On radicals of principal blocks

By Kaoru Motose
(Received October 16, 1976 : Revised January 31, 1977)

§ 1. Introduction

Let K be an algebraically closed field of characteristic p, G a finite group with a p-Sylow subgroup $P \neq 1, K G$ the group algebra of G over K and B_{1} the principal block of $K G$ with Cartan matrix $C_{1}=\left(c_{s t}\right)$. Further, we shall represent $[J(K G) ; K]$ the K-dimension of the radical $J(K G)$ of $K G$, and $u_{s}, f_{s}(s=1,2, \cdots, r)$ the degrees of all principal indecomposable left ideals U_{s} of $K G$ and all irreducible modules $F_{s}=U_{s} / J\left(U_{s}\right)$, respectively, where F_{1} is the trivial module.
R. Brauer and C. Nesbitt [1, p. 580] assert $u_{1} f_{s} \geq u_{s}$ for all s and so $[J(K G): K] \leq|G|\left(1-1 / u_{1}\right)$. From this estimation, it is easily seen that $\left[J(K G: K]=|G|\left(1-1 / u_{1}\right)\right.$ is equivalent to $u_{1} f_{s}=u_{s}$ for all s. In this paper, we shall call the following question Wallace's problem.

If $[J(K G): K]=|G|\left(1-1 / u_{1}\right)$, then is P normal ?
As was pointed out by D. A. R. Wallace in Math. Reviews 22 (1961), \#12146, the solution of this problem [8, Theorem] contains an error but holds good for p-solvable groups. Recently, some studies on Wallace's theorem [8, Theorem] are given by Y. Tsushima [7] and the author [5]. The result of R. Brauer and C. Nesbitt [1, p. 580] assert also $\left[J\left(B_{1}\right): K\right] \leq\left[B_{1}\right.$: $K]\left(1-1 / u_{1}\right)$. And so $\left[J\left(B_{1}\right): K\right]=\left[B_{1}: K\right]\left(1-1 / u_{1}\right)$ if and only if $u_{1} f_{s}=$ u_{s} for all $F_{s} \in B_{1}$.

Using P. Fong's theorem [3, Lemma (3A)], Wallace's theorem [8, Theorem] is slightly modified as the following:

Theorem A (D. A. R. Wallace). Let G be a p-solvable group.
$\left[J\left(B_{1}\right): K\right]=\left[B_{1}: K\right]\left(1-1 / u_{1}\right)$ if and only if G is a p-solvable group with p-length 1.

In the present paper, we shall show that if P is cyclic, then $\left[J\left(B_{1}\right): K\right]$ $=\left[B_{1}: K\right]\left(1-1 / u_{1}\right)$ if and only if G is a p-solvable group with p-length 1 . As an immediate consequence of this and Wallace's theorem [8, Theorem], we can see that Wallace's problem is valid for a group with a cyclic p-Sylow subgroup.
§ 2. Groups with $\left[J\left(B_{1}\right): K\right]=\left[B_{1}: K\right]\left(1-1 / u_{1}\right)$
In the next, E. C. Dade's theorem [2, Theorem 68.1] will play an important role.

Theorem. Suppose that P is cyclic. Then, $\left[J\left(B_{1}\right): K\right]=\left[B_{1}: K\right](1-$ $\left.1 / u_{1}\right)$ if and only if G is a p-solvable group with p-length 1.

Proof. Since P is cyclic, by Dade's theorem [2, Theorem 68.1] and rearrangement of F_{s}, Cartan matrix $\left(c_{s t}\right)$ of B_{1} is

$$
\left(\begin{array}{ccccccccc}
2 & & & & & & & & \\
& 2 & & & * & & & & \\
\\
& * & & \cdot & & & & * & \\
& & & \cdot & & & & & \\
& & & & 2 & & & & \\
& & & & & h+1 & h & \cdots & h \\
& & & & & h & h+1 & \cdots & h \\
& & * & & & & & & \\
& & & & & h & h & \cdots & h+1
\end{array}\right)
$$

, where h is the number of exceptional irreducible characters in B_{1}, the degree $e=(|P|-1) / h$ is the number of non-exceptional irreducible characters in B_{1}, and elements of $*$-parts are 0 or 1 . From the condition $u_{1} f_{s}=u_{s}$ for all $F_{s} \in B_{1}$ and the form of above matrix, we obtain the following inequality :

$$
\begin{aligned}
|P|\left(\sum_{s} f_{s}\right) & \leq u_{1}\left(\sum_{s} f_{s}\right) \\
& =\sum_{s} \sum_{t} s_{s t} f_{t} \\
& \leq\left(\operatorname{Max}_{t}\left(\sum_{s} c_{s t}\right)\right)\left(\sum_{t} f_{t}\right) \\
& \leq(e h+1)\left(\sum_{t} f_{t}\right) \\
& =|P|\left(\sum_{t} f_{t}\right)
\end{aligned}
$$

Whence it follows, $|P|=u_{1}$ and $\sum_{t}|P| f_{t}=\sum_{t}\left(\sum_{s} c_{s t}\right) f_{t}$. Noting that $f_{s}>0$ for all s and $\sum_{s} c_{s t} \leq|P|$ (see the above inequality), we obtain the following:

$$
\sum_{s=1}^{e} c_{s t}=|P|=e h+1 \text { for all } t
$$

Since $h+1 \geq c_{s s}$ for all s and $h \geq c_{s t}$ for all $s \neq t$, by the equation (\#), Cartan matrix of B_{1} is

$$
\left(\begin{array}{cccc}
h+1 & h & \cdots & h \\
h & h+1 & \cdots & h \\
h & h & \cdots h & h+1
\end{array}\right)
$$

and hence $e h+1=|P|=u_{1}=(h+1) f_{1}+h f_{2}+\cdots+h f_{e}$, which implies $f_{1}=f_{2}=$ $\cdots=f_{\mathrm{e}}=1$. Thus, by [2, Theorem 65.2], $O_{p^{\prime}, p}(G)=\cap_{F_{s} \in B_{1}} \operatorname{Ker} F_{s}$ contains the commutator subgroup of G. This means G is a p-solvable group with p-length 1. The converse is valid by Theorem A.

The following is the solution of Wallace's problem for a group with a cyclic p-Sylow subgroup P.

Corollary. Suppose that P is cyclic. Then $[J(K G): K]=|G|(1-$ $\left.1 / u_{1}\right)$ if and only if P is normal in G.

Proof. Assume that $[J(K G): K]=|G|\left(1-1 / u_{1}\right)$. Then $u_{1} f_{s}=u_{s}$ for all s, and hence $\left[J\left(B_{1}\right): K\right]=\left[B_{1}: K\right]\left(1-1 / u_{1}\right)$. Thus, G is a p-solvable group by Theorem and so P is normal by Wallace's theorem [8, Theorem]. The converse is given in [8, Theorem].

Let \boldsymbol{f} and \boldsymbol{u} be column vectors with componenets $f_{1}, f_{2}, \cdots, f_{e}$ and u_{1}, u_{2}, \cdots, u_{e}, respectively, where $f_{1}, f_{2}, \cdots, f_{e}$ and $u_{1}, u_{2}, \cdots, u_{e}$ are the sets of degrees of all irreducible modules and the principal indecomposable modules contained in B_{1}. In what follows, $(\boldsymbol{x}, \boldsymbol{y})$ means the inner product of real vectors \boldsymbol{x} and \boldsymbol{y}.

The next shows that Wallace's problem is sharply related to Frobeniusean root (the largest characteristic root) of Cartan matrix C_{1} of B_{1}.

Proposition. The following are equivalent:

$$
\begin{equation*}
\left[J\left(B_{1}\right): K\right]=\left[B_{1}: K\right]\left(1-1 / u_{1}\right) \tag{1}
\end{equation*}
$$

(2) u_{1} is a characteristic root of C_{1}.
(3) u_{1} is a Frobeniusean root of C_{1}.

Proof. (1) $\Rightarrow(2)$: If $\left[J\left(B_{1}\right): K\right]=\left[B_{1}: K\right]\left(1-1 / u_{1}\right)$, then $u_{1} \boldsymbol{f}=\boldsymbol{u}=C_{1} \boldsymbol{f}$.
$(2) \leftrightharpoons(3)$: Since C_{1} is a non-negative matrix, by Frobenius' theorem [4, pp. 404, 546 and 552], and the indecomposability of C_{1} (see [2, Theorem 46.3]), there exist a positive number v and a positive vector \boldsymbol{x} such that $C_{1} \boldsymbol{x}=v \boldsymbol{x}$ and every characteristic root of C_{1} is not larger than v. Since $u_{1} \boldsymbol{f} \geq \boldsymbol{u}=C_{1} \boldsymbol{f}$ (see [1, p. 580]) and C_{1} is symmetric, we obtain $u_{1}(\boldsymbol{f}, \boldsymbol{x}) \geq(\boldsymbol{u}, \boldsymbol{x})$ $=\left(C_{1} \boldsymbol{f}, \boldsymbol{x}\right)=\left(\boldsymbol{f}, C_{1} \boldsymbol{x}\right)=(\boldsymbol{f}, v \boldsymbol{x})=\boldsymbol{v}(\boldsymbol{f}, \boldsymbol{x})$. Hence, $\left(u_{1}-v\right)(\boldsymbol{f}, \boldsymbol{x}) \geq 0$ and $(\boldsymbol{f}, \boldsymbol{x})>0$ implies $u_{1} \geq v$. Thus, u_{1} is a Frobeniusean root of C_{1}.
(3) $\Rightarrow(1)$: By Frobenius' theorem and the indecomposability of C_{1}, there exists a positive vector \boldsymbol{x} such that $C_{1} \boldsymbol{x}=u_{1} \boldsymbol{x}$. Since C_{1} is symmetric, we
find $\left(u_{1} \boldsymbol{f}, \boldsymbol{x}\right)=\left(\boldsymbol{f}, u_{1} \boldsymbol{x}\right)=\left(\boldsymbol{f}, C_{1} \boldsymbol{x}\right)=\left(C_{1} \boldsymbol{f}, \boldsymbol{x}\right)=(\boldsymbol{u}, \boldsymbol{x})$, and so $\left(u_{1} \boldsymbol{f}-\boldsymbol{u}, \boldsymbol{x}\right)=0$. Noting that $u_{1} \boldsymbol{f}-\boldsymbol{u} \geq 0$ and $\boldsymbol{x}>0$, we obtain $u_{1} \boldsymbol{f}=\boldsymbol{u}$, and hence $\left[J\left(B_{1}\right): K\right]=\left[B_{1}: K\right]$ ($1-1 / u_{1}$).

§ 3. Some remarks on nilpotency index of $\boldsymbol{J}(\boldsymbol{K} \boldsymbol{G})$

We shall denote the nilpotency index of $J(K G)$ by $t(G)$.
Remark 1. From the proof of Theorem and [10, Lemma 4.2], we can see that if P is cyclic, then $t(G) \leq|P|$. More generally, if the defect group D of a block B is cyclic, then the nilpotency index of the radical of B is not larger than $|D|$.

Remark 2. If $p=3$ and a 3 -Sylow subgroup of G is of order 3, then $t(G)=3$. This is proved by Remark 1 and [9 , Theorem].

Remark 3. As the complete answer to the question posed in [6], the following theorem is obtained by Y. Tsushima. The result is informed to the author in a private communication. The author wishes to express his greatful thanks to Mr. Y. Tsushima, who kindly permit to cite it here.

Theorem B (Y. Tsushima). Let G be a p-solvable group. Then $t(G)$ $=|P|$ if and only if P is cyclic.

Example. If G is not p-solvable, then the above theorem is not valid. Now, let G be the alternative group of degree 5 , and $p=5$. Then Cartan matrix is $\left(\begin{array}{lll}2 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 1\end{array}\right)$ and so $t(G) \leq 4$, specially shows $t(G) \neq|P|$. However, a p-Sylow subgroup of G is cyclic.

References

[1] R. Brauer and C. Nesbitt : On the modular characters of groups, Ann. of Math., 42 (1941), 556-590.
[2] L. DORNHOFF: Group representation theory, Part B, Dekker, 1972.
[3] P. FONG: On the characters of p-solvable groups, Trans. Amer. Math. Soc., 98 (1961), 263-284.
[4] F. G. Frobenius: Gesammelte Abhandlungen, Band III, Springer, 1968.
[5] K. Motose: On a theorem of Wallace and Tsushima, Proc. Japan Acad., 50 (1974), 572-575.
[6] Y. Ninomiya: On the nilpotency index of the radical of a group algebra, Symposium on algebras, Matsuyama, 1974 (in Japanese).
[7] Y. Tsushima: On some topics in modular group rings, Symposium on group theory, Hakone, 1972 (in Japanese).
[8] D. A. R. Wallace: On the radical of a group algebra, Proc. Amer. Math. Soc., 12 (1961), 133-137.
[9] D. A. R. Wallace: Group algebras with radicals of square zero, Proc. Glasgow Math. Assoc., 5 (1962), 158-159.
[10] D. A. R. Wallace: Lower bounds for the radical of the group algebra of a finite p-soluble group, Proc. Edinburgh Math. Soc., (2) 16 (1968/69), 127134.

Department of Mathematics Shinshu University

