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1. Introduction.

In this paper, we prove the following theorem:

THEOREM 1. Let G be a finite group. Assume that G admits an
automorphism \alpha of order s, s a prime. Assume further that C_{G}(\alpha) is a
(solvable) \{2, 3, s\}’ -group. Then G is solvable.

This is a generalization of a theorem of B. Rickman [7], where he
took up the case that C_{G}(\alpha) is a cyclic q-group for some prime q\geq 5 distinct
from s.

Since C_{G}(\alpha) is a s’ -group, G is a s’ -group. Hence, it is well known
that \langle\alpha\rangle leaves invariant a Sylow q-subgroup for each prime divisor q of
the order of G. Since C_{G}(\alpha) is of odd order, C_{G}(\alpha) is solvable by the well-
known result of Feit-Thompson [3]. The proof of Theorem 1 depends
on the anaysis of the fusion in G. Therefore, we need the following the0-
rems: (For the definitions and notations, see \S \underline{9} .)

THEOREM 2. Let G be a finite group and W_{1} , \cdots , W_{n} be conjugacy
functors for a prime p. Assume that \{W_{1^{ }},\cdots, W_{n}\} controls p fusion in every
p-local of G. Then \{W_{1}, \cdots, W_{n}\} controls p fusion in G.

v\backslashTHEOREM 3. Let G be a finite group and VV_{1} , \cdots , W_{n} be conjugacy
functors for a prime p such that W_{i}(P)\supseteq Z(P) for each i and each p-group
P. Assume that \{W_{1}, \cdots, W_{n}\} controls p fusion in every p-constrained p-
local of G, then \{W_{1}, \cdots, W_{n}, Z\} controls p-fusion in G.

These theorems are generalizations of a well-known theorem of Alperin-
Gorenstein [2].

COROLLARY 1. Let W_{1} and W_{2} be conjugacy functors satisfying W_{t}

\supseteq Z(i=1,2) . Assume that N=N_{N}(W_{1}(P_{0}))N_{N}(W_{2}(P_{0}))O_{p’}(N) for every p-
constrained p-local N of a finite group G and a Sylow p subgroup P_{0} of
N. Then \{W_{1}, W_{2}, Z\} controls p fusion in G.

COROLLARY 2. Assume that G is S_{4} -free and Z(S)\underline{\triangleleft}N_{G}(J(S)) for a
Sylow 2-subgroup S of G. Then N_{G}(Z(S)) controls 2-fusion in G. In par-
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ticular, Z(S) is a strrongly closed abelian 2-subgroup in S with respect to G.
REMARK. Theorem 1 follows from this corollary 2.

2. Notation and Preliminary results.

All groups considered in this paper are assumed to be finite. For a
prime q, let Sy1_{q}(G) denote the set of Sylow q-subgroups of the group G
and Sy1_{q,\langle a\rangle}(G) denote the set of \langle\alpha\rangle -invariant Sylow q-subgroups of G. A
conjugacy functor on G is a mapping W which satisfies the following three
conditions for every p subgroup T :

i) W(T)\subseteq T;ii)W(T)\neq 1 if T\neq 1 ; and
iii)W(T^{g})=W(T)^{q} for every element g in G

Let P be a Sylow p-subgroup of the group G, p a prime, and W_{1i}\cdots , W_{n}

be conjugacy functors on G. We say that {N_{G}(W_{1}(P)) , \cdots , N_{G}(W_{n}(P)) (or
C_{G}(W_{i}(P)))\} connects A with B, for two subsets A and B in P, if there are
subsets A_{0}, \cdots , A_{m} in P such that A_{0}=A , A_{m}=B, and for each i=0, \cdots , m-1 ,
A_{i} is conjugate to A_{i+1} in N_{G}(W_{j}(P)) (or C_{G}(W_{j}(P)) ) for some j in \{1, \cdots, n\} .
We say that \{W_{1}, \cdots, W_{n}\} controls p-fusion in G if there is a Sylow p-
subgroup P of G satisfying the following property; whenever A and B are
subsets of P and A is conjugate to B in G, then \{N_{G}(W_{1}(P)), \cdots, N_{G}(W_{n}(P))\}

connects A with B. The notation Z denotes the conjugacy functor which
maps each p-group to its center. W_{1}\supseteq W_{2} means that W_{1}(T)\supseteq W_{2}(T) for
every p subgroup T of G. Suppose T is a p-group for some prime p.
Let d(T) be the maximum of the orders of the Abelian subgroups of T.
Let A(T) be the set of all Abelian subgroups of 7’ of order d(T) . Let
J(T)=\langle A(T)\rangle . Thus, J(T) is the Thompson subgroup of T

We need the following lemmas:
Lemma 1. (Shult, [8], Theorem 3. 1)

Let V be a group of order p (p a prime) of operators acting on a group
G and (|G|, 2p)=1 . Let A be a faithful KGV-module where the charac-
teristic of the field K does not divide |GV| . If C_{A}(V)=0 , then V cen-
tralizes G.
Lemma 2. (Thompson [9])

Let V be a group of order p (p a prime) of operators acting on a group
G. If C_{G}(V)=1 , then G is nilpotent.
Lemma 3. (Glauberman [4], Corollary 3)

Let G be a group, p a prime, P a Sylow p-subgroup of G, and Q a
subgroup of Z(P) . If Q\underline{\triangleleft}N_{G}(J(P)) and if p is odd and p-1 does not
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divide the index |N_{G}(Q):C_{G}(Q)| then Q is weakly closed in P with respect
to G.
Lemma 4. (Glauberman [5], Corollary 10)

Let S be a Sylow 2-subgroup of the group G. Suppose that C_{G}(O_{2}(G))

\subseteq O_{2}(G) and G is S_{4}-free. Then

G=\langle C_{G}(Z(S)) , N_{G}(J(S))\rangle .

Lemma 5. (Goldschmidt [6])
Let G be a finite non-abelian simple group. Assume that G has a

strongly closed abelian 2-subgroup. Then G is isomorphic to one of the
following groups :

a) L_{2}(2^{n})n\geq 3 , Sz(2^{2n+1})n\geq 1 , U_{3}(2^{n})n\geq 2 ,
b) L_{2}(q)q\equiv 3,5 (mod 8), and
c) the groups of type JankO-Ree.

Lemma 6.
Suppose that a solvable group G admits an automorphism V of order s, s

a prime. Assume that C_{G}(V) is a \{2, 3, s\}’ group. Then G=0_{q’,q}(G)C_{G}(V)

for each prime q\in\pi(G)-\pi(C_{G}(V)) .
PROOF. Let G be a minimal counterexample to Lemma 6. Then we may
assume that O_{q’}(G)=1 , so that O_{q}(G)=F(G)\supseteq C_{G}(F(G)) . Let T be a
V-invariant Hall q’ -subgroup of G. We will show that V centralizes T
Let T_{2}\in Syl_{2,V}(T) . If T_{2}\neq 1 , then q\neq 2 . Since C_{G}(V) is odd order, V acts
on T_{2}F(G) as a fixed point free automorphism group. Thus, T_{2}F(G) is
nilpotent by Thompson’s theorem [9], a contradiction. Thus T is of odd
order. Applying Lemma 1 to GF(q)TV acting on O_{q}(G) , we have [T, V]
\subseteq C_{G}(F(G))\cap T\subseteq F(G)\cap T=1 , so T\subseteq C_{G}(V) . Let Q\in Syl_{q,V}(G) , then we
have G=TQ and G\underline{\triangleright}[G, V]=[Q, V]=Q . Therefore, G=O_{q}(G)C_{G}(V) , a
contradiction.

3. Proof of Theorem 1.

In this section, we assume that Corollary 2 is true. Let G be a mini-
mal counterexample to the Theorem 1.

(I) G is a simple group.
Proof. By minimality of G, G=G_{1}\cross G_{1}^{a}\cross\cdots\cross G_{1}^{\alpha^{v-1}} or G is simple. If
G=G_{1}\cross\cdots\cross G_{1}^{\alpha}’-1 then C_{G}(\alpha)\cong G_{1} is a non-abelian simple group, a con-
tradiction.

(II) For each prime q\in\pi(G)-\{\pi(C_{G}(\alpha)), 2\} and Q\in Syl_{q,\langle\alpha\rangle}(G) , Z(Q) is
weakly closed in Q with respect to G.

Proof. By minimality and simplicity of G, N_{G}(J(Q)) and N_{G}(Z(Q)) are solv-
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able. Thus by Lemma 6, N_{G}(J(Q))=O_{q’}(N_{G}(J(Q)))N_{G}(Q) , so we have Z(Q)
\underline{\triangleleft}N_{G}(J(Q)) . Set N=N_{G}(Z(Q)) , then N=O_{q’}(N)N_{N}(Q)=C_{G}(Z(Q))C_{N}(\alpha) .
Thus we have that N_{G}(Z(Q))/C_{G}(Z(Q)) is \pi(C_{G}(\alpha)) -group, in particular, q-1
does not divide the index |N_{G}(Z(Q)):C_{G}(Z(Q))| . Hence, by Lemma 3, we
have that Z(Q) is weakly closed in Q with respect to G.

(III) G is S_{3}-free. In particular, G is S_{4}-free.
Proof. Let Q\in Syl_{3’\langle\alpha\rangle}(G) . By (II), N_{G}(Z(Q)) controls 3-fusion in G. Since
N_{G}(Z(Q))/O_{3’}(N_{G}(Z(Q))) is of odd order by Lemma 6, G is S_{3}-free.

(IV) Z(S)\underline{\triangleleft}N_{G}(J(S)) for some S\in Syl_{2,\langle\alpha\rangle}(G) .
Proof. By minimality of G, N_{G}(J(S)) is solvable, so we have that
N_{G}(J(S))=O_{2’}(N_{G}(J(S)))N_{G}(S)

– Z(S) , by Lemma 6.
(V) A contradiction.

Proof. Since G is S_{4}-free and Z(S)^{J}\underline{\triangleleft}N_{G}(J(S)) for some Sylow 2-subgr0up
S of G, we have that Z(S) is a strongly closed Abelian 2-subgroup in S
with respect to G, by Corollary 2. Since G is simple, we have that G is
isomorphic to one of the following groups:

L_{2}(2^{n})n\geq 3r
, Sz(2^{2n+1})n\geq 1 , U_{3}(2^{n})n\geq 2 . L_{2}(q)q\equiv 3,5

(mod 8), and the groups of type JankO-Ree,

by the result of Goldschmidt [6], However, it is easily proved that none
of these groups have automorphisms satisfying the conditions of Theorem
1, a contradiction.

4. Proof of Theorem 2 and Theorem 3.

In this section, we will only prove Theorem 3. But, by a slight change,
we can get a proof of Theorem 2.

Suppose that Theorem 3 is false and let G be a counterexample to
Theorem 3. Let W_{1} , \cdots , W_{n} be the conjugacy functors with W_{i}\supseteq Z for every
i. Then there are two subsets A and B in P which are conjugate in G,
but \{N_{G}(W_{1}(P)), \cdots, N_{G}(W_{n}(P)), C_{G}(Z(P))\} cannot connect A with B, where
P is a Sylow p-sugroup of G. By Alperin’s theorem [1], we may assume
that A and B are contained in a p-constrained p-local N_{G}(H) with 1\neq H\leq P

and A is conjugate to B in N_{G}(H) , namely, there is a p-constrined p-local
N_{G}(H)(1\neq H\leq P) satisfying that N_{P}(H) has two subsets A and B which
a are conjugate in N_{G}(H) but \{N_{G}(W_{1}(P)), \cdots, N_{G}(W_{n}(P)), C_{G}(Z(P))\} cannot
connect A with B. Moreover, we may assume that C_{G}(H)=Z(H)\cross

O_{p’}(N_{G}(H)) . Choose such a subgroup H in P satisfying the following
conditions :
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i) N_{P}(H) is maximal in such groups,
ii) H is of maximal order subject to i).

We will show that N_{P}(H)\in Syl_{p}(N_{G}(H)) . Suppose false, then H\neq P and
P contains a conjugate L of H which satisfies N_{P}(L)\in Syl_{p}(N_{G}(L)) . Then,

by Alperin’s theorem [1] there are an integer m and elements x_{1}, \cdots , x_{m} in
G and subgroups K_{1} , \cdots , K_{m} in P such that x_{i}\in N_{G}(K_{i}) (i=1, \cdots, m) ,
C_{G}(K_{i})=Z(K_{i})\cross O_{p’}(N_{G}(K_{i})) for each i, N_{p}(H)\subseteq K_{1} , N_{P}(H)^{x_{1}\cdots x_{i}}\subseteq K_{i+1}(i=1 ,
\ldots , m-1) , N_{P}(H)^{x_{1}}\cdot x_{m}\subseteq N_{P}(L) and H^{x_{1}\cdots x_{m}}=L . Since |N_{P}(K_{i})|=>|N_{P}(H)| ,
\{N_{G}(W_{1}(P)), \cdots, N_{G}(W_{n}(P)), C_{G}(Z(P))\} connects A with A^{x_{1}\cdots x_{n}} and B^{x_{1}\cdots x_{m}}

with B, by maximality of H. But, since |N_{P}(L)|^{\sim}’\approx|N_{P}(H)| , \{N_{G}(W_{1}(P)) , \cdots ,
N_{g}(W_{n}(P)) , C_{G}(Z(P))\} connects A^{x_{1}\cdots x_{m}} with B^{x_{t}\cdots x_{m}} , by maximality of H, so
\{N_{G}(W_{1}(P)), \cdots, N_{G}(W_{n}(P)), C_{G}(Z(P))\} connects A with B, a contradiction.
So we have that N_{P}(H)\in Syl_{p}(N_{q}(H)) . By the hypothesis of Theorem 3,
\{W_{1}, \cdots, W_{n}\} controls p-fusion in N_{G}(W_{1}(P_{0})) , where P_{0}=N_{P}(H) . If C_{p}(W_{1}(P_{0}))

\not\in Syl_{p}(C_{G}(W_{1}(P_{0}))) , then there is an element y in C_{G}(Z(P)) such that
N_{P}(W_{1}(P_{0}))^{y}\subseteq P and N_{P}(W_{1}(P_{0})^{y})\in Syl_{p}(N_{c_{G^{(Z(P))}}}(W_{1}(P_{0})^{y})) , in particular,
C_{P}(W_{1}(P_{0})^{y})\in Syl_{p}(C_{G}(W_{1}(P_{0})^{y})) . Then P contains two subsets A^{y} and B^{y}

which are conjugate in N_{G}(W_{1}(P_{0})^{y}) and C_{P}(W_{1}(P_{0})^{y})\in Syl_{p}(C_{G}(W_{1}(P_{0})^{y})) .
Since y\in C_{G}(Z(P)) , \{N_{G}(W_{1}(P)), \cdots, N_{G}(W_{n}(P)), C_{G}(Z(P))\} connects A with A^{y}

and B^{y} with B. So we may assume that C_{P}(W_{1}(P_{0}))\in Syl_{p}(C_{G}(W_{1}(P_{0}))) . Set
N=N_{G}(W_{1}(P_{0})) , then N=N_{N}(C_{P}(W_{1}(P_{0}))W_{1}(P_{0})\cdot C_{N}(W_{1}(P_{0}))=N_{N}(P_{1})C_{N}(Z(P)) ,

where P_{1}=C_{P}(W_{1}(P_{0}))W_{1}(P_{0}) , by the Frattini argument. Thus, there is
a subset B_{0} in P such that A is conjugate to B_{0} in N_{N}(P_{1}) and B_{0} is con-
jugate to B in C_{N}(Z(P)) . Clearly, N_{G}(P_{1}) is p-constrained p-local and C_{G}(P_{1})

=Z(P_{1})=Z(P_{1})\cross O_{p’}(N_{G}(P_{1})) . Therefore, by maximality of H, |N_{P}(P_{1})|*->

|N_{P}(H)| implies that \{N_{G}(W_{1}(P)), \cdots, N_{G}(W_{n}(P)), C_{B}(Z(P))\} connects A with
B_{0} . Since C_{G}(Z(P)) connects B_{0} with B, we have a contradiction.

This completes the proof of Theorem 3.
Next we shall prove the corollaries.

Proof of Corollary 1. We need only show that \{W_{1}, W_{2}\} controls p-fusion in
N. Set P is a Sylow p-subgroup of N. Suppose P contains two subsets A
and B which are conjugate in N. Then, since N=N_{G}(W_{1}(P))N_{G}(W_{2}(P))

O_{p’}(N) , there are elements a and b in N_{N}(W_{1}(P)) and N_{N}(W_{2}(P))O_{p’}(N) ,
respectively, such that A^{a}=B^{b} . Then A^{a}=B^{b} is contained in some Sylow
p-subgroup P_{1} of N_{N}(W_{1}(P))\cap N_{N}(W_{2}(P))O_{p’}(N) . Since N_{N}(W_{1}(P))\cap

N_{N}(W_{2}(P))O_{p’}(N) contains P, there is an element c in N_{N}(W_{1}(P))\cap

N_{N}(W_{2}(P))O_{p’}(N) such that P_{1}^{c}=P . Then A is conjugate to A^{ac}=B^{bc} in
N_{N}(W_{1}(P)) and A^{ac}=B^{bc} is conjugate to B in N_{N}(W_{2}(P))O_{p’}(N) . By the same
way, we have that there are elements d and e in N_{N}(W_{2}(P)) and O_{p’}(N) ,
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respectively, such that bc=ed and P contains B, E^{e}=B^{bca-1} , and B^{bc} . Since
e\in O_{p’}(N) , we have that B=B^{e} . Therefore, N_{N}(W_{1}(P)) connects A with
A^{ac}=B^{bc} and N_{N}(W_{2}(P)) connects B^{bc} with B^{bcd-1}=B^{e}=B . Hence we have
that \{W_{1}, W_{2}\} controls p fusion in N.
Proof of Corollary 2. Suppose false. Then Z(S) is not weakly closed in
S with respect to G. Therefore, there is an element g in G such that
Z(S)\neq Z(S)^{q}\subseteq S. By Alperin’s theorem [1], there is a subgroup H of S such
that H\supseteq Z(S) and Z(S)\underline{4\lrcorner}N_{G}(H) . Choose such a subgroup H in S satisfying
the following conditions :

i) N_{S}(H) is of maximal order in such groups,
ii) H is of maximal order subject to i).

Then we have that N_{S}(H) is a Sylow 2-subgroup of N_{G}(H) and C_{S}(H)\subseteq H,
the proof of these results is similar to the proof of Theorem 3. Since N_{G}(H)

is 2-constrained, N_{G}(H)=\langle N_{N_{G^{(H)}}}(J(N_{S}(H))), C_{-V_{G}(H)}(Z(N_{S}(H)))\rangle O(N_{G}(H)) ,
by Lemma 4. Since \langle O(N_{G}(H)), C_{G}(Z(N_{S}(H)))\rangle\subseteq C_{G}(Z(S)) , we have that
Z(S)\subseteq J(N_{S}(H))) and Z(S)4_{-}N_{G}(J(N_{S}(H))) . By maximality of N_{S}(H) ,
|N_{S}(J(N_{S}(H)))|\leq|N_{S}(H)| . Thus we have that N_{S}(H)=S, but Z(S){?}-

-

N_{G}(J(N_{S}(H)))=N_{G}(J(S)) , which contradicts the hypothesis of Corollary 2.
This completes the proof of Corollaries.
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