Fusion and groups admitting an automorphism of prime order fixing a solvable subgroup

By Masahiko Мічамото

(Received April 24, 1976)

1. Introduction.

In this paper, we prove the following theorem :

THEOREM 1. Let G be a finite group. Assume that G admits an automorphism α of order s, s a prime. Assume further that $C_G(\alpha)$ is a (solvable) $\{2, 3, s\}'$ -group. Then G is solvable.

This is a generalization of a theorem of B. Rickman [7], where he took up the case that $C_G(\alpha)$ is a cyclic q-group for some prime $q \ge 5$ distinct from s.

Since $C_{G}(\alpha)$ is a s'-group, G is a s'-group. Hence, it is well known that $\langle \alpha \rangle$ leaves invariant a Sylow q-subgroup for each prime divisor q of the order of G. Since $C_{G}(\alpha)$ is of odd order, $C_{G}(\alpha)$ is solvable by the wellknown result of Feit-Thompson [3]. The proof of Theorem 1 depends on the analysis of the fusion in G. Therefore, we need the following theorems: (For the definitions and notations, see § 2.)

THEOREM 2. Let G be a finite group and W_1, \dots, W_n be conjugacy functors for a prime p. Assume that $\{W_1, \dots, W_n\}$ controls p-fusion in every p-local of G. Then $\{W_1, \dots, W_n\}$ controls p-fusion in G.

THEOREM 3. Let G be a finite group and W_1, \dots, W_n be conjugacy functors for a prime p such that $W_i(P) \supseteq Z(P)$ for each i and each p-group P. Assume that $\{W_1, \dots, W_n\}$ controls p-fusion in every p-constrained plocal of G, then $\{W_1, \dots, W_n, Z\}$ controls p-fusion in G.

These theorems are generalizations of a well-known theorem of Alperin-Gorenstein [2].

COROLLARY 1. Let W_1 and W_2 be conjugacy functors satisfying $W_1 \supseteq Z$ (i=1, 2). Assume that $N = N_N(W_1(P_0)) N_N(W_2(P_0)) O_{p'}(N)$ for every pconstrained p-local N of a finite group G and a Sylow p-subgroup P_0 of N. Then $\{W_1, W_2, Z\}$ controls p-fusion in G.

COROLLARY 2. Assume that G is S_4 -free and $Z(S) \leq N_G(J(S))$ for a Sylow 2-subgroup S of G. Then $N_G(Z(S))$ controls 2-fusion in G. In par-

ticular, Z(S) is a strrongly closed abelian 2-subgroup in S with respect to G.

REMARK. Theorem 1 follows from this corollary 2.

2. Notation and Preliminary results.

All groups considered in this paper are assumed to be finite. For a prime q, let $\operatorname{Syl}_q(G)$ denote the set of Sylow q-subgroups of the group G and $\operatorname{Syl}_{q,\langle \alpha \rangle}(G)$ denote the set of $\langle \alpha \rangle$ -invariant Sylow q-subgroups of G. A conjugacy functor on G is a mapping W which satisfies the following three conditions for every p-subgroup T:

- i) $W(T) \subseteq T$; ii) $W(T) \neq 1$ if $T \neq 1$; and
- iii) $W(T^g) = W(T)^g$ for every element g in G

Let P be a Sylow p-subgroup of the group G, p a prime, and W_1, \dots, W_n be conjugacy functors on G. We say that $\{N_G(W_1(P)), \dots, N_G(W_n(P)) \text{ (or } C_G(W_i(P)))\}$ connects A with B, for two subsets A and B in P, if there are subsets A_0, \dots, A_m in P such that $A_0 = A$, $A_m = B$, and for each $i = 0, \dots, m-1$, A_i is conjugate to A_{i+1} in $N_G(W_j(P))$ (or $C_G(W_j(P))$) for some j in $\{1, \dots, n\}$. We say that $\{W_1, \dots, W_n\}$ controls p-fusion in G if there is a Sylow psubgroup P of G satisfying the following property; whenever A and B are subsets of P and A is conjugate to B in G, then $\{N_G(W_1(P)), \dots, N_G(W_n(P))\}$ connects A with B. The notation Z denotes the conjugacy functor which maps each p-group to its center. $W_1 \supseteq W_2$ means that $W_1(T) \supseteq W_2(T)$ for every p-subgroup T of G. Suppose T is a p-group for some prime p. Let d(T) be the maximum of the orders of the Abelian subgroups of T. Let A(T) be the set of all Abelian subgroups of T of order d(T). Let $J(T) = \langle A(T) \rangle$. Thus, J(T) is the Thompson subgroup of T.

We need the following lemmas:

LEMMA 1. (Shult, [8], Theorem 3.1)

Let V be a group of order p (p a prime) of operators acting on a group G and (|G|, 2p)=1. Let A be a faithful KGV-module where the characteristic of the field K does not divide |GV|. If $C_A(V) = 0$, then V centralizes G.

LEMMA 2. (Thompson [9])

Let V be a group of order p (p a prime) of operators acting on a group G. If $C_G(V)=1$, then G is nilpotent.

LEMMA 3. (Glauberman [4], Corollary 3)

Let G be a group, p a prime, P a Sylow p-subgroup of G, and Q a subgroup of Z(P). If $Q \leq N_G(J(P))$ and if p is odd and p-1 does not

divide the index $|N_G(Q): C_G(Q)|$ then Q is weakly closed in P with respect to G.

LEMMA 4. (Glauberman [5], Corollary 10)

Let S be a Sylow 2-subgroup of the group G. Suppose that $C_G(O_2(G)) \subseteq O_2(G)$ and G is S_4 -free. Then

$$G = \left\langle C_{G}(Z(S)), N_{G}(J(S)) \right\rangle.$$

LEMMA 5. (Goldschmidt [6])

Let G be a finite non-abelian simple group. Assume that G has a strongly closed abelian 2-subgroup. Then G is isomorphic to one of the following groups:

a) $L_2(2^n) n \ge 3$, $Sz(2^{2n+1}) n \ge 1$, $U_3(2^n) n \ge 2$,

b) $L_2(q) \ q \equiv 3, 5 \pmod{8}$, and

c) the groups of type Janko-Ree.

Lemma 6.

Suppose that a solvable group G admits an automorphism V of order s, s a prime. Assume that $C_G(V)$ is a $\{2, 3, s\}'$ -group. Then $G=0_{q',q}(G) C_G(V)$ for each prime $q \in \pi(G) - \pi(C_G(V))$.

PROOF. Let G be a minimal counterexample to Lemma 6. Then we may assume that $O_{q'}(G) = 1$, so that $O_q(G) = F(G) \supseteq C_G(F(G))$. Let T be a V-invariant Hall q'-subgroup of G. We will show that V centralizes T. Let $T_2 \in Syl_{2,V}(T)$. If $T_2 \neq 1$, then $q \neq 2$. Since $C_G(V)$ is odd order, V acts on $T_2F(G)$ as a fixed point free automorphism group. Thus, $T_2F(G)$ is nilpotent by Thompson's theorem [9], a contradiction. Thus T is of odd order. Applying Lemma 1 to GF(q) TV acting on $O_q(G)$, we have [T, V] $\subseteq C_G(F(G)) \cap T \subseteq F(G) \cap T = 1$, so $T \subseteq C_G(V)$. Let $Q \in Syl_{q,V}(G)$, then we have G = TQ and $G \supseteq [G, V] = [Q, V] = Q$. Therefore, $G = O_q(G) C_G(V)$, a contradiction.

3. Proof of Theorem 1.

In this section, we assume that Corollary 2 is true. Let G be a minimal counterexample to the Theorem 1.

(I) G is a simple group.

Proof. By minimality of G, $G = G_1 \times G_1^{\alpha} \times \cdots \times G_1^{\alpha^{i-1}}$ or G is simple. If $G = G_1 \times \cdots \times G_1^{\alpha^{i-1}}$, then $C_G(\alpha) \cong G_1$ is a non-abelian simple group, a contradiction.

(II) For each prime $q \in \pi(G) - \{\pi(C_G(\alpha)), 2\}$ and $Q \in Syl_{q,\langle \alpha \rangle}(G), Z(Q)$ is weakly closed in Q with respect to G.

Proof. By minimality and simplicity of G, $N_G(J(Q))$ and $N_G(Z(Q))$ are solv-

298

able. Thus by Lemma 6, $N_G(J(Q)) = O_{q'}(N_G(J(Q))) N_G(Q)$, so we have $Z(Q) \leq N_G(J(Q))$. Set $N = N_G(Z(Q))$, then $N = O_{q'}(N) N_N(Q) = C_G(Z(Q)) C_N(\alpha)$. Thus we have that $N_G(Z(Q))/C_G(Z(Q))$ is $\pi(C_G(\alpha))$ -group, in particular, q-1 does not divide the index $|N_G(Z(Q)) : C_G(Z(Q))|$. Hence, by Lemma 3, we have that Z(Q) is weakly closed in Q with respect to G.

(III) G is S_3 -free. In particular, G is S_4 -free. Proof. Let $Q \in Syl_{3,\langle \alpha \rangle}(G)$. By (II), $N_G(Z(Q))$ controls 3-fusion in G. Since $N_G(Z(Q))/O_{3'}(N_G(Z(Q)))$ is of odd order by Lemma 6, G is S_3 -free.

(IV) $Z(S) \leq N_G(J(S))$ for some $S \in Syl_{2,\langle a \rangle}(G)$. Proof. By minimality of G, $N_G(J(S))$ is solvable, so we have that $N_G(J(S)) = O_{2'}(N_G(J(S))) N_G(S) \geq Z(S)$, by Lemma 6.

(V) A contradiction.

Proof. Since G is S_4 -free and $Z(S) \leq N_G(J(S))$ for some Sylow 2-subgroup S of G, we have that Z(S) is a strongly closed Abelian 2-subgroup in S with respect to G, by Corollary 2. Since G is simple, we have that G is isomorphic to one of the following groups:

 $L_2(2^n) n \ge 3$, $Sz(2^{2n+1}) n \ge 1$, $U_3(2^n) n \ge 2$, $L_2(q) q \equiv 3, 5$ (mod 8), and the groups of type Janko-Ree,

by the result of Goldschmidt [6]. However, it is easily proved that none of these groups have automorphisms satisfying the conditions of Theorem 1, a contradiction.

4. Proof of Theorem 2 and Theorem 3.

In this section, we will only prove Theorem 3. But, by a slight change, we can get a proof of Theorem 2.

Suppose that Theorem 3 is false and let G be a counterexample to Theorem 3. Let W_1, \dots, W_n be the conjugacy functors with $W_i \supseteq Z$ for every *i*. Then there are two subsets A and B in P which are conjugate in G, but $\{N_G(W_1(P)), \dots, N_G(W_n(P)), C_G(Z(P))\}$ cannot connect A with B, where P is a Sylow p-sugroup of G. By Alperin's theorem [1], we may assume that A and B are contained in a p-constrained p-local $N_G(H)$ with $1 \neq H \leq P$ and A is conjugate to B in $N_G(H)$, namely, there is a p-constrined p-local $N_G(H)$ $(1 \neq H \leq P)$ satisfying that $N_P(H)$ has two subsets A and B which a are conjugate in $N_G(H)$ but $\{N_G(W_1(P)), \dots, N_G(W_n(P)), C_G(Z(P))\}$ cannot connect A with B. Moreover, we may assume that $C_G(H) = Z(H) \times O_{p'}(N_G(H))$. Choose such a subgroup H in P satisfying the following conditions:

- i) $N_P(H)$ is maximal in such groups,
- ii) H is of maximal order subject to i).

We will show that $N_P(H) \in Syl_p(N_G(H))$. Suppose false, then $H \neq P$ and P contains a conjugate L of H which satisfies $N_P(L) \in Syl_p(N_G(L))$. Then, by Alperin's theorem [1] there are an integer m and elements x_1, \dots, x_m in G and subgroups K_1, \dots, K_m in P such that $x_i \in N_G(K_i)$ $(i = 1, \dots, m)$, $C_{G}(K_{i}) = Z(K_{i}) \times O_{p'}(N_{G}(K_{i})) \text{ for each } i, \ N_{p}(H) \subseteq K_{1}, \ N_{P}(H)^{x_{1} \cdots x_{\ell}} \subseteq K_{i+1} \ (i=1, 1, 1)$ $\dots, m-1$, $N_P(H)^{x_1 \cdots x_m} \subseteq N_P(L)$ and $H^{x_1 \cdots x_m} = L$. Since $|N_P(K_i)| \gtrsim |N_P(H)|$, $\{N_G(W_1(P)), \cdots, N_G(W_n(P)), C_G(Z(P))\}$ connects A with $A^{x_1 \cdots x_m}$ and $B^{x_1 \cdots x_m}$ with B, by maximality of H. But, since $|N_P(L)| \gtrsim |N_P(H)|$, $\{N_G(W_1(P)), \dots, N_G(W_1(P)), \dots, N_G(W_1(P))\}$ $N_g(W_n(P))$, $C_G(Z(P))$ connects $A^{x_1 \cdots x_m}$ with $B^{x_1 \cdots x_m}$, by maximality of H, so $\{N_G(W_1(P)), \dots, N_G(W_n(P)), C_G(Z(P))\}$ connects A with B, a contradiction. So we have that $N_P(H) \in Syl_p(N_g(H))$. By the hypothesis of Theorem 3, $\{W_1, \cdots, W_n\}$ controls *p*-fusion in $N_G(W_1(P_0))$, where $P_0 = N_P(H)$. If $C_p(W_1(P_0))$ $\in Syl_p(C_G(W_1(P_0))),$ then there is an element y in $C_G(Z(P))$ such that $N_P(W_1(P_0))^y \subseteq P \quad \text{and} \quad N_P(W_1(P_0)^y) \in Syl_p(N_{\mathcal{C}_G(Z(P))}(W_1(P_0)^y)), \quad \text{in particular,}$ $C_P(W_1(P_0)^y) \in Syl_p(C_G(W_1(P_0)^y)).$ Then P contains two subsets A^y and B^y which are conjugate in $N_G(W_1(P_0)^y)$ and $C_P(W_1(P_0)^y) \in Syl_p(C_G(W_1(P_0)^y)).$ Since $y \in C_G(Z(P))$, $\{N_G(W_1(P)), \dots, N_G(W_n(P)), C_G(Z(P))\}$ connects A with A^y and B^y with B. So we may assume that $C_P(W_1(P_0)) \in Syl_p(C_G(W_1(P_0)))$. Set $N = N_G(W_1(P_0)), \text{ then } N = N_N(C_P(W_1(P_0)) W_1(P_0) \cdot C_N(W_1(P_0)) = N_N(P_1) C_N(Z(P)),$ where $P_1 = C_P(W_1(P_0)) W_1(P_0)$, by the Frattini argument. Thus, there is a subset B_0 in P such that A is conjugate to B_0 in $N_N(P_1)$ and B_0 is conjugate to B in $C_N(Z(P))$. Clearly, $N_G(P_1)$ is p-constrained p-local and $C_G(P_1)$ $= Z(P_1) = Z(P_1) \times O_{p'}(N_G(P_1)).$ Therefore, by maximality of $H, |N_P(P_1)| \geq 2$ $|N_P(H)|$ implies that $\{N_G(W_1(P)), \dots, N_G(W_n(P)), C_B(Z(P))\}$ connects A with B_0 . Since $C_G(Z(P))$ connects B_0 with B, we have a contradiction.

This completes the proof of Theorem 3.

Next we shall prove the corollaries.

Proof of Corollary 1. We need only show that $\{W_1, W_2\}$ controls *p*-fusion in N. Set P is a Sylow *p*-subgroup of N. Suppose P contains two subsets A and B which are conjugate in N. Then, since $N = N_G(W_1(P)) N_G(W_2(P)) O_{p'}(N)$, there are elements a and b in $N_N(W_1(P))$ and $N_N(W_2(P)) O_{p'}(N)$, respectively, such that $A^a = B^b$. Then $A^a = B^b$ is contained in some Sylow *p*-subgroup P_1 of $N_N(W_1(P)) \cap N_N(W_2(P)) O_{p'}(N)$. Since $N_N(W_1(P)) \cap N_N(W_2(P)) O_{p'}(N)$ contains P, there is an element c in $N_N(W_1(P)) \cap N_N(W_2(P)) O_{p'}(N)$ such that $P_1^c = P$. Then A is conjugate to $A^{ac} = B^{bc}$ in $N_N(W_1(P)) \cap N_N(W_1(P)) O_{p'}(N)$. By the same way, we have that there are elements d and e in $N_N(W_2(P))$ and $O_{p'}(N)$,

respectively, such that bc = ed and P contains B, $E^e = B^{bcd-1}$, and B^{bc} . Since $e \in O_{p'}(N)$, we have that $B = B^{e}$. Therefore, $N_{N}(W_{1}(P))$ connects A with $A^{ac} = B^{bc}$ and $N_N(W_2(P))$ connects B^{bc} with $B^{bcd-1} = B^e = B$. Hence we have that $\{W_1, W_2\}$ controls *p*-fusion in N.

Proof of Corollary 2. Suppose false. Then Z(S) is not weakly closed in S with respect to G. Therefore, there is an element g in G such that $Z(S) \neq Z(S)^{g} \subseteq S$. By Alperin's theorem [1], there is a subgroup H of S such that $H \supseteq Z(S)$ and $Z(S) \not\leq N_G(H)$. Choose such a subgroup H in S satisfying the following conditions:

- $N_s(H)$ is of maximal order in such groups, i)
- H is of maximal order subject to i). ii)

Then we have that $N_{\mathcal{S}}(H)$ is a Sylow 2-subgroup of $N_{\mathcal{G}}(H)$ and $C_{\mathcal{S}}(H) \subseteq H$, the proof of these results is similar to the proof of Theorem 3. Since $N_G(H)$ is 2-constrained, $N_{G}(H) = \langle N_{N_{G}(H)}(J(N_{S}(H))), C_{N_{G}(H)}(Z(N_{S}(H))) \rangle O(N_{G}(H)),$ by Lemma 4. Since $\langle O(N_G(H)), C_G(Z(N_S(H))) \rangle \subseteq C_G(Z(S))$, we have that $Z(S) \subseteq J(N_{\mathcal{S}}(H))$ and $Z(S) \not \leq N_{\mathcal{G}}(J(N_{\mathcal{S}}(H)))$. By maximality of $N_{\mathcal{S}}(H)$, $|N_{\mathcal{S}}(J(N_{\mathcal{S}}(H)))| \leq |N_{\mathcal{S}}(H)|$. Thus we have that $N_{\mathcal{S}}(H) = S$, but $Z(S) \not\leq S$ $N_G(J(N_S(H))) = N_G(J(S))$, which contradicts the hypothesis of Corollary 2.

This completes the proof of Corollaries.

References

- [1] J. L. ALPERIN: Sylow intersections and fusion, J. Algebra 6 (1967), 222-241.
- [2] J. L. ALPERIN and D. GORENSTEIN: Transfer and fusion in finite groups, J. Algebra 6 (1967), 242-255.
- [3] W. FEIT and J. G. THOMPSON: Solvability of groups of odd order, Pacific J. Math. 13 (1963), 771-1029.
- [4] G. GLAUBERMAN: A sufficient condition for p-stability, Proc. London Math. Soc. 25 (1972), 253-287.
- [5] G. GLAUBERMAN: Weakly closed elements of Sylow subgroups, Math. Z. 107 (1968), 1-29.
- [6] D. M. GOLDSCHMIDT: 2-Fusion in finite groups, Ann. Math. Vol. 99 (1974), 70-117.
- [7] B. RICKMAN: Groups admitting an automorphism of prime order fixing a cyclic subgroup of prime power order, Quart. J. Math. Oxford (2), 26 (1975), 47-59.
- [8] E. SHULT: On groups admitting fixed point free operator groups, Ill'. J. Math. 9 (1965), 701-720.
- [9] J. G. THOMPSON: Finite groups with fixed point free automorphisms of prime order, Proc. Nat. Acad. Soc. 45 (1959), 578-881.

Department of Mathematics Hokkaido University