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hermitian symmetric spaces
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Let M be a compact riemannian symmetric space. If M is simply con-
nected, R. J. Crittenden has shown that the tangent cut locus of a point
coincides with the first tangent conjugate locus of that point. (See. e.g.
[4], [5] [9D-

In this paper we study relations between the cut locus and the first
conjugate locus in the case when M is an irreducible compact hermitian
symmetric space or an irreducible symmetric R-space. The irreducible sym-
metric R-spaces are compact riemannian symmetric spaces such as O(n)/O
(m) X O(n—m), U(n), SO(n), U2n)/Sp(n), SO(n)x SO (m)/S(O(n)x O(m)) and
T x E¢/E,, which are not necessarily simply connected.

In section 1, we give basic notation concerning symmetric spaces and
prepare three propositions which will play important roles in section 2.

In section 2, we determine the first tangent conjugate loci and the tan-
gent cut loci for the irreducible compact hermitian symmetric spaces and
the irreducible symmetric R-spaces.

In section 3, we culculate the diameters and the injectivity radius of
the irreducible compact hermitian symmetric spaces and the irreducible sym-
metric R-spaces. We study also the closed geodesics in these spaces.

1. Preliminaries.

1.1. Let (G, K) be a compact riemannian symetric pair, which is de-
fined by the following: a) a compact Lie group G and a closed subgroup
K of G, b) an involutive automorphism ¢ of G such that G'’C KCG,={g
eG; ¢(9)=¢g}, where G° is the identity component of G, and c) a G-in-
variant riemannian structure <{, > on M=G/K.

Let g(resp. ¥) be the Lie algebra of G (resp. K) and put p={X<Eg;
(d¢) X=—X}. Then we have the decomposition g=f+p. Take a maximal
abelian subspace a in p, and denote by 1t the restricted root system with
respect to a, by t* the set of positive roots in t with respect to a linear
order in a. Then we have the following decompositions of ¥ and p.
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=15+ 2 aths,s
p=a+2ieth,
where
b = {Xet; ad*(Hjx
= {Xet; ad®(H)x
P = {Xe€p; ad’(H)x

=0 for all Hea},
—2(H)zx for all Heay,
—2(H)x for Hea} .

1.2. We recall the notions of cut locus and conjugate locus of a point
in a compact riemannian manifold M. Let Exp, denote the exponential
mapping from the tangent space 7,(M) at x& M into M. Let X be a unit
vector in T,(Mj. Then #X is called the first tangent conjugate point of
x along the geodesic Exp,tX, if there exists a non-zero Jacobi-field J(¢)
along Exp,tX such that J(0)=0, J(z)=0 and if for 0<¢,<t, there exists
no non-zero Jacobi-field J(¢) such that J(0)=0, J(z,)=0.

On the other hand, %X, is called the tangent cut point of x along
Exp, tX, if the geodesic segment Exp, tX/[0, %] is a minimal geodesic
segement, but Exp, #X/[0, s] can not be a minimal geodesic segment for any
s>Z. Then the following is well-known (see. e.g. [3]). Assume that #,X
is the tangent cut point of x along Exp,tX and is not the first tangent
conjugate point of x along Exp,tX. Then there exists a unit vector Y&
T.(M), Y+ X, such that Exp, Z,X=Exp, Y.

The set of first tangent conjugate points of x (resp. tangent cut points
of z) is called the first tangent conjugate locus (resp. the tangent cut locus).

1.3. Let M=G/K be the compact symmetric riemannian manifold as-
sociated to the symmetric pair (G, K) in 1. 1. We identify the tangent space
T (M) with p in a canonical manner, and regard the tangent cut locus C
and the first tangent conjugate locus F as subsets of p. We denote CNa
(resp. FNa) by C, (resp. F,).

ProposiTiON 1. 1. (cf. [7]) We have.
C={Ad(k)X; XeC, keK}, and
F={Ad(kX; XeF, keK}.

Thus to study C and F, it suffices to determine C, and F,. The fol-
lowing two propositions, given in [9], describe C, and F,.

ProrosiTION 1.2. Let X be a unit vector in a. If t,X is the first
tangent conjugate point along the geodesic Epx,tX emanating from 0=eK
with the initial direction X, then t‘,:MiJrn n/lZ(X)I-——fr/Ma}rxll(X)l.

2er ez



232 H. Naitoh

ReMARK. If we denote by a the conjugate degree of #,.X, then a=} 7,
dim p,, where ME_}_X IA(X)] =]4(X)|=+-=]2,X)]. Moreover the variational
iex

completeness of the adjoint action of K implies that {Exp, Ad(hy)t,X; hs=
expsY, Ye )i b, ={Exp.tX}.

ProrosiTiON 1.3. a) Let X be a unit vector in a, (X be the tangent
cut point along ExptX. Then either {,X is the first tangent conjugate
point or there exists a unit vector YeEa, Y#X, such that Expif,X=Exp,
£)Y. b) Let § be the center of g and put 3,=3NPp. If X is a unit vector
in 3,Ca, there exists no tangent conjugate point along Exp,tX.

2. Irreducible symmetric R-spaces.

In this section we study the first tangent conjugate locus and the tan-
gent cut locus of an irreducible symmetric R-space. Notations and results
used in this section are written in [10].

2.1. Let G be a semi simple real connected Lie group with finite cen-
ter. We assume that there exists a complexification G of G, and denote
by o the conjugation of G with respect to G.

A subgroup U of G is said to be a parabolic subgroup of G if U 0
NG, where U is a parabolic subgroup of G, i.e. a subgroup containing a
maximal solvable subgroup of G. The homogeneous space M=G/U is then
called a R-space.

Let g(resp. §) be the Lie algebra of G (resp. G). We denote by o the
conjugation of § with respect to g. Let K be a maximal compact subgroup
of G, t be the Lie algebra of K, and g=f+¢g be the Cartan decompositon.
Put g,=f+ip and denote by G, the connected Lie subgroup of G corre-
sponding to the Lie subalgebra g,. Then we have K=GNG,. Let r be
the conjugation of G with respect to G, and denote by (,) the Killing from
of § Take a maximal abelian subspace a in p and a Cartan subalgebra
h of g containing a. We have H=h*+H~, where h*=EtNHh, H==pNh=a.
Moreover, H,=:9)* +5~ is the real part of the Cartan subalgebra §) of & which
is spanned by §. Let T be the root system of & with respect to the Cartan
subalgebra §). We shall identify a =% with the element H,&Y, such that
a(H)=(H, H,) for any H&l, Now take a o¢-order on ¥, This induces
an order on §)~. Let 4 be the os-fundamental system of the root system I
with respect to this order, 4 be the underlying Dynkin diagram. Then
there exists a o-subsystem 4; in 4 and Zea such that (Z, a;)=0 for a;=4,
and (Z, ay)=1 for ey &4, and that the Lie algebra of U is the sum of non-
negative eigenspaces of adZ in g. Then (Z, a;)=0 for a;1; and (Z, a)=1
for aye&sd,. Moreover the Lie algebra it of U is the sum of all eigenspaces
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of adZ belonging to non-negative eigenvalues in 4.

There exist vectors X,&8 with the following properties. a) [H, X,]=«a
(H)X, for act, Heh,. b) [X,, X_.]=—a*=—2a/(a, a) for a€L. ¢) tX,=
X_, for act. d) Putting U,=X,+X_,, V,=¢(X,—X_,) for act?, g, is the
real subspace spanned by ik, and {U,, V,; actt}. e) If [X,, X,]=N., ;X.1p
then N_,,_,=e¢, ,N,, where ¢, ,=+1 and N2, ,=¢, {p+1)% p being the largest
integer such that a—p pel. {) 6X,=X,, for act, hence g is the real sub-
space spanned by 9, {X,; sa=a}, and {X,+ X,.; ca+a}.

For 2§, we define 2=(1+¢4)/2, and put

I = {aElt; 0a = —a} =Tt NdH*,
IV = {acsit; ga =a} =INY,

I® = {aelt; ca<a, atoa =2 a&l},
I® = {acsit, sa<a, atoa =2 act}.

Moreover we define Z,, Z., S., S., T,, and T, for act* as follows;
For aciy, let Z,=X,+X_,, Z/=i(X,—X_,) and S,=Z7,, Z/=.S..
For aci®, let Z,=X,, Z_ ,=X_, and S,=Z+Z ., T.=Z.—7_,.
For aci®, let Z,=X,+X,., Z_.=X_.+X_.., Z.=i(X,—X.,.),
Z_.=i(X_,+X_..). For aci®, let Z,=V2 (X, +X,.),

Z_.=A2(X oA X D), Zi=4 20 (Xo—X.0), ZLe=V 28 (= X_,+X_,).
For act® ¥, let S,=2,+72_,, T.=2,—7_,, S:=7Z.+7 _,,
T,=7!-7",.

We denote by Z(resp. R) the set of all the integers (resp. the set of
all the real numbers), and by { }; (resp. { }z) the set spanned by Z and
{ } (resp. R and { }).

We denote by t the restricted root system which is pro;ectlon T of i,
by 1t the set of all positive restricted roots, and set 1,={d}zNxr. We put

t, ={S., S.; @a =r}y for rert,
={T,, T,; a =r}g for rext,
f={S., Si; a€Lf}r+h*, and
Po=9".
Then we know the following results.
a) =ttt p=pot+ 2retps .

b) M=G/U and M=G/U are canonically diffeomorphic to G,/K’ and K/
K* respectively, where K'={x=G,; Ad, Z=Z} and K*=KNK.



234 H. Naitoh

c) P=ft+2 -+ and m*=3 o+ .1, where £* is the Lie algebra of K*
and m* is the orthogonal complement of ¥* in f with respect to (,).

d) Let ¥ be the Lie algebra of K’, and m' be the orthogonal complement
of ¥ in g, with respect to (,). Then ¥ =¢9,+{U,, V.: a€if}z and
Trt,:{Ua, Va; aEE-I-—-fI}R.

2.2. Suppose that 4 is irreducible and let let ay=)’_,ma; be the
highest root in 4. If there exists an index % such that n,=1 and J,=1
—{ay}, the pair (4, 4) is called symmetric. In general, (4, 4,) and the cor-
responding space M are called symmetric, if every non-trivial irreducible
factor of (4, 4,) is symmetric; M is called symmetric if M is symmetric. If
M is symmetric, putting ¢ = Ad (expw iZ), (Gyy K'; @) and (K, K*; @) are
symmetric pairs, and M=G,/K’' is a compact hermitian symmetric space.

We assume that G is simply connected. Then (Guoe={xeCG,; 0 z=2a}
is connected so that K'={x=G,; ¢ x=x} and K¥*={z=K; ¢ x=2}. From
now on we always assume that G is simply connected, and that M, M are
the riemannian symmetric spaces with the riemannian structure defined by
—(,), (,) being the Killing form restricted to p. Moreover we assume that
4 is irreducible.

LemMma 2.1. ([6], [8], [10]). There exists a system ¥ ={B;, -+, B,} (V=
rank M) of mutually strongly orthogonal roots in T+—%, with the same
length d' satisfying the following properties. .

a) Let @:H—{By, ", B}z be the orthogonal projection, and put h,=p;/2
for 1=i<y. Then ot={x (h;xh;); 1=4i, j=V} or ai={x (l*+h,), Lh;;
1<, j<V3.

b) One of the following conditions holds: 1) { CI?, and *={. II) Putting
P=f NI?, { =f*Uat* (disjoint sum).

c) v¥=rank M, where v¥=y or V|2 according as to the cases 1) and 1I)
in b).

Now a,={U,, -+, U, }r is a maximal abelian subspace in m’. Set ¢/ =
exp (7/4) 2.1V, €G,..  Then we have Ad. U, =i}, Ad, (i Bi)=—"U,, for
1<j<v and Ad., H=H whenever H&Y), is orthogonal to {8, -, 8.}z
Hence Ad,. (i%) is a maximal abelian subalgebra of g, containing a/, and
Ad,. induced an isomophism of @l—{0} onto the restricted root system

of (a,, ¥) with respect to a),. Thus it follows from the following

LEMMA 2.2. The restricted root system of (9., t) with respect to a
is given by



On cut loci and first conjugate loci of the irreducible symmetric R-spaces 235

72
a) {iidT(UﬂiiUpj); 1=y, jgv'}—{()}, or

"2

"2
b) {0 G Uk, =i U 156 =i} -0

ReMaArRk. We know the following results. 1°. Any hermitian sym-
metric space of semi-simple type is simply connected. 2°. Let G/K be a
simply connected compact riemannian symmetric space with a simply con-

nected Lie group G. Then C=F. (see. [4], [5]. [9)
We denote by 'Exp the exponential mapping with respect to M.

THEOREM 2.3. If M is an irreducible hermitian compact symmetric
space of semi-simple type,

C=F={Ad¥)(x/2 Max |z!) X; X=}2'U,,:
a unit vector in a,, K €K'} .

Proor. We note that U, -, U,, are mutually orthogonal and have
the same length 2/d’. Let X=7212'U,, be a unit vector in aJ.

Suppose that we are in the case a) of Lemma 2.2. We have

|( T UL, X

2, .
Uﬁz Uﬁj) — (Uﬁi’ Uﬂj)

d
(G U£U,), T2U,,)

= lxlixf].

Then we have Max |2+ /| =2 Max |2f| .
1St, 58y’ 1Sigy/

Suppose that we are in the case b) of Lemma 2.2 We have

ar
= o )

- | U,

Then we have Max {[zi+2/|, || ; 1<4, j<V} =2 Max |2¢|. By Propositon

1=isy/
1.2, the first tangent conjugate point along 'Exp tX is (x/2 Max |z¢|) X
Therefore, by Proposition 1.1, F={Ad(¥)(x/2Max |z|) X; X=Xz U,
a unit vector in aj, ¥ €K’}. Also, since M is a hermitian symmetric space
of compact type, C=F follows from the above remark.

d?
= '( U, Lo U,ak)

= |z .

We put f*={8,, ---, 8.}, changing the order of the B; if necessary. By
the definitions in 2.1, for 8;&f* we have S;;=U,, Bf=p; in the case I)
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of b) and S, =U,+U,, Bf=p4F+(08)* in the case II). Let
ay={S,, +»S;szCm*. Then af is a maximal abelian subspace in m* and
is contained in al.

Lemma 2.4. S, -+, S;« are mutually orthogonal and have the same
length 2/(B, BZ)% =2/d*.

Proor. We remark Uy, -+, U, are mutually orthogonal and have the
same length 2/d’.

Case I) of [Lemma 2.1. By the above remark we have (S;,.S,)=(U,,
Upi): —4/(8;, B) = —4/d'%, and (B, B)=(Bi B:). Thus we get (Spi, Sm-): —4/(B;,
B). Again by the above remark we see that .S, ---,.S;. are mutually or-
thogonal.

Case II) of Lemma 2.1. By the above remark we have (S, S;)=(U,,
+ U.,pi, Uﬁi‘*‘ Uaﬁi):(Uﬂi’ Uﬁi)_{_(Uaﬁi’ Uaﬂ,;): _4/({91" ﬁz) —4/(0181'; 0,81'): —2/d'?, and
(B, B)=(B:i+0Ps, Bi+aB)=2(Bs B:). Thus we get (Spp Sﬂi): —4/(8;, B). Again
by the above remark see that S, :-,S;. are mutually orthogonal.

ReEMARK. We note that in the case I) d*=d’ and in the case II) d*=
V2d.

LeMMA 2.5. Also, the following is described in [10].
a) Let I"=Ker{exp: a,—expa,}. Then I'={}2rt'U, ; t'€Z for all i}.
b) Let I'*=Ker {exp: aj—expaf}. Then I'*={}.2nt'S,,; t*€Z for all i}.

2.3. We now study the tangent cut locus of a symmetric R-space.
We denote by *Exp the exponential mapping with respect to M.

ProPOSITION 2.6. Let X=32'S,, be a unit vector in af, put a* (X)=
Max |z¢| and §(X)=n/2 a*(X). Then, t§ (X) equals the minimal value of

1SSy
t>0 such that there exists a unit vector Yeal (X+Y), for which *Exp
tX=*Exp tY holds.

Proof. For such a t>0, we have *Exp ¢t X=*Exp tY and consequently
exp 2t (X—Y)=e. Thus by Lemma 2.5 we have 2¢t(X—Y)=2z ) ¢S, for
some #!&Z and consequently tY=¢X—m(3]#S;). Since X and Y are unit
vectors, we get

12 =<Y,tY)
= G X—a(58S,), tX—n(TS,) )
= 12— 2tr (2, t*xt) 4/d*2+ 2 (3 (¢9)?) 4/d*2.

Therefore, t== (2, ()%/2 (2 2%, and t==(2|}|?)/2]2 x| since ¢>0.
Then it follows that
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t = x (L8921 0 2| =2x (218172 a*(X) 212 .
Since t*eZ, we have |82/ |t}|=1, and so we get t=7n/2 o*(X)=F(X).
On the otherhand, if we put Y=721;,27S,, —2"S,, where a*(X)=|z*| and
t=n/2a*(X), then we have *Exp tX=*Exp ¢tY. The proposition is proved.
THEOREM 2.7. Let M be an irreducible symmetric R-space. Then
C = {Ad(k) /2 Max |2%| X ; X=2,2'S;,. a unit vector in a;, kEK*}.

Proof. Let X be a unit vector in af, and #,X be the tangent cut point
along *Exp ¢X. Since ;X is the tangent cut point, #,<7;(X). Let #,X be
the first tangent conjugate point along *Exp ¢X. Then there exists a Jacobi-
field J(¢) along *Exp #X such that J(0)=0, J(#)=0. By the variational
completeness of the adjoint action of K* on K/K*, there exists Het* such

f(s,t), where f(s,t)=n(exp—sH exptX expsH), setting
oo

that J ()= gs—

m the projection of K onto K/K*. Then, f(s+sy t)=L exp-s,af(s, ), and
consequently

Thus 9 f(s,)=0 and f (s, t,)=n (exp £,X) for any s&€R. Thus we have

0s | s, .2
to =y (X). Assume that #,<t,, From [Proposition 1.3, there exists a unit

vector Yea} (X+#Y) for which *Exp #X=*Exp #,Y holds. By
2.6., =5 (X). If t,=t,, ,=((X). Thus ,=£f(X). The theorem follows
then from proposition 1. 1..

2.4. We study the first tangent conjugate locus of a symmetric R-
space. All the irreducible symmetric R-spaces are classified in [10]. By
examining these R-spaces, we get the following lemma.

LEmMA 2.8. Let M be an irreducible symmetric R-space. Then v =v*
if M is not simply connected, and v =2v* {f M is simply connected.

ReMARK. The following facts are well-known. 1°. Let G/K be a simply
connected compact riemannian symmetric space with a simply connected Lie
group G. Then C=F. (see [9). 2°. Let M be a compact riemannian
manifold. If C=F at a point z&M, M is simply connected. (cf. [5]).

Now, if M is stmply connected, we can determine F by this Remark

and [Theorem 2.7

LemMa 2.9. If M is not simply connected, then every restricted root
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of K/K* with respect to a} is one of the forms x(x*xxf) (i<j), £, or
+2x0.

Proof. By [Lemma 2. 8., we have a}=aq). Therefore all the restricted
roots of K/K* with respect to a} are restricted roots of G,/K’ with respect
to a,. Our lemma then follows from Lemma 2.2

From now on we assume that M is not simply connected. If rank
M=3, we can determine F by applying [Proposition 1.2, Lemma 2.9, and
Araki’s table [1]. If rank M=1, M is the real projective space and the
set F is well-known [2]. If rank M=2, M is one of the followings: U(2),
U(2)/0(2), U4)/Sp(2), O(4)]0(2)x0(2), SO 4), SO (v+y,) %SO (v)/S (O v+

w=Dx0p=1), SpU)<Sp@xSp @) (], ~§)> S06). I Mis U,

U(2)/O(2), or U(4)/Sp(2), we can determine F directly. If M is O(4)/O(2)
X O (2), SO (4), or SO (v+vy) XSO v)/S(O (v+vy,—1)XO (v—1), we can deter-
mine F by using [Lemma 2.9, Araki’s table and the following facts. a) The
riemannian universal covering space of O (4)/O(2)x O (2) (resp. SO (4), SO (v
+¢0) XSO (V)/S (O (v+v,—1) X O (v—1)) is S%2X.S? (resp. S%x.S% St*-1xS§1),
b) The fundamental group of thses spaces are Z,, If M is Sp(4)/<Sp(2)

X Sp (2), ((1)4 o (1)4)> or SO (5), we can determine F by applying Lemma 2. 9,

Araki’s table, and the above Remark 2°. Thus we get finally the following

table.

(Z’ Zl)

M

(A, Al)

M

y*

1§ (x)

T (M)

O-0++0-:0

Un/U(m) X

(n—m).
n=21=<

mg[é’—].

(Complex
Grassmann

and

Complex
Projective).

v =m.

AT

0-0:+:0++0

On/O(m)X
O(n—m).
n=21<

m<[n/2].

(Real
Grassmann).

T

Max|xt £ 27|

i<j

Z,

O(n)/O(1)x
O(n—1).
n=2.
(Real

Projective).

|1

Sp(n)/Sp(m)
X Sp(n—m).
n=31=

m=[n/2].

(Quatanion
Grassmann).

2 Max|z;|
k2

Sp(n)/Sp(1)
XSp(n—1).
n=2.
(Quatanion
Projective).

2|zt

U(m)
mz2

Max|x; — x|
i<j
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@ 3 7 A N | g@) | mM)
- SO (v+vp) X
SO (v)/SO(v+ i
—1)X .t
SO(n)/SO BI ¥o O)(v——l)). 2 |\ Max|zizzd| | £
B (n—2)x SO(2). v=1; odd. i<J
n=3; odd. 0-0---0-0-@- 50(u>1')/
y 1
Complex Y Y
0-O--- Quaderic). n=2; iﬁ){gn) 1 TIZZII - 0
-+-0-0>0 , {l(n =3) (Sphere).
~2(nz4) B1 SO(”*SIO)/(n). .
O-0-0-0-@-- n=2; odd. 1 —2——~le| - 0
00 (Sphere).
|
CI U(n)O(n). N s z
C SpA)yUn). |  0-0--0C0 nz2. Max|z?—z7]
n=1. o
0-0++-0&0 ’— T
vio=n. 0-0-9-- Sp(n). n 2 Max| 2| 0
...o_.<_-@ i
DL | som+y
= SO(n). 1 T 0
0-0-0-0-@--@ | n=4; even. 2]
\. (Sphere).
D SO(2n)/U(n). b SO(n). 1 n T P
n23. ! nz4 t[?] Maxlztzzd] | 2
O !
0 / :[i 0-0--0 SO(@3).
o-0:-:0 Y 2 | \ 1 T Z
o ] ) =il i
DI |
e Uenispn. | - p
—O0-0---®- M i— 17
-0-0--® O\© n=2. Kajx|x z3|
SO(n—i‘—Slo)/( \
n). T
D1 n=4; even. 1 2|21 0
(Sphere). L
o SO(v+yg)X
~1 SO®)/S(O
D SO(nysQ [0 utu—)X |, || o
(n—2)X SO(2). o _O(-1) Max|a? + 7]
. yo=4; even. i<J
n=6; even. v>1.
o |Comier T bx 002 ,,
0-0--0{ Quadrick | N | b+ 2 | Maxlzizzl]| %
~O Vv =2, \QLJ O(v—1)) i<i
v>1.
SO(v)X
"o SOL)S(0 v ,
O v—1)X 2 | Max|zt+ 29|
| 00 O\o O(—1)). 1\i/£anlx%+xl 2
| y>1.
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(4, ) M (4, 41) M v* t5(x) m1(M)
E1 Sp@)/{sp(2) .
e OO | xSpla) 2 | Maxjizzl | %
6 0 1 > i<j
Ey/T'x Ds, o (_14 0) .
0-0-0-0-0
I v/ =2. EW
o) 0-0-0-0-O ) r
°
@—o—g-g—oo § U(S)/ <SP @) S S——
E [ 1, 0 3 Max|x? + 27| Z,
7 < _ >> . i<j
E;/T' X Eg o 0 —4
0-0-0-0-0-0
| y' = EVi .
o) @—o—o—lo—o-o Tix Eq/F, 3| Maxie==n | Z
°® i<J

3. Applications.

THEOREM 3.1. a) Let M be an irreducible compact hermitian sym-
metric space of semi-simple type, d(M) be the diameter of M, and inj(M)
be the injectivity radius of M. Then d(M —n'\/ rank M/d', inj(M)=r/d'.
b) Let M be an irreducible symmetric R-space. Then d(Mj=n=y rank M|
d*, inj(M|=r/d*.

Proof. We prove the theorem for M, the second part being proved
quite analogously. Let X=7),2'U,, be a unit vector in aj,. By [Theorem
2.3, 7/2Max |xt| X is the tangent cut point along 'Exp #X. We note that
Z(x‘)2—(d’)2/4 Then the minimal value of #/2 Max |zf| is =n/2d'/2==/d .
Thus inj(Mj=x/d’. We also have v (Max |z|f= 3] (29):=(d')?/4, and con-
sequently Max || =d'/2/ Y. The maximal value of z/2 Max |¢| is =/2d'/2
vV =2/ /d'. Thus d(Mj==VJ/d'.

CoROLLARY 1. Let N be an irreducible compact hermitian symmetric

space of semi-simple type or an irreducible symmetric R-space. If rank
N=n, then d(N)/inj(N)=+ n.

COROLLARY 2. Let M be an irreducible symmetric R-space, and M
be the irreducible compact hermitian symmetric space corresponding to M.
Then M is a totally geodesic submanifold of M. If M is simply connected,
d(M)=d(M) and inj(Mj=inj(M)/V 2. If M is not simply connected, d(M)
=d(M) and inj(M)=inj(M).

Proof. As mentioned in 2.1, we know KCcG, and K*=KNK'. Thus
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(K, K*; @) is a symmetric subspace of (G,, K'; #), and consequently M is
a totally geodesic submanifold of M. The latter part follows from
3.1, Remark after Lemma 2.4, and Lemma 2.8

CorOLLARY 3. Let M be an irreducible compact compact hermitian
symmetric space of semi-simple type. For m=(my, -, m,)EZ"—{0}, put

X(m)= Y1, (mif|m]) Uy, €, where |m|=(Sm®% Then, i) 'Exp tX(m)
(0=t=|m|x) is a closed geodesic in M emanating from eK' and having
the length 2n|m|/d'. Moreover the multiplicity is equal to the G. C. M.
of {my, -+, m,}. 1ii) Let v(t) be a closed geodesic in M emanating from eK'
whose initial vector is of length 2/d'. Then there exist meZ”" —{0} and
Y&l such that y(t)="Exp t Ad(exp Y) X(m).

Let M be an irreducible symmertic R-space. Then the same conclu-
ston as above holds, replacing v, U, o), eK', d' ¥, 'Exp by v¥, §;, af, eK*,
dx, ¥, *Exp respectively.

o~

Proof. We prove the corollary for M, the second part being proved
quite analogusly.
i). 'Exp (t+|m|n) X(m)=exp 2 (¢+ |m|r) X(m)=exp 2 t X (m)-exp 2 |m|n X (m)
=exp 2tX(m)-exp 2}, 2amU, =exp 2¢X(m) ='ExptX(m) by Lemma 2.5

The proof of the other assertions is trivial.

ii). Let 'Exp tX (0=t=t;) be a closed geodeisc with an initial vector X&
a, such that | X|=2/d". Then exp 2t,X=e. If we put X=72 U, (2(z?
=1), we have exp 2 2t2'U,,=e. Thus 2 tx*=2rm; for some m;EZ. Put
m=(my, ---, m,). Then we get £ (x)2=n?) mi=nr?*m|%. Thus &=r?m|?
and t,=nr|m|. Therefore x'*=m;/|m| for all 7, which proves the assertion.
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