The growth of entire and meromorphic functions

By S. K. Singh and John R. Berg
(Received May 1, 1978)

1. Let $f(z)$ be an entire or meromorphic function. We shall denote by \boldsymbol{C} the complex plane and by $\overline{\boldsymbol{C}}$, the extended complex plane. For $a \in \bar{C}$, let $n(r, a)$ be the number of zeros of $f(z)-a$ in $|z| \leq r$, where for $a=\infty$, $n(r, \infty)$ stands for the number of poles of $f(z)$ in $|\boldsymbol{z}| \leq r$. We shall assume, without loss of generality, that $f(z)$ has no zeros or poles at the origin. Let $T(r)=T(r, f)$ be the Nevanlinna characteristic function of $f(z)$. Let $n(0, a)=$ 0 and let

$$
N(r, a, f)=N(r, a)=\int_{0}^{r} \frac{n(t, a)}{t} d t
$$

Let ρ be the order of $f(z)$. If

$$
\limsup _{r \rightarrow \infty} \frac{\log ^{+} n(r, a)}{\log r}=\rho_{1}(a, f)=\rho_{1}(a)<\rho,
$$

we call a an $e . v . B$. (exceptional value in the sense of Borel). If

$$
1-\limsup _{r \rightarrow \infty} \frac{N(r, a)}{T(r, f)}=\delta(a, f)=\delta(a)>0
$$

a is called $e . v . N$. (exceptional value in the sense of Nevanlinna). Also, if

$$
\tau=\limsup _{r \rightarrow \infty} \frac{T(r, f)}{r^{\rho}}(0<\rho<\infty)
$$

then $f(z)$ is said to be of maximal, mean or minimal type according as $\tau=$ $\infty, 0<\tau<\infty$ or $\tau=0$. If $f(z)$ is an entire function, we denote as usual

$$
M(r)=M(r, f)=\max _{|z|=r}|f(z)|
$$

2. We prove

Theorem 1. Let $f(z)$ be an entire function of order $\rho,(0 \leq \rho<\infty)$. Then for every $\varepsilon>0$, as $r \rightarrow \infty$

$$
\begin{equation*}
M\left(r+\frac{1}{r^{\rho-1+\iota}}\right) \sim M(r) \tag{1}
\end{equation*}
$$

Proof: Since $\log M(r)$ is a convex function of $\log r$,

$$
\begin{equation*}
\log M(r)=\int_{0}^{r} \frac{w(t)}{t} d t \tag{2}
\end{equation*}
$$

where $w(t)$ is an increasing function of t, see [1, 27]. From (2) it follows that

$$
\limsup _{r \rightarrow \infty} \frac{\log \log M(r)}{\log r}=\rho=\underset{r \rightarrow \infty}{\lim \sup } \frac{\log w(r)}{\log r}
$$

Hence, for $r \geq r_{0}$,

$$
w(r)<r^{\rho+\varepsilon / 2} .
$$

Now,

$$
\begin{aligned}
\log M\left(r+\frac{1}{r^{\rho-1+\epsilon}}\right) & =\int_{0}^{r+\frac{1}{r^{\rho-1+\epsilon}}} \frac{w(t)}{t} d t \\
& =\int_{0}^{r} \frac{w(t)}{t} d t+\int_{r}^{r+\frac{1}{r^{\rho-1+\epsilon}}} \frac{w(t)}{t} d t \\
& =\log M(r)+\int_{r}^{r+\frac{1}{r^{\rho-1+\epsilon}} \frac{w(t)}{t} d t}
\end{aligned}
$$

Now, since $w(t)$ is increasing, we have

$$
\begin{aligned}
\int_{r}^{r+\frac{1}{r^{\rho-1+\epsilon}} \frac{w(t)}{t} d t} & \leq w\left(r+\frac{1}{r^{\rho-1+\epsilon}}\right) \int_{r}^{r+\frac{1}{r^{\rho-1+\epsilon}} \frac{1}{t} d t} \\
& =w\left(r+\frac{1}{r^{\rho-1+\epsilon}}\right) \log \left(1+\frac{1}{r^{\rho+\epsilon}}\right) \\
& \leq w(2 r) \frac{1}{r^{\rho+\epsilon}} \\
& <(2 r)^{\rho+\iota / 2} \frac{1}{r^{\rho+\epsilon}} \\
& \rightarrow 0 \quad \text { as } \quad r \rightarrow \infty
\end{aligned}
$$

Hence (1) follows.
We define the lower order of an entire function $f(z)$ by

$$
\lambda=\liminf _{r \rightarrow \infty} \frac{\log \log M(r)}{\log r}
$$

For lower order λ, we have
THEOREM 2. Let $f(z)$ be an entire function of lower order $\lambda(0<\lambda<\infty)$, then for every $\varepsilon>0$, as $r \rightarrow \infty$,

$$
\begin{equation*}
M(r)=o\left(M\left(r+\frac{1}{r^{2-1-s}}\right)\right) \tag{3}
\end{equation*}
$$

Proof: We may assume $\varepsilon<\lambda$. As in the proof of Theorem 1,

$$
\log M(r)=\int_{0}^{r} \frac{w(t)}{t} d t
$$

gives

$$
\lim _{r \rightarrow \infty} \inf \frac{\log \log M(r)}{\log r}=\lambda=\liminf _{r \rightarrow \infty} \frac{\log w(r)}{\log r} .
$$

Hence for, all $r \geq r_{0}$,

$$
w(r)>r^{2-t / 2} .
$$

Now

$$
\begin{aligned}
& \log M\left(r+\frac{1}{r^{2-1-c}}\right)=\log M(r)+\int_{r}^{r+\frac{1}{r^{2-1-c}}} \frac{w(t)}{t} d t \\
& \geq \log M(r)+w(r) \log \left(1+\frac{1}{r^{2-s}}\right) \\
&>\log M(r)+\frac{w(r)}{2 r^{2-s}} \\
&\left(\text { since, for } 0<x<1, \log (1+x) \geq \frac{x}{2}\right) .
\end{aligned}
$$

Hence,

$$
\log \left\{\frac{M\left(r+\frac{1}{r^{2-1-\epsilon}}\right)}{M(r)}\right\} \rightarrow \infty \quad \text { as } \quad r \rightarrow \infty
$$

and (3) follows.
Note: Theorem 2 can be generalized to the case $\lambda=\infty$. Precisely, we have

Theorem 3. If $f(z)$ is an entire function of lower order ∞, then for every real α, as $r \rightarrow \infty$,

$$
\begin{equation*}
M(r)=o\left(M\left(r+\frac{1}{r^{\alpha}}\right)\right) . \tag{4}
\end{equation*}
$$

For the proof we may assume that $\alpha>0$. As in the proof of Theorem 2, we get

$$
\log \left\{\frac{M\left(r+\frac{1}{r^{\alpha}}\right)}{M(r)}\right\} \geq \frac{w(r)}{2 r^{a+1}} .
$$

But since $\lambda=\infty, w(r) \geq r^{4}$ for $r \geq r_{0}$, where Δ is arbitrarily large. Choosing
$\Delta>\alpha+1$, we get (4).
Note: If $\rho=\infty, \lambda<\infty$, then using the same method we can show that for all real α,

$$
\liminf _{r \rightarrow \infty} \frac{M(r)}{M\left(r+\frac{1}{r^{\alpha}}\right)}=0 .
$$

Theorem 4. Let $f(z)$ be an entire or meromorphic function for which $\rho_{1}(a)<\infty$. Then, as $r \rightarrow \infty$, for every $\alpha>\rho_{1}(a)$,

$$
\begin{equation*}
N\left(r+\frac{1}{r^{\alpha-1}}, a\right)=N(r, a)+O(1) . \tag{5}
\end{equation*}
$$

Proof: We can assume that $n(0, a)=0$, then

$$
\begin{aligned}
N(r, a) & \leq N\left(r+\frac{1}{r^{\alpha-1}}, a\right)=\int_{0}^{r+\frac{1}{r^{\alpha-1}}} \frac{n(t, a)}{t} d t \\
& =N(r, a)+\int_{r}^{r+\frac{1}{r^{\alpha-1}}} \frac{n(t, a)}{t} d t \\
& \leq N(r, a)+n\left(r+\frac{1}{r^{\alpha-1}}, \mathrm{a}\right) \log \left(1+\frac{1}{r^{\alpha}}\right) \\
& \leq N(r, a)+n\left(r+\frac{1}{r^{\alpha-1}}, a\right) \frac{1}{r^{\alpha}} .
\end{aligned}
$$

Now, since $\rho_{1}(a)<\alpha$, there exists $\varepsilon>0$, so that

$$
\rho_{1}(a)+\varepsilon<\alpha, \quad \text { also } n(r, a)<r^{\rho_{1}(a)+\varepsilon} \text { for all } r \geq r_{0} \text {. }
$$

Hence

$$
\begin{aligned}
\frac{n\left(r+\frac{1}{r^{a-1}}, a\right)}{r^{a}} & <\frac{\left(r+\frac{1}{r^{a-1}}\right)^{\rho(a)+e}}{r^{a}} \\
& \rightarrow 0 \text { as } r \rightarrow \infty,
\end{aligned}
$$

and (5) follows.
Putting $\alpha=\rho$, and taking $\rho_{1}(a)<\rho$, we get the following.
Corollary. If $f(z)$ is an entire or meromorphic function of finite order ρ, with a as an e.v. B., then

$$
N\left(r+\frac{1}{r^{r-1}}, a\right)=N(r, a)+O(1) .
$$

Theorem 5. Let $f(z)$ be an entire function of order $\rho(0<\rho<\infty)$. Suppose for distinct $a, b \in \boldsymbol{C}$, we have

$$
\delta(a)=1, \quad n(r, b)=O\left(r^{p}\right) .
$$

Then, as $r \rightarrow \infty$,

$$
\begin{equation*}
T(r, f) \sim N\left(r+\frac{1}{r^{\alpha-1}}, b\right) \tag{6}
\end{equation*}
$$

Proof: By Nevanlinna second theorem,

$$
T(r, f) \leq N(r, a)+N(r, b)+O(\log r)
$$

Now, $f(z)$ is transcendental, hence $\log r=o(T(r, f))$. Also $N(r, a)=o(T(r, f))$ since $\delta(a)=1$. Hence

$$
\begin{equation*}
T(r, f) \sim N(r, b) \tag{7}
\end{equation*}
$$

Further,

$$
\begin{aligned}
N\left(r+\frac{1}{r^{\rho-1}}, b\right) & =N(r, b)+\int_{r}^{r+\frac{1}{r^{\rho-1}} \frac{n(t, b)}{t} d t} \\
& \leq N(r, b)+n\left(r+\frac{1}{r^{\rho-1}}, b\right) \frac{1}{r^{\rho}} \\
& \leq N(r, b)+A\left(r+\frac{1}{r^{\rho-1}}\right)^{\rho} \frac{1}{r^{\rho}} \\
& =N(r, b)+A\left(1+\frac{1}{r^{\rho}}\right)^{\rho} \\
N\left(r+\frac{1}{r^{\alpha-1}}, b\right) & -N(r, b) \leq A\left(1+\frac{1}{r^{\rho}}\right)^{\rho} \\
& \rightarrow A \quad \text { as } \quad r \rightarrow \infty
\end{aligned}
$$

Hence

$$
N\left(r+\frac{1}{r^{\rho-1}}, b\right)=N(r, b)+O(1)
$$

Hence (6) follows from (7).
ThEOREM 6. There does not exist any entire function satisfying simultaneously the conditions:
(i) $M\left(r+\frac{1}{r^{\rho-1}}\right)=O(M(r))$
(ii) $\frac{n(r, 0)}{r^{\rho}} \rightarrow \infty$ as $r \rightarrow \infty$
where ρ is the order of $f(z) . \quad(0<\rho<\infty)$.
Proof: Suppose $M\left(r+\frac{1}{r^{\rho-1}}\right)=O(M(r))$. Then

$$
\begin{aligned}
\log M\left(r+\frac{1}{r^{\rho-1}}\right) & =\log M(r)+\int_{r}^{r+\frac{1}{r^{\rho-1}}} \frac{w(t)}{t} d t \\
& \geq \log M(r)+\frac{w(r)}{2 r^{\rho}}
\end{aligned}
$$

Hence, using the hypothesis,

$$
w(r) \leq B r^{\rho}
$$

So

$$
\begin{aligned}
\log M(r) & =A+\int_{r_{0}}^{r} \frac{w(t)}{t} d t \\
& \leq A+B \int_{r_{0}}^{r} t^{\rho-1} d t \\
& \leq A_{1}+\frac{B}{\rho} r^{\rho}
\end{aligned}
$$

Hence

$$
\limsup _{r \rightarrow \infty} \frac{\log M(r)}{r^{\rho}} \leq \frac{B}{\rho} .
$$

Thus $f(z)$ is of minimal or mean. type Now, suppose $\frac{n(r, 0)}{r^{\rho}} \rightarrow \infty$ as $r \rightarrow \infty$. We can assume $f(0)=1$. Then, by Jensen's theorem,

$$
\begin{aligned}
\log M(r) & \geq \int_{0}^{r} \frac{n(t, 0)}{t} d t \\
& =A+\int_{r_{0}}^{r / 2} \frac{n(t, 0)}{t} d t+\int_{r / 2}^{r} \frac{n(t, 0)}{t} d t \\
& \geq n\left(\frac{r}{2}, 0\right) \log 2 .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\frac{\log M(r)}{r^{\rho}} & \geq \frac{n\left(\frac{r}{2}, 0\right) \log 2}{\left(\frac{r}{2}\right)^{\rho} 2^{\rho}} \\
& \rightarrow \infty \quad \text { as } \quad r \rightarrow \infty
\end{aligned}
$$

Hence $f(z)$ is of maximal type. Thus (i) and (ii) are incompatible.
Corollary. If $f(z)$ is an entire function of order $\rho(0<\rho<\infty)$ such that

$$
M\left(r+\frac{1}{r^{\rho-1}}\right)=O(M(r))
$$

then $f(z)$ is of mean or minimal type.

References

[1] G. Valiron: General Theory of Integral Functions (Chelsea Pub. Co., New York, 1949).

Addresses of authors:
S. K. Singh

Department of Mathematics
University of Missouri-Kansas City
Kansas City, Missouri 64110 U.S.A.

John Richard Berg
Department of Mathematics
California State University, Long Beach
Long Beach, California 90840 U.S.A.

