\right)\right)=N_{N}\left(P_{1}\right) C_{N}(Z(P))\right.$, where $P_{1}=C_{P}\left(W_{1}\left(P_{0}\right)\right) W_{1}\left(P_{0}\right)$, by the Frattini argument. Thus, there is a subset B_{0} in P such that A is con!ugate to B_{0} in $N_{N}\left(P_{1}\right)$ and B_{0} is conjugate to B in $C_{N}(Z(P))$. Clearly, $N_{G}\left(P_{1}\right)$ is p-constrained p-local and $C_{G}\left(P_{1}\right)$ $=Z\left(P_{1}\right)=Z\left(P_{1}\right) \times O_{p^{\prime}}\left(N_{G}\left(P_{1}\right)\right)$. Therefore, by maximality of $H,\left|N_{P}\left(P_{1}\right)\right| \geq$ $\left|N_{P}(H)\right|$ implies that $\left\{N_{G}\left(W_{1}(P)\right), \cdots, N_{G}\left(W_{n}(P)\right), C_{B}(Z(P))\right\}$ connects A with B_{0}. Since $C_{G}(Z(P))$ connects B_{0} with B, we have a contradiction.

This completes the proof of Theorem 3.
Next we shall prove the corollaries.
Proof of Corollary 1. We need only show that $\left\{W_{1}, W_{2}\right\}$ controls p-fusion in N. Set P is a Sylow p-subgroup of N. Suppose P contains two subsets A and B which are conjugate in N. Then, since $N=N_{G}\left(W_{1}(P)\right) N_{G}\left(W_{2}(P)\right)$ $O_{p^{\prime}}(N)$, there are elements a and b in $N_{N}\left(W_{1}(P)\right)$ and $N_{\mathrm{N}}\left(W_{2}(P)\right) O_{p^{\prime}}(N)$, respectively, such that $A^{a}=B^{b}$. Then $A^{a}=B^{b}$ is contained in some Sylow p-subgroup $\quad P_{1} \quad$ of $\quad N_{N}\left(W_{1}(P)\right) \cap N_{N}\left(W_{2}(P)\right) O_{p^{\prime}}(N) . \quad$ Since $\quad N_{N}\left(W_{1}(P)\right) \cap$ $N_{N}\left(W_{2}(P)\right) O_{p^{\prime}}(N)$ contains P, there is an element c in $N_{N}\left(W_{1}(P)\right) \cap$ $N_{N}\left(W_{2}(P)\right) O_{p^{\prime}}(N)$ such that $P_{\mathrm{c}}^{\mathrm{c}}=P$. Then A is conjugate to $A^{a c}=B^{b c}$ in $N_{N}\left(W_{1}(P)\right)$ and $A^{a c}=B^{b c}$ is conjugate to B in $\mathrm{N}_{N}\left(W_{2}(P)\right) O_{p^{\prime}}(N)$. By the same way, we have that there are elements d and e in $N_{N}\left(W_{2}(P)\right)$ and $O_{p^{\prime}}(N)$,
respectively, such that $b c=e d$ and P contains $B, E^{e}=B^{b c d-1}$, and $B^{b c}$. Since $e \in O_{p^{\prime}}(N)$, we have that $B=B^{e}$. Therefore, $N_{N}\left(W_{1}(P)\right)$ connects A with $A^{a c}=B^{b c}$ and $N_{N}\left(W_{2}(P)\right)$ connects $B^{b c}$ with $B^{b c d-1}=B^{e}=B$. Hence we have that $\left\{W_{1}, W_{2}\right\}$ controls p-fusion in N.
Proof of Corollary 2. Suppose false. Then $Z(S)$ is not weakly closed in S with respect to G. Therefore, there is an element g in G such that $Z(S) \neq Z(S)^{\supset} \subseteq S$. By Alperin's theorem [1], there is a subgroup H of S such that $H \supseteq Z(S)$ and $Z(S) \notin N_{G}(H)$. Choose such a subgroup H in S satisfying the following conditions:
i) $N_{S}(H)$ is of maximal order in such groups,
ii) H is of maximal order subject to i).

Then we have that $N_{S}(H)$ is a Sylow 2 -subgroup of $N_{G}(H)$ and $\mathrm{C}_{S}(H) \subseteq H$, the proof of these results is similar to the proof of Theorem 3. Since $N_{G}(H)$ is 2-constrained, $N_{G}(H)=\left\langle N_{N_{G}(H)}\left(J\left(N_{S}(H)\right)\right), C_{N_{G}(H)}\left(Z\left(N_{S}(H)\right)\right)\right\rangle O\left(N_{G}(H)\right)$, by Lemma 4. Since $\left\langle O\left(N_{G}(H)\right), C_{G}\left(Z\left(N_{S}(H)\right)\right)\right\rangle \subseteq C_{G}(Z(S))$, we have that $\left.Z(S) \subseteq J\left(N_{S}(H)\right)\right)$ and $Z(S) \nsubseteq N_{G}\left(J\left(N_{S}(H)\right)\right)$. By maximality of $N_{S}(H)$, $\left|N_{S}\left(J\left(N_{S}(H)\right)\right)\right| \leq\left|N_{S}(H)\right|$. Thus we have that $N_{S}(H)=S$, but $Z(S) \nsubseteq$ $N_{G}\left(J\left(N_{s}(H)\right)\right)=N_{G}(J(S))$, which contradicts the hypothesis of Corollary 2. This completes the proof of Corollaries.

References

[1] J. L. Alperin: Sylow intersections and fusion, J. Algebra 6 (1967), 222-241.
[2] J. L. Alperin and D. Gorenstein: Transfer and fusion in finite groups, J. Algebra 6 (1967), 242-255.
[3] W. Feit and J. G. Thompson: Solvability of groups of odd order, Pacific J. Math. 13 (1963), 771-1029.
[4] G. Glauberman: A sufficient condition for p-stability, Proc. London Math. Soc. 25 (1972), 253-287.
[5] G. Glauberman: Weakly closed elements of Sylow subgroups, Math. Z. 107 (1968), 1-29.
[6] D. M. Goldschmidt : 2-Fusion in finite groups, Ann. Math. Vol. 99 (1974), 70117.
[7] B. Rickman: Groups admitting an automorphism of prime order fixing a cyclic subgroup of prime power order, Quart. J. Math. Oxford (2), 26 (1975), 47-59.
[8] E. ShULT: On groups admitting fixed point free operator groups, Ill'. J. Math. 9 (1965), 701-720.
[9] J. G. THOMPSON: Finite groups with fixed point free automorphisms of prime order, Proc. Nat. Acad. Soc. 45 (1959), 578-881.

