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\S 0. Introduction and main result

The purpose of this paper is to give an extension of the result in a
preceding paper [5] to the case where boundary conditions are not neces-
sarily real.

Let us consider the mixed problem for the system P of Maxwell’s equa-
tions :

|

P \{\begin{array}{l}EH\end{array}\}=f in
(0, ^{\infty})\cross G

,

(P, B)
|E(0, x)=H(0, x)=0B\{\begin{array}{l}EH\end{array}\}=0on(0, \infty)\cross\partial G’

.

for x\in G ,

where

(0. 1) P( \frac{\partial}{\partial t},
\frac{\partial}{\partial x})=\frac{\partial}{\partial t}+\{\begin{array}{ll}0 -curlcurl 0\end{array}\}

which will be often denoted by \frac{\partial}{\partial t}+\sum_{j=1}^{3}A_{j}\frac{\partial}{\partial x_{j}} , G is an open subset of R^{a}

with C^{\infty} boundary \partial G and B(t, x) is a C^{\infty} complex 2\cross 6 matrix function
defined on R^{1}\cross\partial G which is of rank two everywhere and is constant for
|t|+|x| sufficiently large. It is assumed, as in [5], that the problem (P, B)

is reflexive, i . e. , the kernel of B(t, x) contains that of the boundary matrix
A_{\nu}(x)= \sum_{f=1}^{3}\nu_{j}(x)A_{j} at each (t, x)\in R^{1}\cross\partial G, where \nu=^{t}(\nu_{1}, \nu_{2}, \nu_{3}) is the inner

unit normal to \partial G .
When B is real we proved in [5] the following: If the frozen problem

(P, B)_{(t^{0},x^{0})} at an arbitrary boundary point (t^{0}, x^{0})\in R^{1}\cross\partial G (by this we mean
the constant coefficients problem (P, B) with B replaced by the constant
matrix B(t^{0}, x^{0}) and G by the half space \{x\in R^{3} ; \nu(x^{0})\cdot x>0\}) satisfies Kreiss’
condition (or the uniform Lopatinskii condition), then the kernel of B(t^{0}, x^{0})
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is maximally negative for A_{\nu}(x^{0}) , i . e. , it is maximally nonpositive for A_{\nu}(x^{0})

which is negative definite over the kernel of B(t^{0}, x^{0}) .
In the present article we shall show that the above fact is also true

for the case where B is not necessarily real in the following sense:
THEOREM 1. Suppose that (P, B) is reflexive and that the frozen prO-

blem (P, B)_{(t^{0},x^{0})} satisfifies Kreiss’ condition for a point (t^{0}, x^{0})\in R^{1}\cross\partial G . Then
there exist neighborhoods U(t^{0}) , U(x^{0}) in R^{1},\overline{G} respectively and a C^{\infty} non-
singular 6\cross 6 matrix function T(t, x) defifined on U(t^{0})\cross U(x^{0}) such that
T^{-1}(t, x)A_{j} T(t, x) is hermitian for each j=1,2,3 and (t, x)\in U(t^{0})\cross U(x^{0})

and that the kernel of B(t, x)T(t, x) is maximally negative for T^{-1}(t, x)

A_{\nu}(x)T(t, x) at each (t, x)\in U(t^{0})\cross(\partial G\cap U(x^{0})) .
Since the curl operator is invariant under rotations, the proof of TheO-

rem 1 may be reduced to that of the following special case.
THEOREM 2. Suppose that B is constant and G is the half space

G_{1}=\{x=(x_{1}, x_{2}, x_{3})\in R^{3} ; x_{1}>0\}

Then the statement of Theorem 1 is valid, where T(t, x) is taken to be
constant.

In mixed problems for hyperbolic systems, the existence of local sym-
metrizers such as the matrix T(t, x) in Theorem 1 is very useful even if
the system is symmetric, since it yields readily the existence and uniqueness
of the solution and the finiteness of the speed of propagation. (See for in-
stance Lax and Phillips [6], Courant and Hilbert [1], and Friedrichs and Lax
[3] ) .

It should be pointed out that, for Maxwell’s equations, Theorem 1 is
stronger than the result of Majda and Osher [7] who showed for a class
of hyperbolic systems the following: If a mixed problem satisfies the hy-
potheses of Theorem 1 at each boundary point then it is L^{2}-well posed and
an analogue to the main estimate of Kreiss [4] holds (see also (ii) and (iii)
in the Appendix below).

In proving Theorem 2 we first derive in section 2 two inequalities from
Kreiss’ condition for (P, B) (see (2. 1) and (2. 2) below) and then using a method
od developed in [5] we show in section 3 that these inequalities assure the
existence of such a constant matrix T as described in Theorem 1. We
assume in sections 1, 2 and 3 that G=G_{1} and B is constant. In section 4
we prove Theorem 1 and finally we describe in the Appendix the connection
between our result and the one in [7].
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\S 1. Notations

In order to prove Theorem 2 it is convenient to diagonalize A_{1} (which

is now the boundary matrix) as usual. Note that the matrices defined by
(0. 1) may be written as

(1. 1) A_{j}=\{\begin{array}{ll}0 M_{j}{}^{t}M_{j} 0\end{array}\} , j=1,2,3,

where

M_{1}=\{\begin{array}{l}0 00 00-1\end{array} 001 ” M_{2}=\{

0 0 -1
0 0 0
1 0 0

: M_{3}=\{\begin{array}{lll}0 1 0-1 0 00 0 0\end{array}\}

Hence we shall make the same change of the dependent variables as in [5] by

\{\begin{array}{l}EH\end{array}\}=T_{1}u

with the orthogonal 6\cross 6 matrix

(1. 2) T_{1}= \frac{1}{\sqrt{2}}[-KI00-K00I \sqrt{2}000\sqrt{2}0]00 ,

where

I=\{\begin{array}{ll}1 00 1\end{array}\} , K=\{\begin{array}{ll}0 1-1 0\end{array}\} .

Then (P, B) is transformed into the following problem:

\{

\frac{\partial}{\partial t}u+\sum_{j=1}^{3}(^{t}T_{1}A_{j}T_{1})\frac{\partial}{\partial x_{j}}u={}^{t}T_{1}f in (0, \infty)\cross G_{1-}.

BT_{1}u=0 on (0, \infty)\cross\partial G_{1} ,

u(0, x)=0 for x\in G_{1} ,

and it follows from [5], (3. 1) that

(1. 3) {}^{t}T_{1}A_{1}T_{1}=\{\begin{array}{lll}I -I 0\end{array}\}
,\cdot

{}^{t}T_{1}A_{2}T_{1}= \frac{1}{\sqrt{2}} \{\begin{array}{lll}0 -K KJ-{}^{t}K {}^{t}(KJ) 0\end{array}\} ,

{}^{t}T_{1}A_{3}T_{1}= \frac{1}{\sqrt{2}}\{

0

-I J
-IJ0] ,
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where

J=\{\begin{array}{ll}0 11 0\end{array}\}

Now the reflexiveness of (P, B) means that the right 2\cross 2 block of BT_{1} is
the zero matrix, because of the form of {}^{t}T_{1}A_{1}T_{1} . Furthermore if (P, B)
satisfies Hersh’s condition which is implied by Kreiss’ condition then the left
2\cross 2 block of BT_{1} is nonsingular (see [5], Lemma 2. 10). Thus we may
assume in what follows that B is of the form:
(1. 4) B=[LS, 0]{}^{t}T_{1} ,

where S is a 2\cross 2 matrix, so that the boundary condition B \{\begin{array}{l}EH\end{array}\}=0 becomes

(1. 5) \{\begin{array}{ll}E_{2}+ H_{3}E_{3}- H_{2}\end{array}\}+S \{\begin{array}{l}H_{2}+E_{3}H_{3}-E_{2}\end{array}\}=0 ,

where we have set E=^{t}( E_{1} , E_{2} , E3), H={}^{t}(H_{1}, H_{2}, H_{3}) .

\S 2. Necessary conditions for (P, B) to satisfy Kreiss’ condition

In this and the next sections we assume that B is a constant matrix
of the form (1. 4). The purpose of the present section is then to prove

PROPOSITION 2. 1. If (P, B) satisfifies Kreiss’ condition, the following
two inequalities hold .

(2. 1) |\det S|<1

(2. 2) D\equiv 2 det (I-S^{*}S)+|a|^{2}+|b|^{2}-|a^{2}+b^{2}|>0 ,

where

(2. 3) a=trS, b=tr(SK) .
and I, K are the matrices in (1. 2).

Let us recall that Kreiss’ condition for (P, B) means
(2. 4) R(\tau, \sigma)\neq 0 for all (\tau, \sigma)\in(\overline{C}_{-}\cross R^{2})\backslash 0 :

where R(\tau, \sigma) is a Lopatinskii determinant of (P, B) , \tau or \sigma is the covariable
of t or (x_{2}, x_{3}) respectively, C_{-} denotes the set of complex numbers with
negative imaginary parts and \overline{\rho_{y}}- its closure. For convenience we shall denote
\sigma by (\sigma_{1}, \sigma_{2}) which is denoted in [5] by (\sigma_{2}, \sigma_{3}) . Then from Lemma 3. 1 in
that paper we have
(2. 5) R(\tau, \sigma)= (1- det S) \tau^{2}-(1+\det S)\tau\lambda^{+}(\tau, \sigma)-\Phi(\sigma)/2

for (\tau, \sigma)\in C_{-}\cross(R^{2}\backslash 0)
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Here
\Phi(\sigma)= (1- det S) |\sigma|^{2}-c(\sigma_{1}^{2}-\sigma_{2}^{2})+2d\sigma_{1}\sigma_{2} ,

(2. 6) c=tr(SJ) , d=tr(SKJ) ,

J is the matrix in (1. 3) and \lambda^{+}(\tau, \sigma) is the root of the equation \tau^{2}-\lambda^{2}-|\sigma|^{2}=0

in \lambda with positive imaginary part for \tau\in C_{-} , i . e. ,

(2. 7) \lambda^{+}(\tau, \sigma)=i\sqrt{|\sigma|^{2}-\tau^{2}} for \tau\in C_{-} ,

where \sqrt{\zeta} denotes the branch of the square roots of \acute{\acute{\zeta}} such that \sqrt\overline{1}=1 .

Since |\sigma|^{2}-\tau^{2}\not\in(-\infty, 0] for \tau\in C_{-} , we see that for fixed \sigma\in R^{2}\backslash 0 , \lambda^{+}(\tau, \sigma) is
an analytic function of \tau\in C_{-} and is extended up to \overline{C}_{-} by continuity, hence
so is R(\tau, \sigma) .

In what follows we shall denote \sigma with \sigma\in R^{2} and |\sigma|=1 by \xi , and
the unit circle in R^{2} by \Sigma .

Lemma 2. 2. Suppose that (2. 4) holds. Then for every \xi\in\Sigma the func-
tion defifined by

(2. 8) \psi(\xi)=R(|\xi|, \xi)

does not vanish and the polynomial in z defifined by

(2. 9) R_{1}(z, \xi)=\psi(\xi)z^{2}-i(1+\det S)z-(1- det S-\psi(\xi))

has all its zeros in the open half plane Im z>0 , i. e. ,

(2. 10) R_{1}(z, \xi)\neq 0 for all z\in\overline{C}_{-}

PROOF. It suffices to prove (2. 10) Let \xi\in\Sigma be fixed arbitrarily. For
\tau\in\overline{C}_{-}\backslash \{1, -1\} we set

(2. 11) z=\tau/\sqrt{1-\tau^{2}} ,

where \Gamma is the same branch as in (2. 7). Then we have from (2. 5), (2. 7_{/}^{\backslash }

and (2. 9)
(1-\tau^{2})^{-1}R(\tau, \xi)=R_{1}(z, \xi) .

since (2. 8) and (2. 5) imply

(2. 12) \psi(\xi)=1- det S-\Phi(\xi)/2

Therefore to derive (2. 10) from (2. 4) with \sigma=\xi we must only show that the
mapping \tauarrow z defined by (2. 11) is a surjection from \overline{C}_{-}\backslash \{1, -1\} onto \overline{C}_{-}\backslash \{-i\} ,

since R_{1} (– i, \xi) =-2\neq 0 by (2. 9).

We claim that the relation

(2. 13) \tau/\sqrt{1-\tau^{2}}=-i\sqrt{\tau^{2}/(\tau^{2}-1)}
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holds for \tau\in C_{-} and hence for \tau\in\overline{0,}\backslash \{1, -1\} by continuity. In fact, both
the sides are analytic in C_{-} and coincide on a half line in it, say, on the
negative imaginary line, so that they coincide on C_{-} . We now see from
(2. 13) that (2. 11) is a mapping from \overline{C}_{-}\backslash \{1, -1\} into \overline{C}_{-}\backslash \{-i\} . To establish
that it is also surjective we note that (2. 11) implies

\tau^{2}=(z^{2}+|z|^{4})/|1+z^{2}|^{2} .
We then observe that C_{-} is mapped onto C_{-}\backslash {z ; Re z=0 and Im z\leqq-1}.
It is not hard to see that (-1, 1) is done onto the real line. Finally we
find from (2. 13) that (1, \infty) is mapped onto the interval on the imaginary
line such that Im z<-1 , which completes the proof.

In order to eliminate z from (2. 10) we use a method due to Hermite,
as in [8].

Lemma 2. 3. Let f(z) be a quadratic polynomial. Then the equation
f(z)=0 has all its roots in the open half plane Im z>0 if and only if the
hermitian 2\cross 2 matrix K(f) defifined by

(2. 14) \frac{1}{i}\frac{f(x)\overline{f(y})-\overline{f(x})f(y)}{x-y}=(y, 1)K(f)
(\begin{array}{l}x1\end{array})

j x, y\in R^{1}
,\cdot

is positive defifinite.
For the proof see for instance [2], p. 62. Higher degree cases are also

treated there. But in our case letting the leading coefficient of f(z) be 1
and factorizing it as f(z)=(z-\alpha)(z-\beta) , we find from (2. 13) that

K(f)=2 Im \{\begin{array}{ll}\alpha+\beta -\alpha\beta-\alpha\beta (\overline{\alpha}+\beta)\alpha\beta\end{array}\} :

det K(f)=4 (Im \alpha) (Im \beta) (|\alpha|^{2}+|\beta|^{2}-2{\rm Re}(\alpha\beta))

Therefore it is not hard to prove Lemma 2. 3.
Lemma 2. 4. Let \xi\in\Sigma . If \psi(\xi)\neq 0 and (2. 10) holds, the hermitian

2\cross 2 matrix defifined by

(2. 15) H(\xi)=[_{-{\rm Im}(\psi(\xi)+\overline{\psi(\xi)}\det S)}^{{\rm Re}(\psi(\xi)+\overline{\psi(\xi)}\det S)} 1-| \det S|^{2}-{\rm Re}(\psi(\xi)+\det S)^{]}-{\rm Im}(\psi(\xi)+\overline{\psi(\xi)}\det\frac{S)}{\psi(\xi)}

is positive defifinite.
PROOF. For convenience set

(2. 16) p=-i(1+\det S) , q(\xi)=-(1- det S-\psi(\xi))-.
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We then find that the matrix K(R_{1})(\xi) defined by (2. 14) with f(z)=R_{1}(z, \xi)

is as follows :

K(R_{1})(\xi)=2{\rm Im} \{\begin{array}{ll}\psi\overline{p} \psi\overline{q}\psi\overline{q} p\overline{q}\end{array}\} (\xi) .

Hence by (2. 15) and (2. 16) we obtain

K(R_{1})(\xi)=2H(\xi) .

The assertion now follows from Lemma 2. 3.
In order to derive (2. 1) and (2. 2) by eliminating \xi from the conclusion

of Lemma 2. 4 we use the following elementary facts for complex numbers.
Lemma 2. 5. Let \alpha, \beta, \gamma and \delta be complex numbers. Then:

(2. 17) (|\alpha|^{2}+|\beta|^{2})^{2}-|\alpha^{2}+\beta^{2}|^{2}=4({\rm Im}(\alpha\overline{\beta}))2 .

(2. 18) |\alpha^{2}+\beta^{2}|^{2}-|\gamma^{2}+\delta^{2}|^{2}=2{\rm Re}((\gamma^{2}+\delta^{2})\overline{z})+|z|^{2}

=2 Re ((\alpha^{2}+\beta^{2})\overline{z})-|z|^{2} ,

if z=\alpha^{2}+\beta^{2}-\gamma^{2}-\delta^{2} .

(2. 19) () \in\Sigma\max_{X,Y}|\alpha X-\beta Y|^{2}=\frac{1}{2}(|\alpha|^{2}+|\beta|^{2}+|\alpha^{2}+\beta^{2}|)t

PROOF. Since the left side of (2. 17) is equal to

2 ( |\alpha|^{2}|\beta|^{2}- Re (\alpha^{2}\betarightarrow-2))=2(|\alpha\vec{\overline{\beta}}|^{2}- Re (\alpha\dot{\beta})^{2}) ,

using the identity |\gamma|^{2}- Re \gamma^{2}=2 (Im \gamma)^{2} we obtain (2. 17)

Next we shall prove (2. 18). Since it follows from the definition of z
that

Re \{(2(\gamma^{2}+\delta^{2})+z)\overline{z}\}=|\alpha^{2}+\beta^{2}|^{2}-|\gamma^{2}+\delta^{2}|^{2} ,

we obtain the first equality. The second follows from the relation

2 (\gamma^{2}+\delta^{2})+z=2(\alpha^{2}+\beta^{2})-z .
Finally we shall prove (2. 19). Let (X, Y)\in\Sigma and set X=\cos\theta , Y=\sin\theta .

Then we have

|\alpha X-\beta Y|^{2}

= \frac{1}{2}\{|\alpha|^{2}+|\beta|^{2}+(|\alpha|^{2}-|\beta|^{2}) cos 2\theta-2({\rm Re}(\alpha\dot{\beta})) sin 2\theta\}

Therefore using the addition formulas for trigonometric functions we find that
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() \in\Sigma\max_{X,Y}|\alpha X-\beta Y|^{2}=\frac{1}{2}\{|\alpha|^{2}+|\beta|^{2}+\mapsto(|\alpha|^{2}-|\beta|^{2})^{2}+4({\rm Re}(\alpha\overline{\beta}))^{2}\}

Moreover the last term in the brackets is equal to |\alpha^{2}+\beta^{2}| . In fact, since
|\alpha\beta|==|\alpha\beta| we have

(|\alpha|^{2}-|\beta|^{2})^{2}+4({\rm Re}(\alpha\overline{\dot{\beta}}))^{2}=(|\alpha|^{2}+|\beta|^{2})^{2}-4({\rm Im}(\alpha^{=}\beta))^{2}’\wedge

the right side of which is equal to |\alpha^{2}+\beta^{2}|^{2} by (2. 17). Thus we complete
the proof.

Lemma 2. 6. Let H(\xi) be positive defifinite for every \xi\in\Sigma . Then (2. 1)
and (2. 2) AoZd.

PROOF. Since each of the diagonal components of H(\xi) is positive by
hypothesis, we obtain (2. 1) by (2. 15). Moreover for every \xi\in\Sigma we have
det H(\xi)>0 , which may be written as

(2. 20) 2 (1-|\det S|^{2}) Re (2 ( \psi(\xi)+\overline{\psi(\xi)} det S) )-|2(\psi(\xi)+\overline{\psi(\xi)} det S)|^{2}>0

In order to apply (2. 19) to (2. 20) let us now put

X={\rm Re}(\xi_{1}+i\xi_{2})^{2}=\xi_{1}^{2}-\xi_{2}^{2} . Y={\rm Im}(\xi_{1}+i\xi_{2})^{2}=2\xi_{1}\xi_{2} .

Then from (2. 12) and the definition of \Phi in (2. 5) we have for \xi\in\Sigma

2\psi(\xi)=1- det S+cX-dY ,

so that

2 ( \psi+\overline{\psi} det S) =1-|\det S|^{2}+ ( c+\overline{c} det S) X- (d+\overline{d} det S) Y

Hence setting

(2. 21) \alpha=c+\overline{c} det S. \beta=d+\overline{d} det S

we find that (2. 20) becomes

(1-|\det S|^{2})^{2}-|\alpha X-\beta Y|^{2}>01

Therefore using (2. 19) we obtain

(2. 22) 2 (1-|\det S|^{2})^{2}-(|\alpha|^{2}+|\beta|^{2}+|\alpha^{2}+\beta^{2}|)>0 ,

since (X, Y) revolves twice on \Sigma as \xi does once. Thus the proof will be
complete if we prove the following

Lemma 2. 7. (2. 1) and (2. 22) imply (2. 2). ffere \alpha and \beta are the num-
bers defifined by (2. 21).

PROOF. We first claim that

(2. 23) 4 det S=a^{2}+b^{2}-c^{2}-d^{2} ,
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(2. 24) D=2(1+|\det S|^{2})-|c|^{2}-|d|^{2}-|a^{2}+b^{2}|

In fact, the former follows from (2. 3) and (2. 6) (see also (3. 10) below) and
the latter from the definition of D in (2. 2) and (3. 6) below.

Now transpose |\alpha^{2}+\beta^{2}| in (2. 22), sequare both the resulting sides and
apply (2. 17. Then we obtain

(2. 25) 4 (1-|\det S|^{2})^{4}-4(1-|\det S|^{2})^{2}(|\alpha|^{2}+|\beta|^{2})+4({\rm Im}(\alpha_{\downarrow}\overline{8}))^{2}>0

Moreover from (2. 21) we have
\langle2. 26) Im (\alpha\overline{\beta})=(1-|\det S|^{2}) Im (c\overline{d}) ,

\langle 2. 27) |\alpha|^{2}+|\beta|^{2}=(1+|\det S|^{2})(|c|^{2}+|d|^{2})+2 Re ((c^{2}+d^{2})\overline{\det S}) .

The former and (2. 1) imply that (2. 25) is equivalent to

(2. 28) 4 (1-|\det S|^{2})^{2}-4(|\alpha|^{2}+|\beta|^{2})+4({\rm Im}(c\overline{d}))^{2}>0 .

Furthermore from (2. 23) and the first half of (2. 18) we have

-8 Re ((c^{2}+d^{2})\overline{\det S})=-|a^{2}+b^{2}|^{2}+|c^{2}+d^{2}|^{2}+16|\det S|^{2} .
Therefore inserting (2. 27) into (2. 28) and using (2. 17) we obtain

D(D+2|a^{2}+b^{2}|)>0,\cdot

since (2. 24) implies

4 (1+|\det S|^{2})^{2}-4(1+|\det S|^{2})(|c|^{2}+|d|^{2})+(|c|^{2}+|d|^{2})^{2}

-|a^{2}+b^{2}|^{2}=D(D+2|a^{2}+b^{2}|)

Thus it suffices to prove

(2. 29) D+2|a^{2}+b^{2}|>01

From (2. 22) we have

\langle 2. 30) 2 (1-|\det S|^{2})^{2}>|\alpha|^{2}+|\beta|^{2} .

On the other hand (2. 23) and the second half of (2. 18) imply

2 Re ((c^{2}+d^{2})\overline{\det S})=2 Re ((a^{2}+b^{2})\overline{\det S})-8|\det S|^{2} .
Substituting this into (2. 27) and using (2. 24) we find that (2. 30) is equivalent
to

(1+|\det S|^{2})(D+2|a^{2}+b^{2}|)>(1+|\det S|^{2})|a^{2}+b^{2}|+2 Re ((a^{2}+b^{2})\overline{\det S}) .
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Thus we obtain (2. 29), since the right side is not less than |a^{2}+b^{2}|(1-

|\det S|)^{2} . This completes the proof.
Now Proposition 2. 1 follows immediately from Lemmas 2. 2, 2. 4 and 2. 6.

\S 3. Construction of symmetrizers for constant coefficients
problems

In this section we shall complete the proof of Theorem 2. In doing
so an essential role will be played by the following

LEMMA 3. 1. There exists a nonsingular 6\cross 6 matrix T. such that
T^{-1}A_{j}T is hermitian for j=1,2,3 and the kernel of BT is maximally
negative for T^{-1}A_{1}T, if and only if the hermitian matrix defifined by

(3. 1) Q(y)=I-S^{*}S+iy(K+S^{*}KS)

is positive defifinite for some real number y\in(-1,1) . In this case, such
a matrix T may be given by

(3. 2) T=T_{1}W, W=\{\begin{array}{lll}W_{1} W_{2} W_{1}\end{array}\} ,

where

W_{1}=(T_{0})^{*}[_{0\sqrt{1-y}}^{\sqrt{1+y}0}]T_{0} , W_{2}=(T_{0})^{*}[_{0\sqrt{1+y}}^{\sqrt\overline{1-y}0}]T_{0}

and T_{0}=(I+iJ)/\sqrt{2}r Here T_{1} , I, J and K are the matrices in (1. 2) or (1. 3).

In particular, the kernel of B is maximally negative for A_{1} if and only

if Q(0)=I-S^{*}S is positive defifinite.
For the proof see [5], Lemma 3. 2, its proof and the end of that of

part (a) of Theorem.
In order to clarify the relation between the matrix Q(y) and conditions

(2. 1) and (2. 2) we now set

det Q(y)=py^{2}+qy+r ,
(3. 3)

tr Q(y)=my+n ,

and represent these coefficients in terms of the matrix S.

Lemma 3. 2.

(3. 4) p=-det (K+S^{*}KS)=-(1+|\det S|^{2})-(|a|^{2}+|b|^{2}-|c|^{2}-|d|^{2})/2 ,

where c and d are the quantities defifined by (2. 6).
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(3. 5) q=i tr ((K+S^{*}KS) adj (I-S^{*}S))=2 Im (a\overline{b}) .

where for a square matrix A we denote {}^{t}(cofA) by adj A.

(3. 6) r=\det(I-S^{*}S)=1+|\det S|^{2}-(|a|^{2}+|b|^{2}+|c|^{2}+|d|^{2})/2t

(3. 7) m=i tr (S^{*}KS)={\rm Im}(a\overline{b}-c\overline{d}) .

(3. 8) n=tr(I-S^{*}S)=2-(|a|^{2}+|b|^{2}+|c|^{2}+|d|^{2})/2 .
PROOF. The first equalites of (3. 7) and (3. 8) follow immediately from

(3. 1) and (3. 3), and those of (3. 4), (3. 5) and (3. 6) may be obtained by using
also the following identity for general 2\cross 2 matrices A and B :

(3. 9) det (A+B)=\det A+\det B+tr (B adj A)

We shall now derive the second equalities. For convenience set S=
[s_{ij} ; i\downarrow 1,2, jarrow 1,2] . Then (2. 3) and (2. 6) imply that

a=s_{11}+s_{22} , b=s_{21}-s_{12} ,

d=s_{11}-s_{22} , c=s_{21}+s_{12} ,

i . e. ,

(3. 10) S=\{\begin{array}{ll}s_{11} s_{12}s_{21} s_{22}\end{array}\} = \frac{1}{2} \{\begin{array}{ll}a+d c-bc+b a-d\end{array}\} .

Hence we have

(3. 11) S^{*}S=\{\begin{array}{ll}|s_{11}|^{2}+|s_{21}|^{2} \overline{s}_{11}s_{12}+\overline{s}_{21}s_{22}s_{11}\overline{s}_{12}+s_{21}\overline{s}_{22} |s_{12}|^{2}+|s_{22}|^{2}\end{array}\}

and

(3. 12) S^{*}KS=\{\begin{array}{ll}-2iIm(s_{11}\overline{s}_{21}) \overline{s}_{11}s_{22}-\overline{s}_{21}s_{12}-s_{11}\overline{s}_{22}+s_{21}\overline{s}_{12} -2iIm(s_{12}\overline{s}_{22})\end{array}\}

From (3. 10) and (3. 11) we obtain
(3. 13) tr (S^{*}S)=(|a|^{2}+|b|^{2}+|c|^{2}+|d|^{2})/2 ,

which implies (3. 8). Similarly (3. 10) and (3. 12) give (3. 7). Since (3. 9)
yields

det (I-S^{*}S)=\det I+\det(S^{*}S)- tr (S^{*}S) ,

we obtain (3. 6) by (3. 13). To derive (3. 4) we note that adj K=-K and
hence (3. 9) yields

det (K+S^{*}KS)=\det K+\det(S^{*}KS)- tr (S^{*}KSK) .
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Moreover it follows from (3. 12) that

tr (S^{*}KSK)=-2 Re (s_{11}\overline{s}_{22}-s_{21}\overline{s}_{12}) .

Therefore using det K=1 and (3. 10) we obtain (3. 4). Finally we shall derive
(3. 5). Since

adj (I-S^{*}S)=I- adj (S^{*}S) ,

the first half of (3. 5) implies

(3. 14) q=i tr (K+S^{*}KS-K adj (S^{*}S)-S^{*}KS adj (S^{*}S))

Now (3. 9) with A=S^{*}S and B=S^{*}KS gives

tr (S^{*}\prime KS adj (S^{*}S))=0 ,

since det (I+K)=2 . Moreover from (3. 12) we have

adj (S^{*}S)=\{\begin{array}{ll}|s_{12}|^{2}+|s_{22}|^{2} -(\overline{s}_{11}s_{12}+\overline{s}_{21}s_{22})-(s_{11}\overline{s}_{12}+s_{21}\overline{s}_{22}) |s_{11}|^{2}+|s_{21}|^{2}\end{array}\},\cdot

which yields

tr (K adj (S^{*}S))=-2i Im (s_{11}\overline{s}_{12}+s_{21}\overline{s}_{22})

=i Im (a\overline{b}+c\overline{d}) .

Here the second equality is due to (3. 10). Thus we obtain (3. 5) by (3. 7)

and (3. 14). The proof is complete.
A sufficient condition for Q(y) to be positive definite for some y\in(-1,1)

will be given by the following two lemmas.
Lemma 3. 3. Suppose that (2. 2) holds. Then the function det Q(y) is

strictly conave and takes on its maximum at y=-q/2p\in(-1,1) . Moreover
the maximum value is positive.

PROOF. In view of (3. 3) it suffices to prove the following three ine-
quah.ties :

(3. 15) p<0 .

(3. 16) |q|<-2p .
(3. 17) q^{2}-4pr>0 .
From (3. 4) and (2. 24) we have

(3. 18) -2p=D+|a^{2}+b^{2}|+|a|^{2}+|b|^{2} ,

which implies (3. 15). Next using (2. 17) we have from (3. 5)
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(3. 19) q^{2}=(|a|^{2}+|b|^{2})^{2}-|a^{2}+b^{2}|^{2} .
Hence by (3. 18) we obtain

(2p)^{2}-q^{2}=(D+|a^{2}+b^{2}|)(D+|a^{2}+b^{2}|+2|a|^{2}+2|b|^{2})+|a^{2}+b^{2}|_{=}^{2}

This together with (3. 15) yields (3. 16). Finally we shall derive (3. 17). Since
(3. 6) and (2. 24) imply

2r=D+|a^{2}+b^{2}|-(|a|^{2}+|b|^{2}) ,

it follows from (3. 18) that

-4pr=(D+|a^{2}+b^{2}|)^{2}-(|a|^{2}+|b|^{2})^{2} .

Therefore from (3. 19) we have

q^{2}-4pr=D(D+2|a^{2}+b^{2}|) ,

which implies (3. 17).

Lemma 3. 4. Suppose that (2. 1) and (2. 2) hold. Then tr Q(y)>\det Q(y)

at y=-q/2p.
PROOF. Note that (2. 2) implies (3. 15). From (3. 3) we have

det Q(-q/2p)=(q^{2}-4pr)/(-4p) ,

tr Q (-q/2p)=(2mq-4np)/(-4p) .
Moreover, since 2m-q=-2 Im (c\overline{d}) and n-r=1-|\det S|^{2} according to
Lemma 3. 2, we have

2mq-4np-(q^{2}-4pr)=2\{-2p(1-|\det S|^{2})-q Im (c\overline{d})\}

Therefore in view of (2. 1) and (3. 16) it suffices to prove

(3. 20) (1-|\det S|^{2})2>({\rm Im}(c\overline{d}))^{2}

Since (2. 17) implies

4 ({\rm Im}(c\overline{d}))^{2}=(|c|^{2}+|d|^{2})^{2}-|c^{2}+d^{2}|^{2}

and since (2. 2) and (2. 24) yield

(|c|^{2}+|d|^{2})^{2}<4(1+|\det S|^{2})^{2}-4(1+|\det S|^{2})|a^{2}+b^{2}|+|a^{2}+b^{2}|^{2} ,

we have

4 (1-|\det S|^{2})^{2}-4({\rm Im}(c\overline{d}))^{2}

>4(1+|\det S|^{2})|a^{2}+b^{2}|+|c^{2}+d^{2}|^{2}-|a^{2}+b^{2}|^{2}-16|\det S|^{2} .
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Moreover the right side except for the first term is equal to -8 Re ((a^{2}+

b^{2}) det \overline{S}) according to (2. 1 ) and (2. 23). Thus we obtain

(1-|\det S|^{2})^{2}-({\rm Im}(c\overline{d}))^{2}>(1+|\det S|^{2})|a^{2}+b^{2}|-2 Re ((a^{2}+b^{2}) det \overline{S}) :

which yields (3. 20). This completes the proof.
Now theorem 2 is a direct consequence of Proposition 2. 1, Lemmas

3. 1, 3. 3 and 3. 4.
REMARK. We shall give an interpretation of conditions (2. 1) and (2. 2).

It follows from (3. 6) and (3. 8) that (2. 1) is equivalent to

(3. 21) tr (I-S^{*}S)>\det(I-S^{*}S)

Now suppose the ratio between a and b is real, i . e. , that Im (a\overline{b})=0 . Then
by (2. 17) we have D=2\det(I-S^{*}S) , so that (2. 2) is equivalent to the ine-
quah.ty det (I-S^{*}S)>0 . Thus (2. 1) and (2. 2) imply that the kernel of B is
maximally negative for A_{1} if Im (a\overline{b})=0 , according to (3. 21) and Lemma 3. 1.

\S 4. Construction of local symmetrizers for variable coefficients
problems

The purpose of this section is to prove Theorem 1. Let x^{0} be an ar-
bitrary point of \partial G . Then there exists a C^{\infty} orthogonal 3\cross 3 matrix func-
tion \theta(x) defined on a neighbourhood U(x^{0}) in \overline{G} such that

(4. 1) det \theta(x)=1 for all x\in U(x^{0})

and
(4. 2) {}^{t}\theta(x)\nu(x)={}^{t}(1,0,0) for all x\in\partial G\cap U(x^{0}) .

Using this matrix \theta(x) we shall reduce the frozen problem (P, B)_{(t,x)} to the
case where G=G_{1} and B is essentially of the form (1. 4) (see (4. 8) and (4. 9)
below) and then apply the arguments employed in the proof of Theorem
2. To do so we need the following lemma which is a representation of the
rotational invariance of the curl operator.

Lemma 4. 1. Let

(4. 3) \theta(x)=\{\begin{array}{lll}\theta_{11} \theta_{12} \theta_{13}\theta_{21} \theta_{22} \theta_{23}\theta_{31} \theta_{32} \theta_{33}\end{array}\}(x) .

Then the relations

(4. 4)
t

\{\theta(x) \theta(x)\} A_{i} \{\theta(x) \theta(x)\}=\sum_{j=1}^{3}\theta_{ij}(x)A_{j} , i=1,2,3



322 K. Kubota and T. Ohkubo

hold for all x\in U(x^{0}) . In particular

(4. 5)
t

\{\theta(x) \theta(x)\} A_{\nu}(x) \{\theta(x) \theta(x)\}=A_{1} for all x\in\partial G\cap U(x^{0}) .

PROOF. Since (4. 5) is a direct consequence of (4. 2), (4. 4) and the defi-
nition of A_{\nu} , we shall prove only (4. 4). In view of (1. 1) it suffices to derive

(4. 6) {}^{t}\theta M_{i} \theta=\sum_{j=1}^{3}\theta_{ij}M_{j} , i=1,2, 3 \tau

Since curl u=\nabla\cross u by definition, we have from (0. 1) and (1. 1)

(4. 7) \sum_{j=1}^{3}M_{j}\sigma_{j}u=-{}^{t}(\sigma_{1}, \sigma_{2}, \sigma_{3})\cross u

for all \sigma={}^{t}(\sigma_{1}, \sigma_{2}, \sigma_{3})\in R^{3} and all u\in C^{3} , which implies

M_{i}u=-e_{i}\cross u , i=1,2, 3

where \{e_{1}, e_{2}, e_{3}\} is the canonical basis for R^{3} . Therefore according to (4. 1)
and the rotational invariance of the vector product we have

M_{i}\theta u=-\theta((^{t}\theta e_{i})\cross u)j i=1,2,3

Thus we obtain the desired relations (4. 6) by (4. 3) and (4. 7) since u is
arbitrary.

Lemma 4. 2. Suppose that (P, B) is reflexive and that the frozen prO-
blem (P, B)_{(t^{0},x^{0})} satisfifies Hersh’s condition for a point (t^{0}, x^{0})\in R^{1}\cross\partial G . Then
we may assume that B is of the form:

(4. 8) B(t, x)=[LS(t, x), 0]{}^{t}T_{1}t
\{\theta(x) \theta(x)\}

for (t, x) near (t^{0}, x^{0}) , where S(t, x) is a 2\cross 2 matrix function and T_{1} is the
matrix defifined by (1. 2).

PROOF. It suffices to show that the right 2\cross 2 block of B(t,x) \{\theta(x) \theta(x)\} T_{1}

is equal to the zero matrix for (t, x) near (t^{0}, x^{0}) and the left 2\cross 2 block is
nonsingular at (t, x)=(t^{0}, x^{0}) .

Let us consider the frozen problem (P9B) (t^{0},x^{0}) and transform the inde-
pendent variable x into \tilde{x} by x=\theta(x^{0})\tilde{x} and the dependent variables E, H
into \tilde{E},\tilde{H} by E(t, x)=\theta(x^{0})\tilde{E}(t,\tilde{x}) , H(t, x)=\theta(x^{0})\tilde{H}(t,\tilde{x}) respectively. Then
the normal \nu(x^{0}) is transformed into {}^{t}\theta(x^{0})\nu(x^{0})={}^{t}(1,0,0) , so that according
to (4. 4) and the orthogonality of \theta(x^{0})(P, B)_{(t^{0},x^{0})} is done into the following
problem :
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(4. 9)

’

P( \frac{\partial}{\partial t}, \frac{\partial}{\partial\tilde{x}}) \{\begin{array}{l}\tilde{E}(t,\tilde{x})\tilde{H}(t,\tilde{x})\end{array}\}=t\{\theta(x^{0}) \theta(x^{0})\}f(t,
\theta(x^{0})\tilde{x}) in (0, \infty)\cross G_{1} ,

(B(t^{0}, x^{0}) \{\theta(x^{0}) \theta(x^{0})\} ) \{\begin{array}{l}\tilde{E}(t,\tilde{x})\tilde{H}(t,\tilde{x})\end{array}\}=0 on (0, \infty)\cross\partial G_{1} ,

. \tilde{E}(0,\tilde{x})=\tilde{H}(0,\tilde{x})=0 for \tilde{x}\in G_{1}\tau

Since the zeros of the Lopatinskii determinant are invariant under non-
singular transformations of the dependent variables, the problem (4. 9) sat-
isfies Hersh’s condition by hypothesis. Moreover according to (4. 5) the
reflexiveness of (P, B)_{(t^{0},x^{0})} implies that of (4. 9), and the same is still valid
with (t^{0}, x^{0}) replaced by (t, x)\in R^{1}\cross(\partial G\cap U(x^{0})) . Therefore the procedure

which derived (1. 4) shows that B(t, x) \{\theta(x) \theta(x)\} T_{1} has the desired pr0-

perties.

PROOF OF THEOREM 1. According to Lemma 4.2 we may assume B
to be of the form (4. 8). Since (4. 9) satisfies Kreiss’ condition by hypothesis
as we have seen above, applying Proposition 2. 1 to it we obtain (2. 1) and
(3. 2) with S=S(t, x) for (t, x)=(t^{0}, x^{0}) and hence by continity for all (t, x)\in
U(t^{0})\cross(\partial G\cap U(x^{0})) . Hereafter let U(t^{0}) , U(x^{0}) denote appropriate neighbor-
hoods of t^{0} , x^{0} in R^{1},\overline{G} respectively.

We now extend S(t, x) up to U(t^{0})\cross U(x^{0}) to be sufficiently smooth. Note
that (2. 1) and (2. 2) still hold there. Let p(t, x) and q(t, x) be the functions
defined by (3. 18) and (3. 5) with S=S(t, x) respectively. Moreover for every
(t, x)\in U(t^{0})\cross U(x^{0}) let us define a 6\cross 6 matrix T(t, x) as follows:

(4. 10) T(t, x)=\{\theta(x) \theta(x)\} T_{1}W(t, x) ,

where W(t, x) is the matrix in (3. 2) with y=-(q/2p)(t, x) . Then (2. 2) and
(3. 16) imply |(q/2p)(t, x)|<1 for all (t, x)\in U(t^{0})\cross U(x^{0}) , so that T(t, x) and
T^{-1}(t, x) are sufficiently smooth. Moreover according to (4. 10), (4. 4) and
Lemma 3. 1 we see that T^{-1}(t, x)A_{j}T(t, x) is hermitian for each j=1,2, 3
and (t, x)\in U(t^{0})\cross U(x^{0}) . Finally we find from (4. 8), (4. 10), (4. 5) and Lemma
3. 1 that the kernel of (BT) (t, x) is maximally negative for (T^{-1}A_{\nu}T)(t, x)

at each (t, x)\in U(t^{0})\cross(\partial G\cap U(x^{0})) . Thus we have proved Theorem 1.

REMARK. The boundary condition B \{\begin{array}{l}EH\end{array}\}=0 with (4. 8) may be writ-

ten as

(4. 11) E-(E\cdot\nu)\nu-\nu\cross H+\theta \{\begin{array}{ll}0 00 S\end{array}\}t\theta(H-(H\cdot\nu)\nu-\nu\cross E)=0 .
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In fact, multiplying this from left by {}^{t}\theta we find from (4. 1), (4. 2) and
the rotational invariance of the vector porduct that (4. 11) is equivalent to

(1. 5) with E and H replaced by {}^{t}\theta E and {}^{t}\theta H respectively. Therefore the
desired conclusion follows easily. This fact will be used at (ii) in the Ap-
pendix.

Appendix

(i). The converse of the statement of Theorem 1 is also valid, that is,

if there exists such a matrix T(t, x) as described in the theorem, the frozen
problem (P, B)_{(t,x)} is reflexive and satisfies Kreiss’ condition at each (t, x)\in

U(x^{0})\cross(\partial G\cap U(x^{0})) . This can be proved using simple modifications of the
arguments in [4], as pointed out in [7], p. 624. (For the reflexiveness see
[6] ) . It may be also established by following conversely the proof of TheO-
rem 2 with (P, B) replaced by (4. 9).

(ii). It is showed in [7] that all local boundary conditions for the system
P such that the resulting mixed problems are reflexive may be expressed
invariantly in the form :

(A. 1) \pi_{+}\{\begin{array}{l}EH\end{array}\} +S\pi_{-}\{\begin{array}{l}EH\end{array}\} =0 ,

where

\pi_{+}\{\begin{array}{l}EH\end{array}\} =\{\begin{array}{l}E-(E\cdot\nu)\nu-\nu\cross HH-(H\cdot\nu)\nu+\nu\cross E\end{array}\} ,

(A. 2)
\pi_{-}\{\begin{array}{l}EH\end{array}\} =\{\begin{array}{l}E-(E\cdot\nu)\nu+\nu\cross HH-(H\cdot\nu)\nu-\nu\cross E\end{array}\}

and \tilde{S}=S(t, x) is a 6\cross 6 matrix function satisfying

(A. 3) [^{t}\nu, 0]\tilde{S}\pi_{-}=0 , [0, ^{t}\nu] S\sim\pi_{-}=0

and

(A. 4) \pi_{-}\tilde{S}\pi_{-}=0

(See [7], p. 627 and [9], p. 432).
We shall show that the boundary condition (A. 1) with (A. 3) and (A. 4)

can be reduced to (4. 11). To do it we may assume G to be G_{1} and B to

be constant so that (4. 11) coincides with (1.5), according to the argument

which derived (4. 9). Then, since \nu={}^{t}(1,0,0) , (A. 2) becomes



On well posedness of mixed problems for Maxwell’s equations II 325

(A. 5) \pi_{+}\{\begin{array}{l}EH\end{array}\} =[_{H_{2}-E_{3}}^{E_{2}+H_{3}}E_{3}-H_{2}\uparrow H_{3}+E_{2}00, \pi_{-}\{\begin{array}{l}EH\end{array}\} =[E_{2}E_{3}+0H_{2\rceil}-H_{3}H_{3}-E_{2}H_{2}+E_{3}0 .

Note that \pi_{+} or \pi_{-} may be regarded as the following symmetric 6\cross 6 matrix

[0, e_{2}+e_{6}, e_{3}-e_{5},0, - e_{3}+e_{5}, e_{2}+e_{6}]

or

[0, e_{2}-e_{6}, e_{3}+e_{5},0, e_{3}+e_{5}, -e_{2}+e_{6}]

respectively, where \{e_{1}, \cdots, e_{6}\} is the canonical basis for R^{6} . Therefore, setting

\tilde{S}=[\tilde{s}_{ij} ; i\downarrow 1, \cdots, 6, jarrow 1, \cdots, 6]
,\cdot

we find that (A. 3) may be written as
\tilde{s}_{12}-\tilde{s}_{16}=\tilde{s}_{13}+\tilde{s}_{15}=0 :(A. 6)
\tilde{s}_{42}-\tilde{s}_{46}=\tilde{s}_{43}+\tilde{s}_{45}=0 ,

and (A. 4) as
\tilde{s}_{22}-\tilde{s}_{26}-(\tilde{s}_{62}-\tilde{s}_{66})=0 , \backslash ?_{23}\sim+_{L}\tilde{\sigma}_{25}-(\tilde{s}_{63}+\tilde{s}_{65})=0 ,

(A. 7)
\tilde{s}_{32}-\tilde{s}_{36}+\tilde{s}_{52}-\tilde{s}_{56}=0\tau \tilde{s}_{33}+\tilde{s}_{35}+\tilde{s}_{53}+\tilde{s}_{55}=0 ,

since \pi_{-} is a symmetric matrix and
S_{\pi_{-}=[0,\tilde{s}_{i2}-\tilde{s}_{i6}},\tilde{s}_{i3}+\hat{s}_{i5},0,\tilde{s}_{i3}+.\tilde{\sigma}_{i5} , - \tilde{s}_{i2}+\tilde{s}_{i6}. ; i\downarrow 1 , \cdots , 6]

It follows from (A. 5) and (A. 6) that the first and 4-th components on the
left in (A. 1) vanish. Moreover we find from (A. 5) and (A. 7) that the 6-th
or 5-th component on the left in (A. 1) is equal to the second or (–1) times
the third respectively. Thus (A. 1) with (A. 3) and (A. 4) coincides with
(1. 5), if we set

(A. 8) S=\{\begin{array}{ll}\tilde{s}_{25} \tilde{s}_{26}\tilde{s}_{35} \tilde{.}e_{36}\end{array}\}-\{\begin{array}{ll}\tilde{s}_{22} \tilde{s}_{23}\tilde{s}_{32} \tilde{s}_{33}\end{array}\} K ,

where K is the matrix in (1. 2).
(iii). It is also asserted in [7] the following: (2. 4) with (A. 8) holds

if and only if \rho(\tilde{S})<1 , where \rho(S) denotes the spectral radius of the matrix
S, and hence for Maxwell’s equations the class of mixed problems satisfying
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(2. 4) is definitely larger than that of mixed problems with maximally nega-
tive boundary conditions. But this assertion seems to be not necessarily valid,

as seen from the following

EXAMPLE. With the notations in (ii) let G=G_{1} and let S be a constant
6\cross 6 matrix such that

(A. 9) s\sim 33=\tilde{S}_{35}=-1/2 , \tilde{s}_{53}=\tilde{s}_{55}=1/2 and (the other entries) =0 .

It is clear that (A. 9) implies (A. 6) and (A. 7), i . e. , (A. 3) and (A. 4). Moreo\sim

ver we find that (2. 4) with (A. 8) does not hold while \rho(S)=0 . In fact, it
is not hard to see that all eigenvalues of S are equal to zero. Furthermore
from (A. 8) and (A. 9) we have

S=\{\begin{array}{ll}0 0-1 0\end{array}\} .

Hence (2. 5) yields

R(\tau, \sigma)=\tau^{2}-\tau\lambda^{+}(\tau, \sigma)-\sigma_{1}^{2} .

Thus we find that R(\tau, \sigma) vanishes for some (\tau, \sigma) with \tau\in\overline{C}_{-} and \sigma\in R^{2}\backslash 0 ,
say, with \tau=0 , \sigma_{1}=0 and \sigma_{2}\neq 0 or with \tau=|\sigma| , \sigma_{2}=0 and \sigma_{1}\neq 0 .
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\partial\Omega let the hypotheses of Theorem be satisfied. Then we can find without
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