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Introduction

In our earlier paper [6] we have settled the equivalence problems as -

sociated with the class of simple graded Lie algebras of the first kind (ir-
reducible l-systems in the terminology there). In our recent paper [8] we
have also settled the equivalence problems associated with the class of simple
graded Lie algebras of contact type, and have applied the results to the
geometry of non-degenerate real hypersurfaces of complex manifolds.

The main purpose of the present paper is to settle analogous equivalence
problems for the full class of simple graded Lie algebras.

Let \mathfrak{g}=\sum_{p}\mathfrak{g}_{p} be a graded Lie algebra over the field R of real numbers
which satisfies the following conditions: 1) \mathfrak{g} is finite dimensional and simple,
2) \mathfrak{g}_{-1}\neq 0 , and \mathfrak{m}=\sum_{p<0}\mathfrak{g}_{p} is generated by \mathfrak{g}_{-1} . Such a graded Lie algebra will
be called a simple graded Lie algebra of the \mu -th kind, where \mu stands for
the positive integer with \mathfrak{g}_{-\mu}\neq 0 and \mathfrak{g}_{p}=0 for all p<-\mu . Let us denote by
\mathfrak{G} (resp. by \mathfrak{M}) the graded Lie algebra

\mathfrak{g}=\sum_{p}\mathfrak{g}_{p} (resp.
\mathfrak{m}=\sum_{p<0}\mathfrak{g}_{p}).

Now to the graded Lie algebra \mathfrak{G} there is associated a homogeneous
space G/G’ in a natural manner, where the Lie algebra of G is equal to
\mathfrak{g} , and the Lie algebra of G’ to \mathfrak{g}’=\sum_{p\geqq 0}\mathfrak{g}_{p} . Let G be the linear isotropy group
of the homogeneous space G/G’ at the origin 0, which may be represented
on the vector space \mathfrak{m} . Then we extend the group \tilde{G} to a linear Lie group
G_{0}^{f1} of \mathfrak{m} , and introduce the notion of a G_{0}^{\#}GVstructure of type \mathfrak{M} . It should
be noted that the two groups \tilde{G} and G_{0}^{\#} coincide if and only if \mathfrak{G} is of
the first kind or of contact type. (By definition \mathfrak{G} is of contact type if it
is of the second kind and \dim \mathfrak{g}_{-2}=1.) It should be also noted that a G_{0^{-}}^{\#}

structure of type \mathfrak{M} admits a strongly regular differential system (in the sense
of [7] ) as an underlying structure. Furthermore we introduce the notion of
a normal connection of type \mathfrak{G} , which is defined to be a Cartan connection
of type G/G’ whose curvature satisfies certain linear relations.

The main theorem (Theorem 2. 7) in the present paper is concerned



24 N. Tanaka

with the equivalence problem for G_{0}^{\#}GVstructures of type \mathfrak{M} , and may be
roughly stated as follows: Assume that \mathfrak{G} is the prolongation of (\mathfrak{M}, \mathfrak{g}_{0}) .
Then every normal connection of type \mathfrak{G} , (P, \omega) , on a manifold M induces
a G_{0}^{ff}-structure of type \mathfrak{M} , (P^{\#}, \xi) , on M in a natural manner, and the as-
signment (P, \omega)arrow P^{\#} , \xi) gives a one-t0-0ne correspondence up to isomorphisms
between the totality of normal connections of type \mathfrak{G} and the totality of
G_{0}^{\#}GVstructures of type \mathfrak{M} . We also show that the “harmonic part” H(K)
of the curvature K of a normal connection (P, \omega) gives a fundamental system
of invariants (Theorem 2. 9).

In the forthcoming papers we shall apply our theory to various problems
in the geometry as well as the analysis, especially to the geometrizations
and integrations of differential equations (cf. Tresse [9] and Cartan [2]). For
example, consider a system of ordinary differential equations of the second
order :

(\mathscr{H}) y_{i}’=\phi_{i}(x, y_{1}, \cdots, y_{n-1}, y_{1}’, \cdots, y_{n-1}’) , 1\leqq i\leqq n-1

Then we shall show that to the equation (\mathscr{H}) there is associated in an in-
variant manner a normal connection of type \mathfrak{G} , (P, \omega) , defined on the space
(x, y_{1}, \cdots, y_{n-1}, y_{1}’, \cdots, y_{n-1}’) , so that the integrals of the equation (\mathscr{H}) may
be represented by the geodesies of the connection (P, \omega) , where \mathfrak{G} is a simple
graded Lie algebra of the second kind, and the underlying Lie algebra \mathfrak{g} is
isomorphic with the simple Lie algebra 6\mathfrak{l}(n+ 1, R) . In particular we shall
find from this fact that the integration of the equation (\mathscr{H}) , to a great
extent, depends on the structure of the automorphism group of the equation
(\mathscr{H}) or of the connection (P, \omega)

In \S 1 we first recall several known facts on the graded Lie algebra \mathfrak{G} ,

and then define a complex \{C^{pq},(\mathfrak{G}), \partial\} , which is naturally associated with
\mathfrak{G} , and which generalizes or rather refines the s0-called Spencer complex
(associated with a simple graded Lie algebra of the first kind). We also
show that there is naturally defined the “adjoint operator” \partial^{*}: C^{pq},(\mathfrak{G})arrow

C^{p+1,q-1}(\mathfrak{G}) of the operator \partial : C^{p\dagger 1,q-1}(\mathfrak{G})arrow C^{pq},(\mathfrak{G}) . We shall see that the
“harmonic theory” for the system \{C^{pq},(\mathfrak{G}), \partial, \partial^{*}\} plays an important role
in our whole theory. In \S 2 we introduce the notions of a G_{0}^{\#} structure of
type \backslash \mathfrak{M} and of a normal connection of type \mathfrak{G} , and state the main theorem.
We also prove Theorem 2. 9, based on the Bianchi identity for the connection
(P, \omega) . \S 3\sim \S 5 are devoted to the proof of the main theorem. First of
all we prove, in \S 3, the important fact that every G_{0}^{\#}-structure of type \mathfrak{M} ,
(P^{\#}, \xi) , is naturally reduced to a \tilde{G} structure (\tilde{P},\overline{\xi}) (Theorems 3. 7 and 3. 8).
Starting from the \tilde{G} structure (\tilde{P},-) , we construct, in \S 4, a normal connec-
tion of type \mathfrak{G} , (P, \omega) , the prolongation of (P^{\#}, \xi) , which induces the given
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(P^{ff}, \xi) (Theorems 4. 6 and 4. 15). We thus see that the assignment (P, \omega)arrow

(P^{\#}, \xi) is surjective. Here we notice that our method of the prolongation
adopted in the present paper is closely related to Cartan’s general method
of the equivalence ([1]). Finally in \S 5 we prove the uniqueness of normal
connections of type \mathfrak{G} or the statement that the assignment (P, \omega)arrow(P^{f1}, \xi)

is injective.

Preliminary remarks

1. Let V be a finite dimensional vector space over a field K. As usual
GL(V) denotes the general linear group of V, and \mathfrak{g}\mathfrak{l}(V) the Lie algebra of
all endomorphisms of V. V^{*} denotes the dual space of V, and \Lambda^{p}(V)

the space of exterior p-vectors of V. Given another vector space W over
K, the tensor product W\otimes\wedge^{p}(V^{*}) may be naturally identified with the
space Hom(\Lambda^{p}(V), W) , i . e. , the space of all linear maps of \Lambda^{p}(V) to W.

2. Graded Lie algebras. Let \mathfrak{g} be a Lie algebra over a field K. Let
(\mathfrak{g}_{p})_{p\in Z} , Z being the group of integers, be a family of subspaces of \mathfrak{g} which
satisfies the following conditions:

(GLA. 1) \mathfrak{g}=\sum_{p}\mathfrak{g}_{p} (direct sum);

(GLA. 2) \dim \mathfrak{g}_{p}<\infty ;

(GLA. 3) [\mathfrak{g}_{p}, \mathfrak{g}_{p}]\subset \mathfrak{g}_{p+q} .

Under these conditions we say that the system \mathfrak{G}=\{\mathfrak{g}, (\mathfrak{g}_{p})\} or the direct
sum \mathfrak{g}=\sum \mathfrak{g}_{p} is a graded Lie algebra over K.

Let \mathfrak{G}=p

\{\mathfrak{g}, (\mathfrak{g}_{p})\} and \mathfrak{G}’= \{\mathfrak{g}’, (y_{p})\} be two graded Lie algebras. A hom0-
morphism \varphi of \mathfrak{g} to \mathfrak{g}’ as Lie algebras is called a homomorphism of \mathfrak{G} to \mathfrak{G}’

if \varphi preserves the gradings, i . e. , \varphi(\mathfrak{g}_{p})\subset \mathfrak{g}_{p}’ for all p. A homomorphism \varphi

of \mathfrak{G} to \mathfrak{G}’ is called an isomorphism of \mathfrak{G} onto \mathfrak{G}’ if \varphi is bijective. The
notion of an isomorphism naturally gives rise to the notions of an aut0-
morphism and of a derivation.

3. In the present paper we always assume the differentiability of class
C^{\infty} unless otherwise stated. Let M be a manifold. T(M) denotes the tangent
bundle of M. Given a vector field X on M, \mathscr{L}_{X} denotes the Lie derivation
with respect to X.

As to Lie groups and principal fibre boundles we use the standard nota-
tions as in [3]. Especially let P be a principal fibre bundle over a base
manifold M with a Lie group G as structure group. For a\in G, R_{a} denotes
the right translation P\ni zarrow za\in P. Let \mathfrak{g} be the Lie algebra of G. For
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A\in \mathfrak{g} , A^{*} denotes the (vertical) vector field on P induced from the l-para-
meter group of right translations, \{R_{a_{t}}\} , where a_{t}=\exp tA.

Let P be as above. Let H be a Lie subgroup of G, and Q a principal
fibre bundle over the base space M with structure group H. Then we
say that Q is a reduction of P to H if the following conditions are satisfied:
i) Q is a submanifold of P;ii) \varpi=\pi\circ\iota , where \iota denotes the injection of Q
to P, and \pi (resp. \varpi) the projection of P (resp. of Q) onto M;iii) \iota gives
a bundle homomorphism of Q to P (corresponding to the injective homomor-
phism of H into G.)

4. Linear group structures. Let V be an n-dimensional vector space
over the field R of real numbers, and G a Lie subgroup of GL(V) . Let
P be a principal fibre bundle over an n-dimensional manifold M with struc-
ture group G, and \theta a V-valued 1-form on P. Then we say that the pair
(P, \theta) is a G-structure on M if it satisfies the following conditions:

(LG. 1) Let X be a tangent vector to P. Then \theta(X)=0 if and only
if X is a vertical vector;

(LG. 2) R_{a^{*}}\theta=a^{-1}\theta , a\in G.

Let (P, \theta) (resp. (P’ , \theta’ )) be a G-structure on a manifold M (resp. on
M’) . A bundle isomorphism \varphi of P onto P’ is called an isomorphism of
(P, \theta) onto (P’, \theta’) if \varphi^{*}\theta’=\theta .

We shall now remark that our definition of a G-structure is equivalent
to the usual one.

Let M be an n-dimensional manifold, and F(M) the frame bundle of
M. As usual F(M) may be regarded as the set of all linear isomorphisms
of V onto the tangent spaces T(M)_{x} , x\in M, which is a principal fibre bundle
over the base space M with structure group GL(V). Let \theta be the V-valued
1-form on F(M) defined by \theta(X)=z^{-1} . \pi_{*}(X) for all X\in T(F(M))_{z} and z\in

F(M), where \pi denotes the projection of F(M) onto M.
Now a reduction of the frame bundle F(M) to the group G is usually

called a G-structure on M (cf. [5]). Let P be a G-structure in the usual
sense on M, and \iota the injection of P to F(M). Put \theta=\iota^{*}\theta , which is usually
called the basic form of P. Then the pair (P, \theta) gives a G structure in our
sense on M. Conversely every G-structure in our sense, (P, \theta) , on M can
be obtained in this manner. Indeed there is a unique bundle homomorphism
\iota of P to F(M) (corresponding to the injective homomorphism of G into
GL(V)) such that \iota induces the identity transformation of M and such that
\theta=\iota^{*}\theta . Hence P may be regarded as a G-structure in the usual sense on
M, and \theta as its basic form. Thus we have seen that the two definitions
are equivalent
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Finally let H be a Lie subgroup of G. Let (P, \theta) (resp. (Q, \eta)) be a G-
structure (resp. an H-structure) on M. Then we say that (Q, \eta) is a reduc-
tion of (P, \theta) to H or (P, \theta) is an extension of (Q, \eta) to G if i) Q is a reduc-
tion of P to H, and ii) \eta=\iota^{*^{\backslash }}\theta , \iota being the injection of Q to P, or equivalently
if i) Q\subset P\subset F(M) , and ii) Q is a submanifold of P. Clearly every H-struc-
ture has a unique extension to G.

5. Cartan connections. Let G/G’ be the homogeneous space of a Lie
group G over its closed subgroup G’ . Let \mathfrak{g} (resp. \mathfrak{g}’ ) be the Lie algebra of
G (resp. of G’). Let P be a principal fibre bundle over a base manifold
M with structure group G’ . where \dim M=\dim G/G’ , and let \omega be a \mathfrak{g}-

valued 1-form on P. Then we say that the pair (P, \omega) is a Cartan connec-
tion of type G/G’ on M or \omega is a Cartan connection of type G/G’ in P
if the following conditions are satisfied:

(C. 1) Let X be a tangent vector to P. If \omega(X)=0 , then X=0 ;
(C. 2) \omega(A^{*})=A , A\in \mathfrak{g}’ ;
(C. 3) R_{a}^{*}\omega= Ad(a^{-1}) \omega , a\in G’

Let (P, \omega) (resp. (P’ , \omega’ )) be a Cartan connection of type G/G’ on a mani-
fold M (resp. on M’). A bundle isomorphism \varphi of P onto P’ is called an
isomorphism of (P, \omega) onto (P’, \omega)’ if \varphi^{*}\omega’=0).

\S 1. Simple graded Lie algebras

1. 1. Simple graded Lie algebras (cf. [7] and [8]). In the following K
means the field R of real numbers or the field C of complex numbers.

Let \mathfrak{G}=
\{\mathfrak{g}, (\mathfrak{g}_{p})\} be a graded Lie algebra over K. Put

\mathfrak{m}=\sum_{p<0}\mathfrak{g}_{p} ,

being a subalgebra of \mathfrak{g} . Then we say that \mathfrak{G} is simple if it satisfies the
following conditions :

(SGLA. 1) The Lie algebra \mathfrak{g} is finite dimensional and simple;
(SGLA. 2) \mathfrak{g}_{-1}\neq 0 , and the Lie algebra \mathfrak{m} is generated by \mathfrak{g}_{-1} .
We denote by \mathfrak{M} the (truncated) graded subalgebra \{\mathfrak{m}, (\mathfrak{g}_{p})_{p<0}\} of \mathfrak{G} .

Then (SGLA. 2) means that \mathfrak{M} is a fundamental graded Lie algebra (or simply
FGLA) in the sense of [7]. A simple graded Lie algebra \mathfrak{G} is called of the
\mu-th kind if \mathfrak{M} is of the \mu-th kind, i. e. , \mathfrak{g}_{-\mu}\neq 0 and \mathfrak{g}_{p}=0 for any p<-\mu .

Let \mathfrak{G} be a simple graded Lie algebra of the \mu -th kind over K. Let
B denote the Killing form of the Lie algebra \mathfrak{g} . The following two lemmas
are well known.

Lemma 1. 1. There is a unique element E in the centre of \mathfrak{g}_{0} such
that
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\mathfrak{g}_{p}=\{X\in \mathfrak{g}| [E, X] =pX\} for all p(

Lemma 1. 2. (1) B(\mathfrak{g}_{p}, \mathfrak{g}_{q})=0 if p+q\neq 0 .
(2) For every p the restriction of B to \mathfrak{g}_{p}\cross \mathfrak{g}_{-p} is non-degenerate.
In particular it follows that \mathfrak{g}_{p}=0 for all p>\mu .
Lemma 1. 3. Let p\geqq 0 .
(1) [\mathfrak{g}_{-p+1}, \mathfrak{g}_{-1}]=\mathfrak{g}_{-p} .
(2) If X_{p}\in \mathfrak{g}_{p} and [X_{p}, \mathfrak{g}_{-1}]=0 , then X_{p}=0 .
PROOF. By (SGLA. 2) we have [\mathfrak{g}_{-p+1}, \mathfrak{g}_{-1}]=\mathfrak{g}_{-p} for all p\geqq 2 . Since E\in

90’ we have [\mathfrak{g}_{0}, \mathfrak{g}_{-1}]=\mathfrak{g}_{-1} . Furthermore we easily see that a=[ \mathfrak{g}_{1}, \mathfrak{g}_{-1}]+\sum_{i\neq 0}\mathfrak{g}_{i}

is a (graded) ideal of \mathfrak{g} . Since \mathfrak{g} is simple and a\supset \mathfrak{g}_{-1}\neq 0 , it follows that
a=\mathfrak{g} and hence [\mathfrak{g}_{1}, \mathfrak{g}_{-1}]=\mathfrak{g}_{0} . We have thus proved (1). Using (1), we have
B([X_{p}, \mathfrak{g}_{-1}], \mathfrak{g}_{-p+1})=B (Xp’ \mathfrak{g}_{-p}) =0. This fact together with Lemma 1. 2 gives
X_{p}=0 , which proves (2).

Consider the derivation algebra Der (\mathfrak{R}l) of the FGLA, M. By Lemma
1. 3, \mathfrak{g}_{0} may be naturally identified with a subalgebra of Der (\mathfrak{M}) , and \mathfrak{G}

naturally with a graded subalgebra of the prolongation of (\mathfrak{M}, \mathfrak{g}_{0}) . (For
the definition of the prolongation, see [7].) Let us now define an ideal \mathfrak{h}_{0}

of \mathfrak{g}_{0} by

\mathfrak{h}_{0}=\{X\in \mathfrak{g}_{0}| [X, \mathfrak{g}_{p}] =0 for all p\leqq-2\} :

which may be naturally regarded as a subalgebra of \mathfrak{g}\mathfrak{l} (1).

Lemma 1. 4. The following three statements are mutually equivalent:
(1) \mathfrak{G} is the prolongation of (\mathfrak{M}, \mathfrak{g}_{0}) .
(2) The subspace \mathfrak{h}_{0} of \mathfrak{g}\mathfrak{l}(\mathfrak{g}_{-1}) is of fifinite type, i. e. , the k -th prolonga-

tion \mathfrak{h}_{0}^{(k)} of \mathfrak{h}_{0} vanishes for some k.
(3) The fifirst prolongation \mathfrak{h}_{0}^{(1)} of \mathfrak{h}_{0} vanishes.
The proof of this fact is quite similar to the proof of Lemma 3. 4 of

[8], and therefore it is omitted.
Lemma 1. 5. (1) The case K=R. There is an involutive automor-

phism \sigma of \mathfrak{g} having the following properties:
1) \sigma \mathfrak{g}p^{=} \mathfrak{g}_{-p} ;
2) B(X, \sigma X)<0 for X\neq 0 .
(2) The case K=C. There is an involutive automorphism \sigma of \mathfrak{g} as

a Lie algebra over R having the following properties:
1) \sigma \mathfrak{g}_{p}=\mathfrak{g}_{-p} ;
2) \sigma(\lambda X)=\overline{\lambda}\sigma X for \lambda\in C and X\in \mathfrak{g} , and hence the bilinear form

B(X, \sigma Y)(X, Y\in \mathfrak{g}) is hermitian ;
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3) B(X, \sigma X)<0 for X\neq 0 .
Although this fact is known, we shall give an outline of the proof for

completeness. (The following proof is due to Dr. Kaneda.) First consider
the case K=C. Since ad (E) is a semi-simple endomorphism of \mathfrak{g} , there is
a Cartan subalgebra \mathfrak{h} of \mathfrak{g} such that E\in \mathfrak{h} . Let \mathfrak{h}_{0} be the real part of \mathfrak{h} ,

i . e. , \mathfrak{h}_{0} is the (real) subspace of \mathfrak{h} consisting of all H\in \mathfrak{h} such that \alpha(H) is
real for any non-zero root \alpha (associated with \mathfrak{h}). Since the eigenvalues of
ad (E) are all integers, it follows that E\in \mathfrak{h}_{0} . However we know that there is
a compact real form \mathfrak{u} of \mathfrak{g} such that \mathfrak{h}_{0}\subset\sqrt{-1}\mathfrak{u} (cf. [10]). Hence E\in\sqrt-\overline{1}\mathfrak{u} ,

which proves our assertion. Next consider the case K=R. In this case
we may assume that the complexification \mathfrak{g}^{c} of \mathfrak{g} is simple. (Suppose that
\mathfrak{g}^{c} is not simple. Then \mathfrak{g} is endowed with a complex structure, so that \mathfrak{G}

becomes a simple graded Lie algebra over C. Thus the problem is reduced
to the case K=C.) As above there is a Cartan subalgebra \mathfrak{h} of q\iota such
that E\in \mathfrak{b} , and E is in the real part \mathfrak{h}_{0} of \mathfrak{h}^{c} . However we know that there
is a compact real form \mathfrak{u} of \mathfrak{g}^{c} such that \mathfrak{g}=\mathfrak{g}\cap \mathfrak{u}+\mathfrak{g}\cap -111 and such that
\mathfrak{h}_{0}\subset\sqrt{-1}\mathfrak{u} (cf. [10]). Hence E\in \mathfrak{g}\cap\overline{\sqrt{-1}}\mathfrak{U} , which proves our assertion.

Lemma 1. 6. Let 1\leqq p\leqq\mu-1.

(1) [\mathfrak{g}_{-p-1}, \mathfrak{g}_{1}]=\mathfrak{g}_{-p} .
(2) If X_{p}\in \mathfrak{g}_{p} and [X_{p}, \mathfrak{g}_{-p-1}]=0 , then X_{p}=0 .

PROOF. Since nt is generated by \mathfrak{g}_{-1} , we see from Lemma 1. 5 that
the subalgebra \sum_{i>0}\mathfrak{g}_{i} of \mathfrak{g} generated by \mathfrak{g}_{1} . For any i\geqq-\mu , we defifine a sub-

space b_{i} of \mathfrak{g}_{i} inductively as follows: b_{-\mu}=\mathfrak{g}_{-\mu} and b_{i}=[b_{i-1} , \mathfrak{g}_{1}1 if i>-\mu .
From the remark above we see that the sum b=\sum_{i\geqq-p}‘’ b_{i} is a (graded) ideal of \mathfrak{g} .

Since \mathfrak{g} is simple and b\supset \mathfrak{g}_{-\mu}\neq 0 , it follows that b=\mathfrak{g} . Hence [\mathfrak{g}_{-p-1}, \mathfrak{g}_{1}]=\mathfrak{g}_{-p}

for any 1\leqq p\leqq\mu-1, proving (1). (2) follows easily from (1) and Lemma 1. 2.
1. 2. The homogeneous space G/G’ Let \mathfrak{G} be a simple graded Lie

algebra of the \mu -th kind over K.
Consider the automorphism group Aut (\mathfrak{g}) of the Lie algebra \mathfrak{g} . Since

\mathfrak{g} is simple, the Lie algebra of Aut (\mathfrak{g}) coincides with the Lie algebra ad (g)

of all inner derivations of \mathfrak{g} , and the assignment Xarrow ad(X) gives an isomor-
phism of \mathfrak{g} onto ad (\mathfrak{g}) . We shall identify \mathfrak{g} and ad (g) through this isomor-
phism. Thus we have

Ad (a) X=aX- a\in Aut(\mathfrak{g}) . X\in \mathfrak{g}

We denote by G_{0} the automorphism group Aut (\mathfrak{G}) of the graded Lie
algebra \mathfrak{G} . It is easy to see that the Lie algebra of G_{0} is \mathfrak{g}_{0}([8], Lemma
2. 4). For any p we define a subspace \mathfrak{f}^{(p)} of \mathfrak{g} by f^{(p)}=\sum_{i\geqq p}\mathfrak{g}_{i} . Then the
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family \mathfrak{F}= \{f(p)\} gives a filtration of the Lie algebra \mathfrak{g} . We denote by G’
the automorphism group of the filtred Lie algebra (\mathfrak{g}, \mathfrak{F}) , i . e. , G’ is the sub-
group of Aut (\mathfrak{g}) consisting of all a\in Aut(\mathfrak{g}) which satisfy Ad (a) \mathfrak{f}^{(p)}=\mathfrak{f}(p) for
all p. Then it can be easily shown that the Lie algebra of G’ is

\mathfrak{g}’=

f(0)=\sum_{i\geqq 0}\mathfrak{g}i

([8], Lemma 2. 5).

Lemma 1. 7 ([8], Lemma 2. 6). Every element a of G’ can be written
uniquely in the form:

a=b\cdot\exp X_{1}\cdots\exp X_{\mu:}

where b\in G_{0} and X_{p}\in \mathfrak{g}_{p} .
Let Aut(\mathfrak{g})^{0} denote the connected component of the identity of Aut (\mathfrak{g}) .

Then we define an open subgroup G of Aug (g) by

G=Aut(\mathfrak{g})^{0}\cdot G’= Aut (\mathfrak{g})^{0}\cdot G_{0} .
G’ being a closed subgroup of G, we have the homogeneous space G/G’
Clearly G/G’ is connected. Here we notice that if K=C, then G, G’ and
G_{0} are all complex Lie groups, and G/G’ is a complex manifold.

We denote by \rho the linear isotropy representation of G’ on the tangent
space T(G/G’)_{0} to G/G’ at the origin 0 . We have

\mathfrak{g}= rn +\mathfrak{g}’ (direct sum),

and hence, as usual, T(G/G’)_{0} may be identified with the vector space \mathfrak{m} .
This being said, the representation \rho : G’arrow GL(\mathfrak{m}) may be described as follows:

o (a)X\equiv Ad(a)X (mod \mathfrak{g}’),

where a\in G’ and X\in \mathfrak{m} . The homomorphism 0 : G’arrow GL(\mathfrak{m}) naturally in-
duces a Lie algebra homomorphism \mathfrak{g}’arrow \mathfrak{g}\mathfrak{l}(\mathfrak{m}) , which we denote by the same
letter \rho . We have

\rho(X)Y\equiv[X, Y] (mod \mathfrak{g}’),

where X\in \mathfrak{g}’ and Y\in \mathfrak{m} .
By using Lemmas 1. 2 and 1. 3 we can easily prove the following
Lemma 1. 8. The natural representation of G_{0} on \mathfrak{g}_{-1} is faithful.
Lemma 1. 9. The kernel of the homomorphism \rho : G’arrow LG(\mathfrak{m}) is \exp \mathfrak{g}_{\mu} .
This fact follows easily from Lemmas 1. 6, 1. 7 and 1. 8.
Finally we note that the action of G on G/G’ is effective (cf. [8], Lemma

3. 7), and that the space G/G’ is compact (cf. [8], Lemma 3. 8)
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1. 3.*) The operators \partial and \partial^{*} . Let \mathfrak{G} be a simple graded Lie algebra
of the \mu -th kind over K.

Let us consider the subalgebra \mathfrak{m}=\sum_{p<0}\mathfrak{g}_{p} of \mathfrak{g} . We remark that \mathfrak{g} may

be regarded as a (left) \mathfrak{m} -module with respect to the representation \mathfrak{m}\ni Xarrow

ad (X)\in \mathfrak{g}\mathfrak{l}(\mathfrak{m}) . Accordingly, as is well known, to the \mathfrak{m} -module \mathfrak{g} there is
associated a complex

\partial

...arrow C^{q}(\mathfrak{G})arrow C^{q\dagger 1}(\mathfrak{G})arrow\cdots

as follows: C^{q}(\mathfrak{G}) is defined to be the space

\mathfrak{g}\otimes\wedge^{q}(\mathfrak{m}^{*})= Hom (\wedge^{q}(\mathfrak{m}), \mathfrak{g}) .

and the operator \partial is defined by the following formula:

( \partial c)(X_{1}\Lambda\cdots\Lambda X_{q+1})=\sum_{i}(-1)^{i+1}[X_{i} , c(X_{1}\Lambda\cdots\Lambda Xi^{\wedge\cdots\wedge X_{q+1}})-

+ \sum_{i<j}(-1)i+j
c([X_{i}, X_{j}]\Lambda X_{1}\Lambda\cdots\Lambda Xi^{\wedge\cdots\wedge} Xj^{\wedge\cdots\Lambda X_{q+1}}).

where c\in C^{q}(\mathfrak{G}) , and X_{1} , \cdots , X_{q+1}\in \mathfrak{m} .
Let \sigma be an involutive automorphism of \mathfrak{g} having the properties in Lemma

1. 5. Then we define an inner product ( -, ) in \mathfrak{g} by

(X, Y)=-B(X, \tau Y) , X, Y\in \mathfrak{g}

It should be noted that if K=C, then the inner product ( ) is hermitian.
The inner product (, ) in \mathfrak{g} naturally induces an inner product in C^{q}(\mathfrak{G}) .
Namely let \{e_{1}, \cdots, e_{m}\} be an orthonormal basis of \mathfrak{g}:(e_{i}, e_{j})=\delta_{ij} . Then

(c, c’)= \frac{1}{q!}\sum i_{1}

,,
i_{q}(c(ei_{1}^{\wedge\cdots\Lambda e_{i_{q}})}’ c’(e_{i_{1}}\Lambda\cdots\Lambda e_{i_{q}})) ,

where c, c’\in C^{q}(\mathfrak{G}) .
Let us now calculate the adjoint operator \partial^{*} of \partial . Let \{e_{1}, \cdots, e_{m}\} be

a basis of \mathfrak{g} . By Lemma 1. 2 the space \sum_{p>0}\mathfrak{g}_{p} may be regarded as the dual

space \mathfrak{m}^{*} of \mathfrak{m}=\sum \mathfrak{g}_{p} , and hence there is a unique basis \{e_{1}^{*}, \cdots, e_{m}^{*}\} of \mathfrak{m}^{*}=

p<0

\sum_{p>0}gp such that B(e_{i}, e_{j}^{*})=\delta_{ij} . Then we define an operator \partial^{*}: C^{q+1}(\mathfrak{G})arrow

C^{q}(\mathfrak{G}) by the following formula:

( \partial^{*}c)(X_{1}\Lambda\cdots\Lambda X_{q})=\sum_{j}[e_{j}^{*} , c(e_{j}\Lambda X_{1}\Lambda\cdots\Lambda X_{q}) ]
+ \frac{1}{2}\sum_{i,j}(-1)^{i+1}c([e_{j}^{*}, X_{i}]_{-}\Lambda e_{j}\Lambda X_{1}\Lambda\cdots\Lambda Xi^{\wedge\cdots\Lambda X_{Q})} .

*) The discussions in this paragraph are closely related to the studies of Lie algebra
cohomology done in Kostant [4]



32 N. Tanaka

where c\in C^{q}(\mathfrak{G}) , X_{1} , \cdots , X_{q}\in \mathfrak{m} , and [e_{j}^{*}, X_{i}]_{-} denotes the \mathfrak{m}-component of
[e_{j}^{*}, X_{i}] with respect to the decomposition \mathfrak{g}=\mathfrak{m}+\mathfrak{g}’ . As is easily seen, \partial^{*}c

does not depend on the choice of the basis \{e_{1}, \cdots, e_{m}\} .
Lemma 1. 10. The operator \partial^{*} defifined above is the ad joint operator

of \partial with respect to the inner product (, ) , that is,

(\partial c, c’)=(c, \partial^{*}c’)
j c\in C^{q}(\mathfrak{G}) . c’\in C^{q+1}(\mathfrak{G})

p_{ROOF} . We shall prove this lemma in the case where q=1. (The
general case can be similarly dealt with.) Let \{e_{1}, \cdots, e_{m}\} be an orthonormal
basis of \mathfrak{m} . Then we have e_{i}^{*}=-\sigma e_{i} , and hence

[e_{i}, e_{j}]= \sum_{k}B ( [e_{i}, e_{j}] , e_{k}^{*}) e_{k}= \sum_{k}B(e_{i}, [e_{j}, e_{k}^{*}])e_{k}

= \sum_{k}\overline{B(\sigma e_{i},[\sigma e_{j},\sigma e_{k}^{\star_{\mathfrak{l}}}])}e_{k}=-\sum_{k}\overline{B(e_{i}^{*},[e_{j}^{*},e_{k}])}e_{k}

=- \sum_{k}\overline{B(e_{i}^{*},[e_{j}^{*},e_{k}]_{-})}e_{k} .

Therefore we obtain

( \partial c, c’)=-\frac{1}{2}\sum_{i,j}B((\partial c)(e_{\dot{t}}\Lambda e_{j}) , \sigma c

’
(e_{i}\Lambda e_{j}))

=- \frac{1}{2}\sum_{i,j}B([e_{i}, c(e_{j})] , \sigma c
’

(e_{i}\Lambda e_{j}))

+ \frac{1}{2}\sum_{i,j}B([e_{j}, c(e_{i})] , \sigma c’(e_{i}\Lambda e_{j}))

+ \frac{1}{2}\sum_{i,j}B(c([e_{i}, e_{j}]), \sigma c’(e_{i}\Lambda e_{j}))

=- \sum_{i,j}B(c(e_{j}), \sigma([e_{i}^{*}, c’(e_{i}\Lambda e_{j})]))

- \frac{1}{2}\sum_{j,k}B(c(e_{k}), \sigma c’([e_{j}^{*}, e_{k}]_{-}\wedge e_{j})

=(c, \partial^{*}c’) ,

which proves Lemma 1. 10.
As usual the operator

\Delta=\partial^{*}\partial+\partial\partial^{*}: C^{q}(\mathfrak{G})arrow C^{q}(\mathfrak{G})

will be called the Laplacian, and a form c\in C^{q}(\mathfrak{G}) will be called harmonic
if \Delta c=0 . Clearly c is harmonic if and only if \partial c=\partial^{*}c=0 . We denote by
H^{q}(\mathfrak{G}) the space of all harmonic forms in C^{q}(\mathfrak{G}) . Then we have the orth0-
gonal decomposition
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C^{q}(\mathfrak{G})=H^{q}(\mathfrak{G})+\Delta C^{q}(\mathfrak{G})

The group G_{0} linearly acts on the space C^{q}(\mathfrak{G}) through the map G_{0}\cross

C^{q}(\mathfrak{G})\ni(a, c)arrow c^{a}\in C^{q}(\mathfrak{G}) defined as follows :

(c^{a})(X_{1}\Lambda\cdots\Lambda X_{q})=Ad(a^{-1})c(Ad(a)X_{1}\Lambda\cdots\Lambda Ad (a) X_{q}) ,

where X_{1} , \cdots , X_{q}\in \mathfrak{m} . We can easily prove the following.
Lemma 1. 11. The action of G_{0} on C^{q}(\mathfrak{G}) is compatible with the opera-

tors \partial and \partial^{*} , that is,

(\partial c)^{a}=\partial(c^{a}) ,

(\partial^{*}c)^{a}=\partial^{*}(c^{a}) , c\in C^{q}(\mathfrak{G}) . a\in G_{0}\tau

Now the group G’ linearly acts on the space C^{q}(\mathfrak{G}) through the map
G’\cross C^{q}(\mathfrak{G})\ni(a, c)arrow c^{a}\in C^{q}(\mathfrak{G}) defined as follows :

(c^{a})(X_{1}\Lambda\cdots\Lambda X_{q})= Ad (a^{-1})c(\rho(a)X_{1}\Lambda\cdots\Lambda\rho(a)X_{q})

Lemma 1. 12. The action of G’ on C^{q}(\mathfrak{G}) is compatible with the oper-
ator \partial^{*} , that is,

\partial^{*}(c^{a})=(\partial^{*}c)^{a} , c\in C^{q}(\mathfrak{G}) , a\in G’

PROOF. We shall prove this lemma in the case where q=2. (The
general case can be similarly dealt with.) For any X\in \mathfrak{m} we have

( \partial^{*}(c^{a}))(X)=\sum_{j}[e_{j}^{*} , (c^{a})(e_{j} \wedge X)]+\frac{1}{2}\sum_{j}(c^{a})([e_{j}^{*}, X]_{-}\Lambda e_{j})

= \sum_{j} Ad (a^{-1})[Ad(a)e_{j}^{*}, c(\rho(a)e_{j}\Lambda\rho(a)X)]

+ \frac{1}{2}\sum_{j} Ad (a^{-1})c(\rho(a)[e_{j}^{*}, X]_{-}\wedge\rho(a)e_{j})

We have Ad(a) e_{j}^{*}\in \mathfrak{m}^{*} and

B (\rho(a)e_{i} , Ad (a) e_{j}^{*})=B(Ad(a)e_{i} , Ad (a) e_{j}^{*})

=B(ei, e_{j}^{*}) =\delta_{ij}

Hence putting e_{j}’=\rho(a)e_{i} , we obtain e_{i}’=*Ad(a)e_{i}^{*} . Furthermore we can
easily show that

\rho(a)[e_{j}^{*}, X]_{-}=[e_{j}’*, \rho(a)X]_{-}

Therefore it follows that
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( \partial^{*}(c^{a}))(X)=\sum_{j} Ad (a^{-1})[e_{j}’*, c(e_{j}’\Lambda\rho(a)X)]

+ \frac{1}{2}\sum_{j} Ad (a^{-1})c([e_{j}^{\prime*}, \rho(a)X]_{-}\Lambda e_{j}’*)

=(\partial^{*}c)^{a}(X) ..
which proves Lemma 1. 12.

The group G’ acting on the space C^{q}(\mathfrak{G}) , the Lie algebra \mathfrak{g}’ acts on
C^{q}(\mathfrak{G}) through the map \mathfrak{g}’\cross C^{q}(\mathfrak{G}) \ni(X, c)arrow c^{X}\in C^{q}(\mathfrak{G}) defined as follows:

c^{X}= \frac{d}{dt}(c^{a}t)_{t=0} (a_{t}=\exp tX)

Clearly we have

(c^{X})(X_{1}\Lambda\cdots\Lambda X_{q})=-[X, c(X_{1}\Lambda\cdots\Lambda X_{q}) ]
+ \sum_{i}c ( X_{1}\Lambda\cdots\Lambda\rho(X)X_{i}\Lambda\cdots\Lambda X_{q}),

where X_{1} , \cdots , X_{q}\in \mathfrak{m} .
1. 4. The spaces C^{p,q}(\mathfrak{G}) . Since \mathfrak{m}=\sum_{j<0}\mathfrak{g}_{j} , the space \wedge^{q}(\mathfrak{m}^{*}) is de-

composed as follows:

\Lambda^{q}(nt^{*})=_{r_{1}}

,
\sum_{r_{Q}<0},\mathfrak{g}_{r_{1}}^{*}\wedge\cdots\wedge \mathfrak{g}_{r_{q}}^{*} .

For any q an i we define a subspace \Lambda_{i}^{q}(121*) by

\bigwedge_{i}^{q}(\mathfrak{m}^{*})= \sum \mathfrak{g}_{r_{1}}^{*}\wedge\cdot .. \Lambda \mathfrak{g}_{r_{q}}^{*}

r_{1}+\dagger r_{q}=i ,
r1”r_{q}<0

Here we promise that \Lambda_{0}^{0}(\mathfrak{m}^{*})=K, and that \Lambda_{i}^{q} (\mathfrak{m}^{*}) vanishes in the follow-
ing three cases : i) q>0 and i>-q;ii) q<0;iii ) q=0 and i\neq 0 . Clearly
we have

\Lambda^{q}(\mathfrak{m}^{*})=\sum_{i}\Lambda_{i}^{q}(\mathfrak{m}^{*}) (direct sum)

Consequently since \mathfrak{g}=\sum_{j}\mathfrak{g}_{j}
, the space \mathfrak{g}\otimes\wedge^{q}(\mathfrak{m}^{*}) is (orthogonally) decomposed

as follows :

\mathfrak{g}\otimes\wedge^{q}(\mathfrak{m}^{*})=\sum_{i,j}\mathfrak{g}_{j}\otimes\bigwedge_{i}^{q}(\mathfrak{m}^{*})

These being prepared, we define, for any p and q, a subspace C^{p,q}(\mathfrak{G})

of C^{q}(\mathfrak{G})=\mathfrak{g}\otimes\wedge^{q}(\mathfrak{m}^{*}) by

C^{pq},( \mathfrak{G})=\sum_{j}\mathfrak{g}_{j}\otimes\bigwedge_{j-p-q+1}^{q}(\mathfrak{n}t^{*})
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In particular we have
C^{p,0}(\mathfrak{G})=\mathfrak{g}_{p-1}

C^{p,1}( \mathfrak{G})=\sum_{j<p}\mathfrak{g}_{j}\otimes \mathfrak{g}_{j-p}^{*} .

Clearly we have the orthogonal decomposition

C^{q}( \mathfrak{G})=\sum_{p}C^{p,q}(\mathfrak{G})

We can easily verify the following
Lemma 1. 13. (1) \partial C^{p,q}(\mathfrak{G})\subset C^{p-1,q}+1(\mathfrak{G})

(2) \partial^{*}C^{p,q}(\mathfrak{G})\subset C^{p+}1,q-1 (\mathfrak{G})

Accordingly we obtain the two complexes \{C^{p,q}(\mathfrak{G}), \partial\} and \{C^{p,q}(\mathfrak{G}), \partial^{*}\} .
The complex \{C^{p,q}(\mathfrak{G}), \partial\} is a generalization or rather a refinement of the
s0-called Spencer complex associated w4th a simple graded Lie algebra of
the first kind.

By Lemma 1. 13 we have \Delta C^{p,q}(\mathfrak{G})\subset C^{p,q}(\mathfrak{G}) . We denote by H^{p,q}(\mathfrak{G})

the space of all harmonic forms in C^{p,q}(\mathfrak{G}) . Then the space C^{p,q}(\mathfrak{G}) is
orthogonally decomposed as follows :

C^{p,q}(\mathfrak{G})=H^{p,q}(\mathfrak{G})+\Delta C^{p,q}(\mathfrak{G}) :

and the space H^{q}(\mathfrak{G}) as follows:

H^{q}( \mathfrak{G})=\sum_{p}H^{p,q}(\mathfrak{G})

The derivation algebra Der (\mathfrak{M}) of the FGLA, \mathfrak{M} may be regarded as
a subspace of C^{01},( \mathfrak{G})=\sum_{j<0}\mathfrak{g}_{j}\otimes

\mathfrak{g}*j . This being said, we remark that Der (M)

is the kernel of the map \partial : C^{01},(\mathfrak{G})arrow C^{-1,2}(\mathfrak{G}) , which means that

H^{0,1}(\mathfrak{G})\cong Der(\mathfrak{M})/\partial \mathfrak{g}_{0} .

Lemma 1. 14. \mathfrak{G} is the prolongation of (\mathfrak{M}, \mathfrak{g}_{0}) if and only if for every
p\geqq 1, the sequence

\partial

0arrow\partial \mathfrak{g}_{p}arrow C^{p,1}(\mathfrak{G})arrow C^{p-1,2}(\mathfrak{G})

is exact.
This fact is clear from the definition of the prolongation given in [7].

In terms of the spaces H^{p,1}(\mathfrak{G}) , Lemma 1. 14 means that \mathfrak{G} is the prolonga-
tion of (\mathfrak{M}, \mathfrak{g}_{0}) if and only if

H^{p,1}(\mathfrak{G})=0’. p\geqq 1

Finally we remark that \mathfrak{g}_{j}\otimes\bigwedge_{i}^{q}(\mathfrak{m}^{*}) and hence C^{p,q}(\mathfrak{G}) are G_{0}-invariant
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subspaces of C^{q}(\mathfrak{G}) , and we add the next

Lemma 1. 15. If X\in \mathfrak{g}_{r}(r\geqq 0) and if c\in C^{p,q}(\mathfrak{G}) , then c^{X}\in C^{p+r,q}(\mathfrak{G}) .

\S 2. G_{0}^{\#}-structures of type \mathfrak{M}, normal connections of type \mathfrak{G},
and the main theorem

In this section except the last paragraph, \mathfrak{G} will be a simple graded
Lie algebra of the \mu -th kind over R, and the differentiability will always
mean that of class C^{\infty} .

2. 1. Notations. Let B be a manifold.
(1) For example consider a function F:Barrow C^{2}(\mathfrak{G})=\mathfrak{g}\otimes\wedge^{2}(\mathfrak{m}^{*}) . For

any X, Y\in \mathfrak{m} , F(X\wedge Y) denotes the \mathfrak{g} -valued function on B given by

F(X\Lambda Y)(x)=F(x)(X\Lambda Y) , x\in B

Let \alpha and \beta be \mathfrak{m}-valued differential forms on B. Take a basis \{e_{i}\}_{1\leqq i\leqq m} of
\mathfrak{m} , and express the forms \alpha an \beta as follows : \alpha=\sum_{i}\alpha_{i} e_{i} and \beta=\sum_{i}\beta_{i}e_{i} .

Then F(\alpha\Lambda\beta) denotes the \mathfrak{g}-valued differential form on B given by

F( \alpha\Lambda\beta)=\sum_{i,j}\alpha_{i}\Lambda\beta_{j}
. F(e_{i}\Lambda e_{j})

(2) Let \alpha be a \mathfrak{g} -valued differential form on B. \alpha_{j} denotes the \mathfrak{g}_{j^{-}}com-

ponent of \alpha with respect to the decomposition \mathfrak{g}=\sum_{j}\mathfrak{g}j :

\alpha=\sum_{j}\alpha_{j}=\sum_{j=-\mu}^{\mu}\alpha j .

Let F be a function Barrow C^{q}(\mathfrak{G})=\mathfrak{g}\otimes\wedge^{q}(\mathfrak{m}^{*}) . F_{j} denotes the \mathfrak{g}grcomponent
of F with respect to the decomposition C^{q}( \mathfrak{G})=\sum_{j}\mathfrak{g}_{j}\otimes\wedge^{q}(\mathfrak{m}^{*}) , and F^{p} the
C^{p,q}(\mathfrak{G}) grcomponent of F with respect to the decomposition C^{q}( \mathfrak{G})=\sum_{p}C^{p,q}(\mathfrak{G}) .

Furthermore F^{p_{j}} denotes the C^{p,q_{j}}grcomponent of F with respect to the de-
composition C^{q}( \mathfrak{G})=\sum_{p,j}C^{p,q_{j}} , where

C^{p,q_{j}}= \mathfrak{g}_{j}\otimes\bigwedge_{j-p-q+1}^{q}(\mathfrak{m}^{*})

Then we have

F= \sum_{j}F_{J}=\sum_{p}F^{p} :

F_{j}= \sum_{p}F_{j\prime}^{p}. F^{p}= \sum_{j}F_{j}^{p}

(3) For a moment let us denote by \mathscr{C}q the space of all functions F :
Barrow C^{q}(\mathfrak{G}) . The operator \partial : C^{q}(\mathfrak{G})arrow C^{q+1}(\mathfrak{G}) naturally induces an operator
\partial : \mathscr{C}^{q}arrow \mathscr{C}^{q+1} :
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(\partial F)(x)=\partial F(x) , F\in \mathscr{C}^{q} , x\in B

Similarly we have the operator \partial^{*}: \mathscr{C}^{q+1}arrow \mathscr{C}q . The action of the group
G_{0} on C^{q}(\mathfrak{G}) naturally induces an action of G_{0} on \mathscr{C}^{q} :

(F^{a})(x)=F(x)^{a} , F\in \mathscr{C}^{q} , x\in B

Similarly the group G’ as well as the Lie algebra \mathfrak{g}’ act on \mathscr{C}q .
(4) Let \{\theta_{j}\}_{j<0} be a system of \mathfrak{g}_{j} grvalued 1-forms \theta_{j} , j<0, on B. As-

sume that the system \{\theta_{j}\}_{j<0} is independent in the sense that \dim B=m+
\dim N_{x}, x\in B, where m= \dim \mathfrak{m}=\sum_{j<0}\dim \mathfrak{g}j ’ and N_{x} denotes the subspace
of T(B)_{x} consisting of all X\in T(B)_{x} such that \theta_{j}(X)=0 for all j<0 . Now
let V be a finite \dim\circ.nsional vector space over R, and let \alpha and \beta be V-
valued differential forms on B. Let p be any integer \leqq-1 , and defifine a
subset I(p) of Z\cross Z by

I(p)=\{(r, s)\in Z\cross Zlp<r, s<0, and r+s<p\}

Then by
\alpha\equiv_{p}\beta we mean that

\alpha\equiv\beta\{mod \theta_{r}(r\leqq p) ; \theta_{r}\Lambda\theta_{s}((r, s)\in I(p))\}

(see [7]). Namely let [mathring]_{x}^{*}(B) denote the exterior algebra of all differential
forms on B. Take a basis \{e_{j\lambda}\}_{1\leqq\lambda\leqq n_{j}} of \mathfrak{g}_{j} for each j<0 , and a basis
\{u_{\nu}\}_{1\leqq\nu\leqq k} of V. And express the forms \theta_{j} , \alpha and \beta as follows: \theta_{j}=\sum\theta_{j\lambda}

e_{j}\lambda ’

\alpha=\sum_{\nu}\alpha_{\nu}u_{\nu} and \beta=\sum_{\nu}\beta_{\nu}u_{\nu} . Then
\alpha\equiv\beta p means that the forms \alpha_{\nu}-\beta_{\nu} are in

the ideal of \mathscr{D}^{*}(B) generated by the following forms:
\theta_{r\lambda}(1\leqq\lambda\leqq nr’ r\leqq p) ;

\theta_{r\lambda}\Lambda\theta_{s\kappa}(1\leqq\lambda\leqq n_{r}, 1\leqq\kappa\leqq n_{s} , (r, s)\in I(p))

2. 2. G_{0}^{\#} -structures of type \mathfrak{M} . In this paragraph we introduce the
notion of a G_{0}^{\#}-structure of type ’\mathfrak{M} , which is one of the subjects in the
present paper.

By Lemma 1. 8 the natural representation of the group G_{0} on the vector
space \mathfrak{m}, i . e. , the representation \rho : G’arrow GL(\mathfrak{m}) , restricted to G_{o} , is faithful.
Since G_{0}=Aut(\mathfrak{G}) , the image \rho(G_{0}) of G_{0} by \rho is contained in the aut0-
morphism group Aut (M) of the FGLA, \mathfrak{M} . It is not difficult to see that
\rho(G_{0}) is closed in Aut (M). Hereafter we shall identify the two groups G_{0}

and \rho(G_{0}) through the isomorphism \rho : G_{0}arrow\rho(G_{0}) .
By using the subgroup G_{0} of Aut (\mathfrak{M}) , we now define a subgroup G_{0}^{\#}

of GL(\mathfrak{m}) as follows: We first denote by N^{0} the subgroup of GL(\mathfrak{m}) con-
sisting of all a\in GL(\mathfrak{m}) such that
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aY_{p}\equiv Y_{p} (mod \mathfrak{d}_{p+1} ) for all Y_{p}\in \mathfrak{g}_{p} and p<0 ,

were \mathfrak{d}_{p+1}=\sum_{pj+1}^{-1}\mathfrak{g}_{j} . Then we define G_{0}^{\#} to be the closed subgroup G_{0}\cdot N^{0}

of GL(\mathfrak{m}) :

G_{0}^{\#}=G_{0}\cdot N^{0} .

We denote by \tilde{G} the image \rho(G’) of G’ by the homomorphism \rho : G’arrow

GL(\mathfrak{m}) , which is nothing but the linear isotropy group of the homogeneous
space G/G’ at the origin 0. By Lemmas 1. 7 and 1. 9 the group \tilde{G} may
be expressed as follows :

\tilde{G}=G_{0}\cdot\rho(\exp \mathfrak{g}_{1})\cdots\rho(\exp \mathfrak{g}_{\mu-1}) .

It is easy to see that \rho
(\exp \mathfrak{g}_{1}) ...

\rho
(\exp \mathfrak{g}_{\mu-1}) is a closed subgroup of N^{0} and

hence \tilde{G} is a closed subgroup of G_{0}^{ff} .
REMARK. By definition the simple graded Lie algebra \mathfrak{C} is of contact

type if it is of the second kind and if \dim \mathfrak{g}_{-2}= 1 . This being said, we
remark that the two groups G_{0}^{\mu} and \tilde{G} coincide if and only if \mathfrak{G} is of the
first kind or of contact type. The equivalence problems associated with
these simple graded Lie algebras have been already discussed in our papers
[6] and [8].

Now G_{0}^{ff} being a Lie subgroup of GL(\mathfrak{m}) , we may speak of a G_{0}^{ff}-

structure Let (P^{\#}, \xi) be a G_{0}^{\#}-structure on a manifold M. Taking values
in \mathfrak{m} , the basic form \xi may be expressed as follows :

\xi=\sum_{j<0}\xi_{j}

Following the paper [7], we say that the G_{0}^{*}\Uparrow structure (P^{\#}, \xi) is of type \mathfrak{M}

if the basic form \xi or the system \{\xi_{j}\}_{j<0} satisfies the equations

d \xi_{j}+\frac{1}{2}\sum_{r+s=j}[\xi_{r}, \xi_{s}]\equiv 0j
’ j\leqq-2 ,

where the symbols \equiv are considered with respect to the system \{\xi_{j}\}_{j<0} .
j

It should be noted that a G_{0}^{\#}-structure of type \mathfrak{M} admits a (strongly) regular
differential system of type \mathfrak{M} as its underlying structure (see [7]).

2. 3. Connections of type \mathfrak{G} . Let us consider the homogeneous space
G/G’ associated with the simple graded Lie algebra \mathfrak{G} . According to the
previous paper [8], a Cartan connection of type G/G’ will be called a con-
nection of type \mathfrak{G} .

As usual the group G may be regarded as a principal fibre bundle over
the base space G/G’ with structure group G’ . Let \omega be the Maurer-Cartan
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form of G which is the \mathfrak{g} -valued 1form on G defined by \omega(X)=X for all
X\in \mathfrak{g} , where \mathfrak{g} should be regarded as the Lie algebra of all left invariant
vector fields on G. Then the pair (G, \omega) gives a connection of type \mathfrak{G} on
G/G’ . which is called the standard connection of type \mathfrak{G} .

Let (P, \omega) be a connection of type \mathfrak{G} on a manifold M. We denote
by \omega-the \mathfrak{m}-component of 0 with respect to the decomposition: \mathfrak{g}= )n +\mathfrak{g}’ .

LEMMA 2. 1. (1) Let z\in P, and X\in T(P)_{z} . Then \omega_{-}(X) =0 if and
only if X is a vertical vector, i . e. , X is of the_{J^{1}}\grave{o}rmA_{z}^{*} with some A\in \mathfrak{g}’ .

(2) R_{a}^{*}\omega_{-}=\rho(a)^{-1}\omega_{-} , a\in G’ .
p_{ROOF} . We first recall conditions (C. 1) \sim(C. 3) for the Cartan connec-

tion \omega . (1) Let A denote the g -component of \omega(X) with respect to the de -

composition : \mathfrak{g}=\mathfrak{m}+\mathfrak{g}’ . Using (C. 2), we have
\omega(X-A_{z}^{*})=\omega_{-}(X) .

Therefore we see from (C. 1) that \omega_{-}(X)=0 if and only if X=A_{z}^{*} , which
clearly proves (1). (2) is clear from (C. 3).

We define a \mathfrak{g} -valued 2-form \Omega on P by

\Omega=d\omega+\frac{1}{2}[\omega, \omega]’.

which is usually called the curvature form.
Lemma 2. 2. There is a unique function K:Parrow C^{2}(\mathfrak{G})=\mathfrak{g}\otimes\Lambda^{2}(\mathfrak{m}^{*})

such that

\Omega=\frac{1}{2}K(\omega_{-}\wedge\omega_{-})

PROOF. Let A\in \mathfrak{g}’ Using (C. 2) and (C. 3), we have
A^{*}\rfloor d\omega=L_{A^{*}}\omega-d\omega(A^{*})=-[A, \omega] -,

whence
A^{*}\rfloor\Omega=A^{*}\rfloor d\omega+[A, \omega]=0 .

Now the lemma follows from this fact and (1) of Lemma 2. 1.
The equation in Lemma 2. 2 will be called the structure equation, and

the function K will be called the curvature function or simply the curvature.
For any X\in \mathfrak{g} we define a vector field \check{\omega}(X) on P by

\omega(\check{\omega}(X))=X1

Then we have the following:
(1) For any z\in P the assignment Xarrow\check{\omega}(X)_{z} gives a linear isomorphism

of \mathfrak{g} onto T(P)_{z} .



40 N. Tanaka

(2) \check{\omega}(X)=X^{*} , X\in \mathfrak{g}’ .
(3) (R_{a})*\check{\omega}(X)=\check{\omega} (Ad (a^{-1})X), X\in \mathfrak{g} , a\in G’ .

Note that the curvature function K may be explicitly given by

K(X\wedge Y)=[X, Y]-\omega([\check{\omega}(X),\check{\omega}(Y)]) - X, Y\in \mathfrak{m}

Lemma 2. 3. R_{a}^{*}K=K^{a}, a\in G’

PROOF. Using (C. 3), we have

R_{a}^{*} \Omega=Ad(a^{-1})\Omega=\frac{1}{2} Ad (a^{-1})K(\omega_{-}\Lambda\omega_{-})

On the other hand using (2) of Lemma 2. 1, we have

R_{a}^{*} \Omega=\frac{1}{2}(R_{a}^{*}K)(\rho(a)^{-1}\omega_{-}\Lambda\rho(a)^{-1}\omega_{-})\tau

It follows that

Ad (a^{-1})K(X\Lambda Y)=(R_{a}^{*}K)(\rho(a)^{-1}X\Lambda\rho(a)^{-1}Y) . X, Y\in \mathfrak{m} ,

proving the lemma.
Following the general notations given in 2. 1, the connection form \omega

is decomposed as follows:

\omega=\sum_{j}\omega j ,

the curvature form f as follows:

\Omega=\sum_{j}\Omega_{j} ,

and the curvature function K as follows:

K= \sum_{j}K_{j}=\sum_{p}K^{p} ,

K_{j}= \sum_{p}K_{j}^{p} , K^{p}= \sum_{j}K_{j}^{p}t

We note that (C. 2) may be described as follows:

\omega_{j}(X_{r}^{*})=\delta_{jr}X_{r} . X_{r}\in \mathfrak{g}_{r} , 0\leqq r\leqq\mu ,

and (C. 3) as follows

(i) R_{a}^{*}\omega_{j}=Ad(a^{-1})\omega_{j} , a\in G_{0} ,

(ii) \mathscr{L}_{X_{r}^{*}} (v_{j} =-[Xr’ \omega_{j-\gamma}] j
X_{r}\in \mathfrak{g}_{r}

(In the proof of this last fact we use Lemma 1. 7.) We also note that Lemma
2. 3 is equivalent to the following two assertions:
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(i) R_{a}^{*}K^{p}=(K^{p})^{a} . a\in G_{0} ,

(ii) \mathscr{L}_{X_{r}^{*}}K^{p}=(K^{p-r})^{x_{r}} , X_{r}\in \mathfrak{g}_{r} , 1\leqq r\leqq\mu ,

from which follows the following
Lemma 2. 4. If for some p the functions K^{q} vanish for all q<p , then

we have
R_{a}^{*}K^{p}=(K^{p})^{b} , a\in G’

where b denotes the G_{0}-component of a with respect to the decomposition
given in Lemma 1. 7.

The structure equation is decomposed into the equations

(E_{j}) \Omega_{j}=\frac{1}{2}K_{j}(\omega_{-}\wedge\omega_{-})=\frac{1}{2}\sum_{p}K_{j}^{p}(\omega_{-}\Lambda\omega_{-})

and the 2-forms \Omega_{j} and K_{j}^{p}(\omega_{-}\wedge\omega_{-}) can be expressed respectively as follows:

\Omega_{j}=d\omega_{j}+\frac{1}{2}\sum_{u+v=j}[\omega_{u}, \omega_{v}] ,

K_{j}^{p}(\omega_{-}\Lambda\omega_{-})=r
r,s<0 \sum_{+s=j-p-1},,K^{p}(\omega_{r}\wedge\omega_{S})

For any p and j\leqq p-2 we define a \mathfrak{g}_{j} -valued 2-form \Omega pj on P by

\Omega_{j}^{p}=dojj +_{u}^{\frac{1}{2}}

u,v \leqq p-,,1\sum_{+v=j}[\omega_{u}, \omega_{v}]

The next lemma can be easily derived from equations (E_{j}) .
Lemma 2. 5. For every p we have the equations

(E_{j}^{p}) \Omega pjj-p\equiv\frac{1}{2}\sum_{l\leqq p-1}Kl j(\omega_{-}\Lambda\omega_{-}) . j\leqq p-2 :

where the symbols
j-p\equiv

are considered with respect to the system \{\omega_{j}\}_{j<0} .

The system of equations (E_{j}^{p}) , j\leqq p-2 , is, so to speak, the structure
equation which is satisfied by the system \omega^{(p)}=\{oy_{j}\}

j\leq p-1 . Fix any integer
j. Then equation (E_{j}^{p}) is nothing but equation (E_{j}) for sufficiently large p
or symboh.cally

(E_{j})= \lim_{parrow\infty}(E_{j}^{p}) .

Let us now show that to every connection of type \mathfrak{G} , (P, \omega) , on a manifold
M there is associated a \tilde{G} structure (\tilde{P}, -) on M in a natural manner: Let
G’ denote the kernel of the homomorphism \rho : G’arrow\tilde{G} . Then we define
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\tilde{P} to be the factor bundle P/G’ , which is a principal fibre bundle over the
base space M with structure group \tilde{G}=G’/G’ Let \rho denote the projection
Parrow\tilde{P}. Then we see from Lemma 2. 1 that there is a unique \mathfrak{m}-valued 1-
form -on \tilde{P} such that \rho^{*}\overline{\xi}=0)-, and that the pair (\tilde{P},-) gives a \tilde{G} structure
on M.

Now recall that the group \tilde{G} was extended to the group G_{0}^{\#}\subset GL(\mathfrak{m}) .
Correspondingly the \tilde{G} structure (\tilde{P}, \xi) is extensible to the group G_{0}^{f1} (see
Preliminary remarks). We denote by (P^{ff}, \xi) the extended G_{0}^{\#} structure on M.

In this way we have seen that every connection of type \mathfrak{G} , (P, \omega) , induces
a G_{0}^{\#} structure (P^{\#}, \xi) in a natural manner. Let (P, \omega) (resp. (P’ , \omega’ )) be a
connection of type \mathfrak{G} on a manifold M (resp. on M’), and (P^{\#}, \xi) (resp. (P^{\prime\#} ,
\xi’)) the corresponding G_{0}^{\#} structure on M (resp. on M’). Then we remark
that every isomorphism \varphi : (P, \omega)arrow(P’, \omega)’ induces an isomorphism \varphi^{\#} : (P^{\#}, \xi)

arrow(P^{\prime ff}, \xi’) in a natural manner. More precisely let \rho (resp. \rho’ ) be the natural
homomorphism Parrow P^{\#} (resp. P’arrow P^{\prime\#}). Then there is a unique isomorphism
\varphi^{\#} : (P^{\#}, \xi)- (P’\#, \xi’) with \rho’\circ\varphi=\varphi_{1}^{\#_{O}}0 .

2. 4. Normal connections of type \mathfrak{G} , and the main theorem. We say
that a connection of type \mathfrak{G} , (P, \omega) , on a manifold M is normal if the curva-
ture K satisfies the following conditions:

(NC. 1) K^{p}=0 for p<0 ;

(NC. 2) \partial^{*}K^{p} =0 for p\geqq 0

It is clear that the standard connection of type \mathfrak{G} , (G, \omega) , on G/G’ is
normal, because the curvature K vanishes.

Lemma 2. 6. Let (P, \omega) be a connection of type \mathfrak{G} on a manifold M,
and (P^{\#}, \xi) the corresponding G_{0}^{\#} structure on M If (P, \omega) is normal, then
(P^{\#}, \xi) is of type M.

PROOF. Let (\tilde{P},-) be the \tilde{G} -structure on M corresponding to (P, \omega) .
We have \rho^{*}\overline{\xi}=0)-, and from (NC. 1) and Lemma 2. 5 we obtain

\Omega_{j}^{0}\equiv 0j . j\leqq-2

Hence we see that the basic form -of \tilde{P} satisfies the equations

d \overline{\xi}_{j}+\frac{1}{2}\sum_{r+s=j}[\tilde{\xi}_{r},\overline{\overline{\xi}}_{S}]\equiv 0jj j\leqq-2 ,

where_{0}\{\overline{\xi}_{j}\}_{j<}

.
thesymbolsUsingthisfact,weshowth\equiv are,ofcoursej’at(P^{\#}\xi)isconsideredoftype9Jlwithrespecttoi.e.

,

the system

d\xi_{j}+\frac{1}{2}\sum_{r+s=j}[\xi_{r}, \xi_{S}]\equiv_{j}0 , j\leqq-2
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Indeed since the matter is of local character, we may assume that \tilde{P} admits
a global cross section, say g. Then there is a unique map a:P^{\#}arrow G_{0}^{\#} such
that z=g(\pi(z))\cdot a(z) , z\in P^{\#} , \pi being the projection P^{\#}arrow M. If we put \eta=

g^{*}\xi=g^{*}\overline{\xi} , we have \xi=a^{-1} . \pi^{*}\eta . Let b be the G_{0}-component of a with
respect to the decomposition G_{0}^{\#}=G_{0}\cdot N^{0} . Then we easily see that

\xi_{j}\equiv b^{-1} . \pi^{*}\eta j (mod \pi^{*}\eta_{r}(r<j)) .

\pi^{*}\eta_{j}\equiv b\cdot\xi_{j} (mod \xi_{r}(r<j))

Furthermore we see from the equations above for -that
d \eta_{j}+\frac{1}{2}\sum_{r+s-j}[\eta_{r}, \eta_{s}]\equiv 0 (mod \eta_{r}\Lambda\eta_{s}(r+s<j))

Now our assertion follows easily from these facts. We have thus proved
the lemma.

We are now in a position to state the main theorem in the present
paper:

THEOREM 2. 7. Let \mathfrak{G} be a simple graded Lie algebra over R. Assume
that \mathfrak{G} is the prolongation of (\mathfrak{M}, \mathfrak{g}_{0}) .

(1) Every normal connection of type \mathfrak{G} , (P, \omega) , on a manifold M in-
duces a G_{0}^{\#}-structure of type \mathfrak{M} , (P^{\#}, \xi) , on M in a natural manner. Con-
versely if (P^{\#}, \xi) is a G_{0}^{l}-structure of type \mathfrak{M} on M, there is a normal con-
nection of type \mathfrak{G} , (P, \omega) , on M which induces the given (P^{\#}, \xi) .

(2) Let (P, \omega) (resp. (P’ , \omega’ )) be a normal connection of type \mathfrak{G} on a
manifold M (resp. on M’), and (P^{\#}, \xi) (resp. ( P^{\prime\#}, \xi’ )) the corresponding G_{0^{-}}^{\#}

structure of type t)Jt on M (resp. on M’). Then every isomorphism \varphi : (P, \omega)

arrow(P’, \omega)’ induces an isomorphism \varphi^{\#} : (P^{f}, \xi) -,(P’ \# , \xi’ ) in a natural manner.
Conversely if \varphi^{\#} : (P^{\#}, \xi)- (P^{\prime\#}, \xi’) is an isomorphism, there is a unique is0-
morphism \varphi : (P, \omega)- (P’, \omega)\prime which induces the given \varphi^{\#} .

This theorem will be proved in \S 3--\S 5.
REMARK. Let (P, \omega) be a connection of type \mathfrak{G} on a manifold M. By

the very definition of the operator \partial^{*} , the function \partial^{*}K can be described
as follows :

\partial^{*}K =K^{*}+R ,

where the functions K^{*} and R are respectively given by

K^{*}(X)= \sum_{i}[e_{i}^{*}, K(e_{i}\Lambda X)] .

R(X)= \frac{1}{2}\sum_{i}K([e_{i}^{*}, X]_{-}\wedge e_{i}) , X\in \mathfrak{m} .
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The function \kappa* was already introduced in the previous paper [8] as the
* -curvature. Furthermore in the special case where \mathfrak{G} is of contact type,
the connection (P, \omega) was defined to be normal if the * -curvature K^{*} vanishes:
However we have the following.

PROPOSITION 2. 8. Assume that \mathfrak{G} is of contact type and that it is
the prolongation of (\mathfrak{M}, \mathfrak{g}_{0}) . Assume further that the torsion part of K
vanishes, i . e. , K_{-2}=K_{-1}=0 . Then the connection (P, \omega) is normal in our
present sense if and only if it is normal in our previous sense.

The proof of this fact uses the results in [8] (especially \S 8 there) toge-
ther with Theorem 2. 7. For example the assumptions in the proposition
are satisfied by the connection (see [8]) which is naturally attached to a non-
degenerate real hypersurface of a complex manifold.

2. 5. Fundamental systems of invariants. Let (P, \omega) be a normal con-
nection of type \mathfrak{G} on a manifold M. (We do not assume that \mathfrak{G} is the
prolongation of (\mathfrak{M}, \mathfrak{g}_{0}) .) The main aim of this paragraph is to show that
the harmonic part H(K) of the curvature K gives a fundamental system
of invariants of the connection (P, \omega) (Theorem 2. 9).

We first explain the notations, which will be necessary for the statement
of the theorem.

We denote by \overline{\swarrow U,}(P) the algebra of all differentiate functions on P.
In general let V be a finite dimensional vector space over R, and L a dif-
ferentiable function Parrow V. We denote by .\mathscr{I}_{0}(L) the subspace of \swarrow, (P)
consisting of all the functions of the form

\langle L, v^{*}\rangle ,

where v^{*}\in V^{*} . And we denote by \hat{\mathscr{I}}_{0}(L) the subspace of .\mathscr{F}(P) spanned
by the functions in .\mathscr{I}_{0}(L) and their successive covariant derivatives, i . e. ,

all the functions of the form:
\check{\omega}(X_{1})\cdots\check{\omega}(X_{l})f_{:}

where f\in \mathscr{I}_{0}(L) , and X_{1} , \cdots , X_{l}\in \mathfrak{m}(l=0,1,2, \cdots) . Furthermore we denote
by \hat{\mathscr{I}}(L) the subalgebra of \mathscr{H}^{}(P) generated by \hat{\mathscr{I}}_{0}(L) .

Applying the notations above to the curvature K:Parrow C^{2}(\mathfrak{G}) , we have the
spaces \hat{\mathscr{I}}_{0}(K) and \hat{\mathscr{I}}(K) . Let us now recall that the sapce C^{2}(\mathfrak{G}) is orth0-
gonally decomposed as follows :

C^{2}(\mathfrak{G})=H^{2}(\mathfrak{G})+\Delta C^{2}(\mathfrak{G})

We denote by H the orthogonal projection C^{2}(\mathfrak{G})arrow H^{2}(\mathfrak{G}) . Applying the
operator H to the curvature K, we have the function H(K):Parrow H^{2}(\mathfrak{G}) ,
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the harmonic part of K. Then the function H(K) gives rise to the spaces
\hat{\mathscr{I}}_{0}(H(K)) and \hat{\mathscr{I}}(H(K)) . Clearly we have \hat{\mathscr{I}}_{0}(H(K))\subset\hat{\mathscr{I}}_{0}(K) and \hat{\mathscr{I}}(H(K)\rangle\cdot

\subset\hat{\mathscr{I}}(K) . Finally we denote by K-the torsion part of the curvature K, i . e. ,

K_{-}= \sum_{j<0}K_{j} .

These being prepared, we state the following
THEOREM 2. 9. (1) \hat{\mathscr{I}}(K)=\hat{\mathscr{I}}(H(K)) .
(2) If K_{-}=0 , then \hat{\mathscr{I}}_{0}(K)=\hat{\mathscr{I}}_{0}(H(K)) .

COROLLARY. The curvature K vanishes if and only if the harmonic
part H(K) of K vanishes.

By E. Cartan [1], the space \hat{\mathscr{I}}0(K) or \hat{\mathscr{I}}(K) gives a complete system
of invariants of the connection (P, \omega) . Theorem 2. 9 indicates that the har-
monic part H(K) of the curvature K gives a fundamental system of invariants.
The study of the fundamental system of invariants is preceded by the cal-
culation of the spaces of harmonic forms, H^{p,2}(\mathfrak{G}) . In the forthcoming
papers we shall calculate the spaces H^{p,2}(\mathfrak{G}) for various simple graded Lie
algebras G.

We shall now prove Theorem 2. 9. The proof is based on the Bianchi
identity for the connection (P, \omega) , which may be stated as follows :

Lemma 2. 10. (cf. [8], Lemma 8. 2).

(\partial K)(X_{1}\Lambda X_{2}\Lambda X_{3})=-\mathfrak{S}\check{\omega}(X_{1})K(X_{2}\Lambda X_{3})-\mathfrak{S}K(K_{-}(X_{1}\Lambda X_{2})\Lambda X_{3}) .
where X_{1} , X_{2} , X_{3}\in \mathfrak{m} and \mathfrak{S} stands for the cyclic sum with respect to (X_{1} ,
X_{2}, X_{3}) .

The curvature K is decomposed as follows:

K= \sum_{p}K^{p}

For any p\geqq 0 , we define a function \Psi p-1 : Parrow C^{p-13},(\mathfrak{G}) in the following
manner: Take any negative integers r_{1} , r_{2} , and r_{3} . For each 1\leqq i\leqq 3 ,
take any vector X_{i}\in \mathfrak{g}_{r_{i}} . Then the function \Psi p-1 (X_{1}\Lambda X_{2}\Lambda X_{3}) is defined
by the following formula :

\Psi p-1 (X_{1}\Lambda X_{2}\Lambda X_{3})=-\check{\omega}(X_{1})K^{p+r_{1}}(X_{2}\Lambda X_{3})-\check{\omega}(X_{2})K^{p+r_{2}}(X_{3}\Lambda X_{1})

- \check{\omega}(X_{3})K^{p+r_{3}}(X_{1}\Lambda X_{2})-\frac{\overline{\gamma}_{1}^{r}}{l=}0K^{p-l-1}-r_{12}-2(K^{l}(X_{1}\Lambda X_{2})\Lambda X_{3})

- \sum_{l=0}^{-2}K^{p-l-1}-r_{2}-r_{3}(K^{l}(X_{2}\Lambda X_{3})\Lambda X_{1})-\sum_{l=0}^{-r_{3}-r_{1}-2}K^{p-\iota-1}(K^{l}(X_{3}\Lambda X_{1})\Lambda X_{2})

(Putting i=r_{1}+r_{2}+r_{3} , we see that \Psi^{p-1}(X_{1}\Lambda X_{2}\Lambda X_{3}) takes values in \mathfrak{g}_{i+p+1} .
Hence the formula above really defines a function \Psi p-1 : Parrow C^{p-13},(\mathfrak{G}).)
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Lemma 2. 11. The Bianchi identity may be described as follows:
\partial K^{p}=\Psi p-1 , p\geqq 0

PROOF. The notations being as above, we first remark that (\partial K^{p})(X_{1}\Lambda

X_{2}\Lambda X_{3}) is the \mathfrak{g}_{i+p+1} -component of (\partial K)(X_{1}\Lambda X_{2}\Lambda X_{3}) . Clearly the \mathfrak{g}_{i+p+1^{-}}

component of \check{\omega}(X_{1})K(X_{2}\Lambda X_{3}) is \check{\omega}(X_{1})K^{p+r_{1}}(X_{2}\Lambda X_{3}) . By using (NC. 1) ,
we see that

K_{-}(X_{1}\Lambda X_{2})=L\neg K^{l}(X_{1}\Lambda X_{2})-r_{1}-r_{\angle}-2l=0
’

and hence that the \mathfrak{g}_{i+p+1} -component of K(K_{-}(X_{1}\wedge X_{2})\wedge X_{3}) is

\sum_{l=0}^{-r_{1}-r_{2}-2}Kp-\iota-1(K^{\iota}(X_{1}\Lambda X_{2})\Lambda X_{3})

It is now clear that the Bianchi identity may be described as in Lemma
2. 11.

Lemma 2. 12. (1) . \mathscr{I}_{0}(\Psi^{p-1})\subset\hat{\mathscr{I}}(\sum_{l=0}^{p-1}K^{l}) .

(2) If K_{-}=0 , then. \mathscr{I}_{0}(\Psi^{p-1})\subset\hat{\mathscr{I}}0(\sum_{l=0}^{p-1}K^{l}) .
These facts are clear from the definition of \Psi p-1 and the proof of Lemma

2. 11.
We put

L^{p}=K^{p}-H(K^{p}) ,

which takes values in \Delta C^{p2}, (\mathfrak{G}) .
Lemma 2. 13. L^{p}=\Delta^{-1}\partial^{*}\Psi^{p-1} , p\geqq 0 .
PROOF. By Lemma 2. 11 we have \partial L^{p}=\partial (K^{p}-H(K^{p})) =\partial K^{p}=\Psi p-1 .

By (NC. 2) we have \partial^{*}L^{p} =\partial^{*} (K^{p}-H(K^{p})) =\partial^{*}K^{p} =0. It follows that \Delta L^{p}=

\partial^{*}\Psi p-1 and hence L^{p}=\Delta^{-1}\partial^{*}\Psi^{p-1} .
We are now in a position to prove Theorem 2. 9. By (1) of Lemma

2. 12. and Lemma 2. 13 we have

. \mathscr{I}_{0}(L^{p})\subset\hat{\mathscr{I}}(\sum_{l=0}^{p-1}K^{l})=\hat{\mathscr{I}}(\sum_{l=0}^{p-1}H(K^{l})+\sum_{l=0}^{p-1}L^{l})

Since \partial K^{0}=\Psi^{-1}=0 , we have K^{0}=H(K^{0}) . Therefore it follows that

.”’ o(L^{p})\subset\hat{\mathscr{I}}(\sum_{l=0}^{p-1}H(K^{l})) , p\geqq 0

This fact clearly implies that \mathscr{I}_{0}(K)\subset\hat{\mathscr{I}}(H(K)) and hence \hat{\mathscr{I}} (K)\subset \mathscr{I} (H(K)) .
Since \hat{\mathscr{I}}(H(K))\subset\hat{\mathscr{I}}(K) , we obtain \hat{\mathscr{I}}(K)=\hat{\mathscr{I}}(H(K)) , proving (1). Now
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assume that K_{-}=0 . By (2) of Lemma 2. 12, and Lemma 2. 13 we see as
above that

\mathscr{I}_{0}(L^{p})\subset\hat{\mathscr{I}}_{0}(\sum_{l=0}^{p-1}H(K^{l})) , p \geqq 0 .

Hence we obtain \hat{\mathscr{I}}_{0}(K)=\hat{\mathscr{I}}_{0}(H(K)) , proving (2).
We have thus completed the proof of TheOrem2. 9.
2. 6. Normal connections of type \mathfrak{G} in the complex analytic category.

Let \mathfrak{G} be a simple graded Lie algebra over the field C of complex numbers.
There correspond to \mathfrak{G} the FGLA over C, \mathfrak{M} , and the complex Lie groups
G, G’ and G_{0} (see \S 1). Thus we have the notion of a G_{0}^{\#} GVstructure of
type \mathfrak{M} in the complex analytic category as well as the notion of a normal
connection of type \mathfrak{G} in the complex analytic categroy. (These notions can
be defined in the same manner as in the real case by considering everything
in the complex analtyic category and by localizing the definition of

\equiv_{p}

.)

Here we remark that Theorem 2. 7 holds in the complex analytic cate-
gory, which can be deduced from the proof of the theorem given in \S 3\sim

\S 5. Moreover we remark that Theorem 2. 9 also holds in the complex
analytic category.

\S 3. A reduction theorem for G_{0}^{\#}-structures of type \mathfrak{M}

This and the subsequent two sections will be devoted to the proof of
Theorem 2. 7, as we promised. In the following \mathfrak{G} will be a simple graded
Lie algebra of the \mu-th kind over R, and we shall assume that \mathfrak{G} is the
prolongation of (\mathfrak{M}, \mathfrak{g}_{0}) . The spaces C^{p,q}(\mathfrak{G}) will be simply written as C^{p,q} .

In this section we shall prove the important fact that every G_{0}^{\#}GVstructure

of type \mathfrak{M} is naturally reduced to a \tilde{G}-structure (Theorem 3. 7).

3. 1. Algebraic preliminaries. For any p\geqq 0 , we define subspaces C^{p,1}-

and C^{p,1}+ of C^{p,1} respectively as follows :

C^{p,1}-= \sum_{j<0}\mathfrak{g}_{j}\otimes \mathfrak{g}_{j-p}^{*} ,

C^{p,1}+= \sum_{0\leqq j<p}\mathfrak{g}_{j}\otimes
\mathfrak{g}*j-p .

Clearly we hvae
C^{p,1}=C^{p,1}-+C^{p,1}+ (direct sum) t

Note that C^{0,1}+=0 and C^{p,1}-=0 , p\geqq\mu . We denote by \pi-(resp. by \pi_{+} ) the
projection of C^{p,1} onto C^{p,1} -(resp. onto C^{p,1}+).

By Lemma 1. 14 we easily have the 1^{L}01r1owing
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Lemma 3. 1. \pi_{-}(\partial \mathfrak{g}p) = \{c \in C^{p,1}-|\partial c\in\partial C^{p},1+\} , p\geqq 1.

Lemma 3. 2. (1) If p\geqq 1, then the map \pi_{+}\circ\partial : \mathfrak{g}_{p}arrow C^{p,1}+ is injective.
(\underline{?}) If 1\leqq p\leqq\mu-1, then the map \pi_{-}\circ\partial : \mathfrak{g}_{p}arrow C^{p,1}-is injective.
The first assertion of this lemma follows from Lemma 1. 3, and the

second from Lemma 1. 6. The next lemma is clear from Lemmas 1. 14 and
3. 2.

Lemma 3.3. (1) If p\geqq 1, then the map \partial : C^{p,1}-arrow C^{p-1,2} is injective.
(2) If 1\leqq p\leqq\mu-1, then the map \partial : C^{p,1}+arrow C^{p-1,2} is injective.
For any p and q we define a subspace Z^{pq_{*}}, of C^{p,q} by

Z^{p,q_{*}}=\{c\in C^{p,q}|\partial^{*}c=0\}

Clearly we have

C^{p,q}=Z^{p,q_{*}}+\partial C^{p+1,q-1} (direct sum) |

For any p\geqq 1 we now define a subspace W^{p,1} of C^{p,1}- by

W^{p,1}=Z^{p,1}*\cap Cp, 1-
Lemma 3. 4. Let p\geqq 1 .
(1) C^{p,1}-=W^{p,1}+\pi_{-}(\partial \mathfrak{g}p) (direct sum).
(2) C^{p-1,2}=Z^{p-1,2}*+\partial W^{p,1}+\partial C^{p} , 1+ (direct sum).

PROOF. Let c\in C^{p,1}-\cdot Since C^{p,1}-\perp C^{p,1}+ with respect to the inner
product ( ) , we have (c, \pi_{-}(\partial \mathfrak{g}_{p}))=(c, \partial \mathfrak{g}_{p})=(\partial^{*}c, \mathfrak{g}_{p}) . Hence it follows that
W^{p,1} is the orthogonal complement of \pi_{-}(\partial \mathfrak{g}p) in C^{p,1}- , proving (1). Let
us prove (2). Using (1) we have

\partial C^{p,1}=\partial C^{p} , 1-+\partial C^{p} , 1+

=\partial W^{p} , 1+\partial\pi_{-} (\partial \mathfrak{g}p) +\partial C^{p} , 1+

By Lemma 3. 1 we have \partial\pi_{-} (\partial \mathfrak{g}p) \subset\partial C^{p,1}+
’ and by Lemma 3. 1 and (1) we

have \partial W^{p} , 1\cap\partial C^{p}
,

1+^{=\partial}(W^{p},1\cap\pi_{-}(\partial \mathfrak{g}_{p})) =0. Hence we obtain
\partial C^{p,1}=\partial W^{p} , 1+\partial C^{p} , 1+ (direct sum).

Since C^{p-1,2}=Z^{p-1,2}*+\partial C^{p1}, (direct sum), we have proved Lemma 3. 4.
The Lie algebras \tilde{\mathfrak{g}} and \mathfrak{g}_{0}^{\#} . We denote by \tilde{\mathfrak{g}} and \mathfrak{g}_{0}^{\#} the Lie algebras

of G and fG_{0}^{f} respectively, which are subalgebras of \mathfrak{g}1(\mathfrak{m})=\mathfrak{m}\otimes \mathfrak{m}^{*} . Then
we have

\tilde{\mathfrak{g}}=\sum_{p=0}^{\mu-1}\rho(\mathfrak{g}_{p}) ,

\mathfrak{g}_{0}^{\#}=\rho(\mathfrak{g}p) + \sum_{p=0}^{\mu-1}C^{p,1}-
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Here we notice that \rho(\mathfrak{g}_{p})\subset C^{p1},- or more precisely
\rho(X_{p})=-\pi_{-}(\partial X_{p}) , X_{p}\in \mathfrak{g}_{p} .

The subalgebras 11^{p} of \mathfrak{g}_{0}^{\#} . For each 0\leqq p\leqq\mu-1 we define a subalgebra
\mathfrak{u}p of \mathfrak{g}_{0}^{\#} by

\mathfrak{u}^{p}=\sum_{j=0}^{p}\rho(\mathfrak{g}_{j})+q^{p} ,

where

q^{p}=\sum_{j=p+1}^{\mu-1}C^{j,1}-

Clearly we have
\mathfrak{g}_{0}^{\#}=\mathfrak{u}^{0}\supset \mathfrak{u}^{1}\supset\cdots\supset \mathfrak{u}^{\mu-1}=\tilde{\mathfrak{g}} .

The subgroups U^{p} of G_{0}^{\#} . For each 0\leqq p\leqq\mu-1 we define a subalgebra
\mathfrak{n}^{p} of \mathfrak{u}^{p} by

\mathfrak{n}^{p}=\sum_{j=1}^{p}\rho(\mathfrak{g}_{j})+q^{p} ,

and denote by N^{p} the (closed) Lie subgroup of G_{0}^{ff} generated by \mathfrak{n}^{p} . (The
group N^{0} defined here coincides with the group N^{0} defined in 2. 2.) We
have

N^{0}\supset N^{1}\supset\cdots\supset N^{\mu-1}t

We then define a closed subgroup U^{p} of G_{0}^{f} by

U^{p}=G_{0}\cdot N^{p}1

It is clear that the Lie algebra of U^{p} is \mathfrak{u}^{p} , and that
G_{0}^{\#}=U^{0}\supset U^{1}\supset\cdots\supset U^{\mu-1} =G

3. 2. Normal p-systems in U^{p} -structures. U^{p} being a Lie subgroup of
GL(\mathfrak{m}) , we have the notion of a U^{p} -structure.

Let (B^{p}, \xi) be a U^{p}-structure on a manifold M. Taking values in \mathfrak{m} ,
the baisc form \xi may be expressed as follows:

\xi=\sum_{j<0}\xi_{j}

Lemma 3. 5. (1) \xi_{j}(A^{*})=0 , A\in\iota\iota^{p} .
(2) R_{a}^{*}\xi_{j}=Ad(a^{-1})\xi_{j}, a\in G_{0} .
(3) ‘ \mathscr{L}_{\rho^{(x_{r})*\xi_{j}=-}}[Xr’ \xi_{j-\gamma}] , X_{r}\in \mathfrak{g}_{r} , 0\leqq r\leqq p .
(4) \mathscr{L}_{A^{*}}\xi_{j}=-A(\xi_{j-i}) , A\in C^{i,1}- , p+1\leqq i\leqq\mu-1.

This lemma is clear from the following conditions for the U^{p} -structure:
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i) \xi(A^{*})=0 , A\in \mathfrak{u}^{p} ; ii) R_{a}^{*}\xi=a^{-1}\xi , a\in U^{p} .
We shall now introduce the notion of a p system in (B^{p}, \xi) . Let \theta^{(p}

) =
\{\theta_{j}\}_{j\leqq p-1} be a system of \mathfrak{g}_{j} -valued 1-forms \theta_{j} , j\leqq p-1, on B^{p} . Assume that
\theta(p) is compatible with the basic form \xi , i . e. , \theta_{i}=\xi_{i} , i<0 . Then we say
that \theta^{(}p

) is a p system in (B^{p}, \xi) if it satisfies the following conditions:
(p. 1) i) \theta j(\rho(X_{r})^{*})=\delta_{jr}X_{r} , X_{r}\in \mathfrak{g}_{r} , 0\leqq r\leqq p ,

ii) \theta_{j}(A^{*})=0 , A\in q^{p} .
(p. 2) i) R_{a}^{*}\theta_{j}=Ad(a^{-1})\theta_{j} , a\in G_{0} ,

ii) \mathscr{L}_{\rho} (x_{r_{j-p-1}^{)*\theta_{j}\equiv-}}[Xr’ \theta_{j-\gamma}] , X_{r}\in \mathfrak{g}_{r} , 0\leqq r\leqq p ,

iii)
\mathscr{L}_{A}*\theta_{j}\equiv 0j-p-1 ’

A\in q^{p} ,

where the symbols \equiv are considered with respect to the system \{\theta_{j}\}_{j<0} .
j-p-1

It should be noted that these conditions are compatible with Lemma
3. 5.

Let \theta(p) be a p system in (B^{p}, \xi) . Let q\leqq p and j\leqq q-2 . Using the
1-forms \theta_{i} , i\leqq q-1, we define a \mathfrak{g}_{j} -valued 2form \Theta_{j}^{q} on B^{p} by

\Theta_{j}^{q}=d\theta_{j}+_{u}^{\frac{1}{2}}

u,v \leqq q-,,1\sum_{+v=j}[\theta_{u}, \theta_{v}]

Hereafter the symbols
\equiv k

will always be considered with respect to the

system \{\theta_{j}\}_{j<0} .
Lemma 3. 6. There are unique functions R^{l} : B^{p}arrow C^{l2},, l\leqq p-1, such

that

\Theta_{j}^{p}\equiv_{p}\frac{1}{2}\sum_{lj\leqq p-1}- Rlj(\theta_{-}\Lambda\theta_{-})’\eta j\leqq p-2 :

where \theta_{-}=\sum_{j<0}\theta_{j}=\xi .

PROOF. This lemma can be easily derived from the equalities

A^{*}\rfloor\Theta_{j}^{p}\equiv j-p
0, A\in \mathfrak{u}^{p}’\backslash j\leqq p-2 :

which we shall prove from now on. By (p. 1) we have

\mathscr{L}_{A^{*}}^{r}\theta_{j}=A^{*}\rfloor d\theta_{j}+d\theta_{j}(A^{*})=A^{*}\rfloor d\theta_{j} ,

whence
A^{*} \rfloor\Theta_{j}^{p}=\mathscr{L}_{A^{*}}\theta_{j}+\sum_{u+v=j}[\theta_{u}(A^{*}),

\theta_{v}]

If A is of the form \rho(X_{r}) with some 0\leqq r\leqq p-1, it follows from (p. 1) and
(F. 2) that
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\rho(X_{r})^{*}\rfloor\Theta_{j}^{p}\equiv-[X_{r}, \theta_{j-r}]+j-p-1
[X_{r}, \theta j-r]

j-p-1\equiv01

Similarly if A=\rho(X_{p}) , we have
o

(X_{p})^{*}\rfloor\Theta_{j}^{p}\equiv-j-p-1[Xp’ \theta_{j-p}]
j-p\equiv

0,

and if A\in q^{p} , we have

A^{*}\rfloor\Theta_{j}^{p}\equiv j-p-101

We have thus shown that A^{*}\rfloor\Theta_{j}^{p}\equiv 0 for all A\in \mathfrak{u}^{p} , proving Lemma 3. 6.j-p
The system of the equations in Lemma 3. 6 will be called the structure

equation, and the system of functions, \{R^{l}\}_{l\leqq p-1} , will be called the curvature.
Clearly the structure equation induces the equations

\Theta_{j}^{q}\equiv_{q}\frac{1}{2}\sum_{lj\leqq q-1}R_{j}^{l}(\theta_{-}\Lambda\theta_{-})-\cdot j\leqq q-2 , q\leqq p

Finally we say that the p system \theta^{(}p
) is normal if its curvature satisfies

the following conditions :
i) R^{l}=0 for l<0 ,

ii) \partial^{*}R^{l} =0 for 0\leqq l\leqq p-1.

3. 3. Reduction theorems. We say that a U^{p}-structure is of type (\mathfrak{M}, p)

if it admits a normal p-system. We have U^{0}=G_{0}^{\#} . Clearly a U^{0} structure
of type (\mathfrak{M}, 0) means a G_{0}^{\#}-structure of type \mathfrak{M} . We have U^{\mu-1}=\tilde{G} . Thus
we have the notion of a \tilde{G}-structure of type (\mathfrak{M}, \mu-1) .

The main aim of this section is to prove the following
THEOREM 3. 7. Every G_{0}^{\#}-structure of type \backslash \mathfrak{M} is reduced to a unique

\tilde{G}-structure of type (\mathfrak{M}, \mu-1) .
The existence part of this theorem is derived from the following
THEOREM 3. 8. If 0\leqq p\leqq\mu-2 , then every U^{p} -structure of type (\mathfrak{M}l, p)

is naturally reduced to a U^{p+1} -structure of type (\mathfrak{M}, p+1) .
In the subsequent paragraphs we shall prove these theorems together

with some related facts.
3. 4. The invariance of normal p-systems in U^{p} -structures of type (’ \mathfrak{M}, p) .
Lemma 3. 9. Let (B^{p}, \xi) be a U^{p} -structure of type (\mathfrak{M}, p) on a manifold

M. Let \theta^{(}p)_{=} \{\theta_{i}\}j\leqq p-1 and \theta^{\prime(}p)_{=}
\{\theta’j\}j\leqq p-1 be two normal p-systems in (B^{p}, \xi) .

Then we have

\theta_{j}’\equiv\theta_{j}j-p-1^{\cdot} j\leqq p-1
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Let \{R^{l}\}_{\iota\leqq p-1} and \{R^{\prime\iota}\}_{l\leqq p-1} be the curvatures of \theta^{(}p
) and \theta^{\prime(p)} respectively.

The proof below will indicate that
R^{\prime\iota}=R^{l}j l\leqq p-1

Accordingly we know that the curvature of a normal p-system is an invariant,

while the p-system itself is only an invariant in an equivalence relation.
PROOF of Lemma 3. 9. By induction we shall prove the following state-

ments :
(S_{q})

\theta_{j}’\equiv\theta_{j}tj-q-1
j\leqq q-1 :

where 0\leqq q\leqq p . Clearly (S_{0}) is true, because \theta_{j}’=\theta_{j}(=\xi_{j}) , j<0 . Assuming
(S_{q}) for some \circ\leqq q<p , we shall prove (S_{q+1}) .

By (p. 1) we have \theta_{q}’(A^{*})=\theta_{q}(A^{*}) for every A\in \mathfrak{u}^{p} , meaning that \theta_{q}’\equiv\theta_{q}-1^{\cdot}

As we have just remarked, \theta_{j}’=\theta_{j} , j<0 . From these facts together with
(S_{q}) we see that there is a unique function f^{q+1} : B^{p}arrow C_{+}^{q+1,1} such that

(3. 1) \theta_{j}’\equiv\theta_{j}+f^{q+1}(\theta_{j-q-1})j-q-2 ,\cdot
j\leqq q .

The structure equations for \theta^{(p+1} ) and \theta^{\prime(}p\dagger 1
) yield the equalities

(3. 2) \Theta_{j}^{\prime q+1}-\Theta_{j-}^{q+1}\equiv_{q-1}\frac{1}{2}\sum_{lj\leqq q}(R’ lj-R_{j}^{l}) (\theta_{-}\Lambda\theta_{-}) . j\leqq q-1-

where

(3. 3) \Theta_{j}^{q+1}=d\theta_{j}+\frac{1}{2}\sum_{?u+J=j}[\theta_{u}, \theta_{v}] ,

(3. 3’) \Theta_{j}^{\prime q+1}=d\theta_{j}’+\frac{1}{2}\sum_{u+v=j}[\theta_{u}’, \theta_{v}’]

(In the following, the letters u and v mean integers \leqq q , while the letters
r and s negative integers.) We shall now calculate the left side of (3. 2).

Since \theta^{(}p
) is normal, we have R^{l}=0 , l<0 . Hence we obtain \Theta_{i}^{0}\equiv_{i}0 ,

i\leqq-2 , whence
d\theta_{i}\equiv 0j-q-1 ’ i\leqq j-q-2 ,

d \theta_{j-q-1-q-1}\equiv-\frac{1}{2}\sum_{rj+s=j-q-1}[\theta_{r}, \theta_{s}]

Therefore we see from (3. 1) that

(3. 4) d\theta_{j}’-d\theta_{j}\equiv f^{q+1}(d\theta_{j-q-1})j-q-1

j- \equiv_{q-1}-\frac{1}{2}\sum_{r+s=j-q-1}fq+1([\theta_{r}, \theta_{s}] )
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Moreover we see form (3. 1) that

(3. 5) \frac{1}{2}\sum_{u+v=j}[\theta_{u}’, \theta_{v}’]-\frac{1}{2}\sum_{u+v=j}[\theta_{u}, \theta_{v}]

\equiv\sum_{j-q-1u+v=j}[f^{q+1}(\theta_{u-q-1}), \theta_{v}]
\equiv\sum_{j-q-1r+s=j-q-1}[f^{q+1}(\theta_{r}), \theta_{s}] .

Now recalling the definition of the operator \partial , we have

(3. 6) \frac{1}{2}(\partial f^{q+1})_{j}(\theta_{-}\Lambda\theta_{-})=\frac{1}{2}\sum_{r+s=j-q-1}(\partial f^{q+1}) (\theta_{r}\Lambda\theta_{s})

=r+s= \sum_{j-q-1}[f^{q+1}(\theta_{r}), \theta_{s}]-\frac{1}{2}r+s=\sum_{j-q-1}f^{q\dagger 1} ([\theta_{r}, \theta_{s}] )
From (3. 3)\sim(3.6) it follows immediately that

(3. 7) \Theta_{j}^{\prime q+1}-\Theta_{j}^{q+1} j-q-1 \equiv\frac{1}{2}(\partial f^{q+1})_{j}(\theta_{-}\Lambda\theta_{-})1

From (3. 2) and (3. 7) we obtain

\sum_{l\leqq q}(R’ lj-R_{j}^{l}) (\theta_{-}\Lambda\theta_{-})\equiv(\partial f^{q+1})_{j}(\theta_{-}\Lambda\theta_{-})j-q-1 ’ j\leqq q-1 .

which clearly mean that R^{\prime\iota}=R^{l} , l<q, and
R^{\prime q}-R^{q}=\partial f^{q+1}

Since both R^{q} and R^{\prime q} take values in Z_{*}^{q,2} , it follows that \partial f^{q+1}=0 (and hence
R^{\prime q}=R^{q}) . Therefore we have f^{q+1}=0 by Lemma 3. 3, which proves (S_{q+1}) .
We have thus found (S_{p}) to be true, completing the proof of Lemma 3. 9.
Incidentally the proof above indicates that R^{\prime\iota}=R^{l} , l\leqq p-1.

REMARK. Hereafter we shall frequently use the reasoning in the
proof of Lemma 3. 9. See the proofs of the following: Lemma 3. 11,
Lemma 3. 12, Lemma 3. 17, Lemma 4. 16, Lemma 4. 17, Lemma 5. 3, and
Lemma 5. 4.

3. 5. Normal pre-(P+l)-systems in U^{p} -structures. Let (B^{p}, \xi) be a U^{p_{-}}

structure on a manifold M. Let \theta^{(p+1)}= \{\theta_{j}\}_{j\leqq p} be a system of \mathfrak{g}_{j} -valued
1-forms \theta_{j}, j\leqq p , on B^{p} . Let \theta^{(}p

) denote the system \{\theta_{j}\}_{j\leqq p-1} . Then we
say that \theta^{(p+1} ) is a pre-(P+l)-system in (B^{p}, \xi) if it satisfies the following
conditions :

(p+1. a) \theta^{(}p) is a p system in (B^{p},\xi) .
(p+1. b) i) \theta_{p}(\rho(X_{r})^{*})=\delta_{pr}X_{r} , X_{r}\in \mathfrak{g}_{r} , 0\leqq r\leqq p ,

ii) \theta_{p}(A^{*})=0 , A\in q^{p} .
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(p+1. c) R_{a}^{*}\theta_{p}=Ad(a^{-1})\theta_{p} , a\in G_{0} .
Let \theta^{(p+1} ) be a pre-(P+l)-system in (B^{p}, \xi) . For any j\leqq p-1 we define

a \mathfrak{g}g7 -valued 2-form \Theta_{j}^{p+1} on B^{p} in the same manner as before, that is,

\Theta_{j}^{p+1} =d \theta_{j}+\frac{1}{2}u

u,v \leqq p\sum_{+v=j},,
[\theta_{u}, \theta_{v}]

Then we deduce from the proof of Lemma 3. 6 that

A^{*}\rfloor\Theta_{j}^{p+1}\equiv j-p-10 , A\in \mathfrak{u}^{p}r

, j\leqq p-1

Hence there are unique functions R^{l} : B^{p}arrow C^{l,2} , l\leqq p, such that

\Theta_{j-}^{p+1}\equiv_{p-1}\frac{1}{2}\sum_{lj\leqq p}Rlj(\theta_{-}\Lambda\theta_{-}) . j\leqq p-1

As before the system of the equations above will be called the structure
equation (for \theta^{(p+1} ) ) , and the system of functions, \{R^{l}\}_{l\leqq p} , will be called the
curvature (of \theta^{(p+1} ) ) . The structure equation for \theta^{(p\dagger 1} ) induces the equations

\Theta_{j}^{p}\equiv_{p}\frac{1}{2}\sum_{lj\leqq p-1}- R.
\prime j(\theta_{-}\Lambda\theta_{-})

j j\leqq p-2’.

which together form the structure equation for the p-system \theta^{(}p).

Lemma 3. 10. R_{a^{*}}R^{p}=(R^{p})^{a}, a\in G_{0} .

PROOF. By (p. 2)(p+1. c) we have R_{a^{*}}\theta_{j}=Ad(a^{-1})\theta_{j} for all a\in G_{0}

and j\leqq p . Therefore it follows from the structure equation for \theta^{(p+1} ) that

Ad (a^{-1}) \Theta_{j-}^{p+1}\equiv_{p-1}\frac{1}{2}\sum_{lj\leqq p}(Ra^{*}Rlj) (Ad(a^{-1})\theta_{-}\Lambda Ad (a^{-1})\theta_{-})

These equations together with the structure equation yield the equalities

Ad (a) (R_{a^{*}}R_{j}^{l})(Ad(a^{-1})\theta_{-}\Lambda Ad (a^{-1})\theta_{-}) j-p-1\equivRlj(\theta_{-}\Lambda\theta_{-}),\cdot

which clearly mean that R_{a^{*}}R^{l}=(R^{l})^{a}, l\leqq p .
Finally we say that the pre-(P+l)-system \theta^{(p+1} ) in (B^{p}, \xi) is normal if

it satisfies the following conditions:
i) The p-system \theta^{(}p

) in (B^{p}, \xi) is normal,
ii) The function R^{p} takes values in Z_{*}^{p,2}+\partial W^{p+1,1} .
3. 6. The existence and invariance of normal pre-(P+l)-systems in U^{p_{-}}

structures of type (\mathfrak{M}, p) .
Lemma 3. 11. Every U^{p} -structure of type (\mathfrak{M}, p) admits a normal pre-

(p+1) -system
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PROOF. Let (B^{p}, \xi) be a U^{p} -structure of type (\backslash \mathfrak{M}, p) on a manifold M.
As is well known, the principal fibre bundle B^{p} admits a connection (in the
usual sense) (cf. [3]), that is, there is a \mathfrak{u}^{p}-valued 1-form \alpha on B^{p} such
that i) \alpha(A^{*})=A , A\in \mathfrak{u}^{p} , and ii) R_{a^{*}}\alpha=a^{-1} \mbox{\boldmath $\alpha$}a, a\in U^{p} . Let \alpha_{p} denote the
\rho(\mathfrak{g}_{p}) -component of \alpha with respect to the decomposition : \mathfrak{u}^{p}=\sum_{j0}^{J)}\rho(\mathfrak{g}_{j})+qp .
Clearly the 1-form \alpha_{p} satisfies the following:

\alpha_{p} (\rho(X_{r})^{*})=\delta_{pr}\rho(X_{r})j X_{r}\in \mathfrak{g}_{r} , 0\leqq r\leqq p ;

\alpha_{p}(A^{*})=0 , A\in q^{p} ;

R_{a^{*}}\alpha_{p}=a^{-1}\alpha_{p}a , a\in G_{0} .
By Lemma 1.9 or Lemma 3. 2 there is a unique \mathfrak{g}_{p} -valued 1-form \theta_{p} on B^{p}

such that \alpha_{p}=\rho(\theta_{p}) . Then the formulas above for \alpha_{p} mean that \theta_{p} satisfies
(p+1. b) and (p+1. c) .

Now take a normal p system \theta^{(}p)_{=} \{\theta_{j}\}_{j\leqq p-1} in (B^{p}, \xi) , and consider the
system \theta^{(p+1)}= \{\theta_{j}\}_{j\leqq p} formed by \{\theta_{j}\}_{j\leqq p-1} and \theta_{p} . Then it is clear from
the remark above that \theta^{(p+1} ) gives a pre-(P+l)-system in(5p, \xi). We shall
modify \theta^{(p+1)} to obtain a normal pre-(P+l)-system.

By Lemma 3. 4 the space C^{p,2} is decomposed as follows:
C^{p,2}=Z_{*}^{p,2}+\partial W^{p+1,1}+\partial C_{+}^{p+1} ,1

Let \{R^{l}\}_{l\leqq p} be the curvature of \theta^{(p+1)} . R^{p} taking values in C^{p,2} , we denote
by L^{p} the \partial C_{+}^{p+}1,1-component of R^{p} . By Lemma 3. 10 we have R_{a^{*}}R^{p}=

(R^{p})^{a}, a\in G_{0} , and by Lemma 1. 11 each subspaces in the decomposition above
is G_{0}-invariant. Hence it follows that
(3. 8) R_{a^{*}}L^{p}=(L^{p})^{a} , a\in G_{0}

‘

We now show that there is a function f^{p+1} : B^{p}arrow C_{+}^{p+1,1} such that L^{p}=-of^{p+1}\neg

and

(3. 9) R_{a^{*}}f^{p+1}=(f^{p+1})^{a} . a\in G_{0}

First consider the case where 0\leqq p\leqq\mu-2 . By Lemma 3. 3 there is a unique
function f^{p+1} : B^{p}arrow C_{+}^{p+1,1} such that L^{p}=-\partial f^{p+1} . By (3. 8) and Lemma 1. 11
we see that f^{p+1} satisfies (3. 9). Next consider the case where p=\mu-1. We
have C^{\mu 1}\dotplus=C^{\mu,1}=Z_{*}^{\mu,1}+\partial \mathfrak{g}_{\mu} , and we know that H^{\mu,1}(\mathfrak{G})=0 (see 1. 4). Hence
there is a unique function f^{\mu} : B^{\mu-1}arrow Z_{*}^{\mu,1} such that L^{\mu-1}=-\partial f^{\mu} , and as above
we see that f^{\mu} satisfies (3. 9).

Using the function f^{p+1} thus obtained, we now modify \theta^{(p+1} ) as follows:

\theta_{j}’=\theta_{j}+f^{p+1}(\theta_{j-p-1}) . j\leqq p
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Let \theta^{\prime(p+1)}= \{\theta_{j}’\}_{j\leqq p} . Then it is easy to see that \theta^{\prime(}p\dagger 1 ) gives a pre-(P\dagger l)-

system in (B^{p}, \xi) . (In the proof of this fact we use (3. 9).) We assert that
\theta^{\prime(p+1)} is normal. Indeed let \{R^{\prime\iota}\}_{l\leqq p} denote the curvature of \theta^{\prime(p+1}). Then
we deduce from the proof of Lemma 3. 9 that R^{\prime\iota}=R^{l} , l<p, and R^{\prime p}=

R^{p}+\partial f^{p+1} . (Since \theta^{(}p
) is normal, we have \Theta_{i}^{0}\equiv_{i}0 , i<0 . Hence it follows

that

\Theta_{j}^{\prime p+1}-\Theta_{j}^{p+1}\equiv\frac{1}{2}(\partial f^{p+1})_{j}(\theta_{-}\Lambda\theta_{-})j-p-1^{\cdot} j\leqq p-1 .

which together with the structure equations for \theta^{(p+1} ) and \theta^{\prime(}p\dagger 1 ) yield the
desired equalities.) Since \theta^{(}p

) is normal and since R^{\prime p}=R^{p}-L^{p} takes values
in Z_{*}^{p,2}+\partial W^{p+1,1} , we therefore see that \theta^{\prime(p+1} ) is normal, proving our assertion.
We have thus completed the proof of Lemma 3. 11.

Lemma 3. 12. Let (B^{p}, \xi) be a U^{p} -structure of type (\mathfrak{M}\downarrow, p) on a manifold
M, and let \theta^{(p+1} ) and \theta^{\prime(p+1} ) be two normal pre-{p+ 1)-systems in (B^{p}, \xi) .

(1) If 0\leqq p\leqq\mu-2 , then

\theta_{j}’\equiv\theta_{j}j-p-2 , j\leqq pt

(2) If p=\mu-1, then there is a unique function g_{\mu} : B^{p}arrow \mathfrak{g}_{\mu} such that

\theta_{j}’\equiv\theta_{j}+[g_{\mu}, \theta_{j-\mu}]j-\mu-1 ’ j\leqq\mu-1

PROOF. By (p+1. b) we have \theta_{p}’(A^{*})=\theta_{p}(A^{*}) for every A\in \mathfrak{u}^{p} , whence
\theta_{p}’\equiv\theta_{p}-1^{\cdot} We have \theta_{j}’=\theta_{j}, j<0 , and by Lemma 3. 9 we have \theta_{j}’\equiv\theta_{j}j-p-1’ j<p .
From these facts we see that there is a unique function f^{p+1} : B^{p}arrow C_{+}^{p+1,1}

such that
\theta_{j}’\equiv\theta_{j}+f^{p+1}(\theta_{j-p-1})j-p-2\wedge

j\leqq p.

Let \{R^{l}\}_{l\leqq p} and \{R^{\prime\iota}\}_{l\leqq p} be the curvatures of \theta^{(}p\dagger 1
) and \theta^{\prime(}p\dagger 1

) respectively.
Then it follows that

R^{\prime p}=R^{p}+\partial f^{p+1}

(cf. the proof of Lemma 3. 9). Here we notice that both R^{p} and R^{\prime p} take
values in Z_{*}^{p,2}+\partial W^{p+1,1} . Therefore we see from Lemma 3. 4 that \partial f^{p+1}=0

(and hence R^{\prime p}=R^{p}). If 0\leqq p\leqq\mu-2 , we have f^{p+1}=0 by Lemma 3. 3. Now
suppose that p=\mu-1. We have C_{+}^{\mu,1}=C^{\mu,1} , and we see from Lemma 1. 14
that there is a unique function g_{\mu} : B^{\mu-1}arrow \mathfrak{g}_{\mu} such that f^{\mu}=-\partial g_{\mu} ; We have
f^{\mu}(\theta_{j-\mu})=[g_{\mu}, \theta_{j-\mu}] . We have thereby proved Lemma 3. 12.

The notations being as above, we already know that R^{\prime l}=R^{l} , l<p (see
3. 4). The proof above also indicates that
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R^{\prime p}=R^{p}

Accordingly we know that the curvature of a normal pre-(P+l)-system in
a U^{p} -structure of type (\mathfrak{M}, p) is an invariant.

REMARK. We have U^{\mu-1}=\tilde{G} . Thus we may speak of a (normal) pre-
\mu-system in a \tilde{G}-structure. We have W^{\mu,1}\subset C_{-}^{\mu,1}=0 . Hence a pre-\mu-system
\theta^{(\mu)} in a \tilde{G}-structure is normal if and only if its curvature \{R^{l}\}_{l\leqq\mu-1} satisfies
the following conditions: i) R^{l}=0 for l<0;ii) \partial^{*}R^{l} =0 for 0\leqq l\leqq\mu-1. By
Lemma 3. 11 every \tilde{G}-structure of type (\mathfrak{M}, \mu-1) admits a normal pre-\mu-

system. Let us consider the special case where \mathfrak{G} is of the first kind.
Clearly every \tilde{G}-structure is of type (\mathfrak{M}, 0) . (Note that G_{0}^{\#}=\tilde{G}=G_{0}). Let
\theta(1) be a normal pre-l-system in a \tilde{G}-structure, and \{R^{l}\}_{\iota\leqq 0} its curvature.
Then the function R^{0} is nothing but the torsion or the structure function
of the \tilde{G}-structure (cf. [6]).

3. 7. Proof of Theorem 3. 8. Let 0\leqq p\leqq\mu-2 , and let (B^{p}, \xi) be a U^{p_{-}}

structure of type (\mathfrak{M}, p) on a manifold M. By Lemma 3. 11 (B^{p}, \xi) admits
a normal pre-(P+l)-system. We take any normal pre-(P+l)-system \theta^{(p+1} ) =
\{\theta_{j}\}_{j\leqq p} in (B^{p}, \xi) , and denote by \{R^{l}\}_{l\leqq p} its curvature.

First of all we recall that the Lie algebra \mathfrak{u}^{p} is decomposed as follows:

\mathfrak{u}^{p}=\sum_{j=0}^{p}\rho(\mathfrak{g}_{j})+q^{p} .

q^{p}=C_{-}^{p+1,1}+q^{p+1} ,

C_{-}^{p+1,1}=\rho(\mathfrak{g}_{p+1})+W^{p\dagger 1,1}

Especially every element Y of C_{-}^{p+1,1} can be written (uniquely) in the form:
Y=\rho(X_{p+1})+Y’’.

where X_{p+1}\in \mathfrak{g}_{p+1} and Y’\in W^{p+1,1} . This being said, we state the next three
lemmas, which will be proved in 3. 9\sim 3. 11.

Lemma 3. 15. Let 1\leqq k\leqq p and X_{k}\in \mathfrak{g}_{k} .
(1) \mathscr{L}_{\rho} (X_{k}I*\theta j \equiv - [X_{k}, \theta j-k] , j\leqq p .

j-p-2
(2) \mathscr{L}_{\rho}(X_{k}I*R^{p}=(R^{p-k})^{x_{k}} .
Lemma 3. 15. Let Y\in C_{-}^{p+1,1} .
(1) \mathscr{L}_{Y*}\theta_{j}\equiv -[X_{p+1}, \theta_{j-p-1}]-Y’ (\theta_{j-p-1}) , j\leqq p .

j-p-2
(2) \mathscr{L}_{Y}*R^{p} =-\partial Y’ .

Lemma 3. 15. Let Z\in q^{p+1} .
(1) \mathscr{L}_{Z*}\theta_{j}\equiv 0 , j\leqq p .

j-p-2

(2) \mathscr{L}_{Z}*R^{p}=0 .
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Every element a of U^{p} can be written uniquely in the form:
a=b\cdot c_{1}\cdots c_{p+1}\cdot d .

where b\in G_{0} , c_{k}\in\exp\rho(\mathfrak{g}k) , 1\leqq k\leqq p , c_{p+1}\in\exp C_{-}^{p+1,1} , and d\in\exp q^{p\dagger 1} . Fur-
thermore the elements c_{k} , c_{p+1} and d can be expressed uniquely as follows:
c_{k}=\exp\rho(X_{k}) with X_{k}\in \mathfrak{g}_{k} , c_{p+1}=\exp Y with Y\in C_{-}^{p+1,1} , and d=\exp Z with
Z\in q^{p+1} . We also note that as before Y can be expressed as Y=\rho(X_{p+1})+Y’

Clearly a is in the subgroup U^{p+1} of U^{p} if and only if Y’=0 .
These being prepared, we shall prove the following
Lemma 3. 16. Let z\in B^{p} and a\in U^{p} .
(1) R^{p}(z\cdot b)=R^{p}(z)^{b} .
(2) R^{p}(z\cdot c_{k})-R^{p}(z)\in Z_{*}^{p,2} , 1\leqq k\leqq p .
(3) R^{p}(z\cdot c_{p+1})=R^{p}(z)-\partial Y’ .
(4) R^{p}(z\cdot d)=R^{p}(z) .
(5) Assume that R^{p}(z)\in Z_{*}^{p,2} . Then R^{p}(z\cdot a)\in Z_{*}^{p,2} if and only if

a\in U^{p+1} .
First of all (1) is nothing but Lemma 3. 10.
(2) By Lemma 3. 13 we have \mathscr{L}_{\rho^{(x_{k})*R^{p}}} =(R^{p-k})^{X}k. Since p-k<p,

R^{p-k} takes values in Z_{*}^{p-k,2} . (Note that \theta^{(p+1)} is normal.) Therefore we
see from Lemma 1. 12 that (R^{p-k})^{X_{k}}=\mathscr{L}_{\rho^{(X_{k})*}}R^{p} takes values in Z_{*}^{p,2} , which
clearly means (2).

(3) and (4) follow immediately from Lemmas 3. 14 and 3. 15 respectively.
(5) By (3) and (4) we have

R^{p}(z\cdot a)=R^{p}(z\cdot b\cdot c_{1}\cdots c_{p})-\partial Y’

Since R^{p}(z)\in Z_{*}^{p,2} , it follows from (1), (2) and Lemma 1. 11 that R^{p}(z\cdot b\cdot c_{1}\cdots c_{p})

\in Z_{*}^{p,2} . Therefore we know from Lemma 3. 3 that R^{p}(z\cdot a)\in Z_{*}^{p,2} if and
only if Y’=0, i. e. , a\in U^{p\dagger 1} .

We have thus proved Lemma 3. 16.
Using the invariant function R^{p} , we define a subset B^{p+1} of B^{p} by

B^{p\dagger 1}=\{z\in B^{p}|R^{p}(z)\in Z_{*}^{p,2}\}

We want to show that B^{p+1} defines a reduction of the principal bundle B^{p}

to the group U^{p+1} . For this purpose we first prove that, for each point
x_{0}\in M, there is a local cross section s of B^{p} defined on a neighborhood
V of x_{0} such that s(V)\subset B^{p+1} . Indeed take a local cross section \overline{s} of B^{p}

defined on a neighborhood V of x_{0} . Fix any point x\in V. Since R^{p}(\overline{s}(x))

takes values in Z_{*}^{p,2}+\partial W^{p+1,1} , there is a unique A(x)\in W^{p+1,1} such that
R^{p}(\overline{s}(x))-\partial A(x)\in Z_{*}^{p,2} . Let s denote the local cross section of B^{p} defined by
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s(x)=\overline{s}(x)\cdot a(x) for all x\in V, where a(x)=\exp A(x) . Then we see from (3)
of Lemma 3. 16 that R^{p}(s(x))=R^{p}(\overline{s}(x))-\partial A(x)\in Z_{*}^{p,2} for all x\in V, meaning
that s(V)\subset B^{p+1} . This proves our assertion. Now let z\in B^{p\dagger 1} and a\in U^{p} .
Then (5) of Lemma 3. 16 means that z\cdot a\in B^{p+1}\underline{i}f and only if a\in U^{p+1} .
We have thus seen that B^{p+1} is a principal fibre bundle over the base
space M with structure group U^{p+1} and it is a reduction of B^{p} to U^{p+1} .

Let \iota be the injection B^{p+1}arrow B^{p} . Then the pair (B^{p+1}, \iota^{*}\xi) gives a U^{p+1_{-}}

structure on M. We assert that system \theta’ (p+1)= \{\iota^{*}\theta_{j}\}_{j\leqq p} is a normal (p+1)-
system in (B^{p+1}, \iota^{*}\xi) . Firstly it is clear that \theta^{\prime(p+1)} is compatible with the
basic form \iota^{*}\xi . Secondly \theta’(p\dagger 1) is a (p+1) system in (B^{p+1}, \iota^{*}\xi) , which can
be easily verified from conditions (p. 1 ) -(p+1. c) for \theta^{(p+1} ), and Lemmas
3. 13\sim 3. 15. Thirdly \theta’ (p+1) is normal. Indeed the structure equation for
\theta^{(p+1)} induces the equations

\iota^{*}\Theta_{j-}^{p+1}\equiv_{p-1}\frac{1}{2}\sum_{lj\leqq p}(\iota^{*}R^{l}) (\iota^{*}\theta_{-}\Lambda\iota^{*}\theta_{-}) . j\leqq p-1 .

which together form the structure equation for \theta’(p+1) . Since \theta^{(p+1} ) is normal
and since \iota^{*}R^{p} takes values in Z_{*}^{p,2} , we see that \theta’(p+1) is normal, proving
our assertion.

In this way we have seen that every U^{p} -structure of type (\mathfrak{M}, p) is
naturally reduced to a U^{p+1} -structure of type (’ \mathfrak{M}, p+1) . (The naturality fol-
lows from the fact that the function R^{p} is an invariant.) We have thereby
completed the proof of Theorem 3. 8.

3. 8. Proof of Theorem 3. 7. Our task here is to prove the uniqueness
part of the theorem.

Let (P^{\#}, \xi) be a G_{0}^{\#}-structure of type \mathfrak{M} on a manifold M. By Theorem
3. 8 there is a sequence of U^{p} -structures of type (\mathfrak{M}, p) , (B^{p}, \xi p) , on M(0\leqq
p\leqq\mu-1) such that (B^{0}, \xi^{0})=(P^{\#}, \xi) and such that, for every \circ\leqq p\leqq\mu-2 ,
(B^{p+1}, \xi^{p+1}) is the natural reduction of (B^{p}, \xi^{p}) to U^{p+1} :

P^{\#}=B^{0}\supset B^{1}\supset\cdots\supset B^{\mu-1} .

Let (\tilde{P}, -) be any \tilde{G}-structure of type (\mathfrak{M}, \mu-1) on M which is a reduction
of (P^{\#}, \xi) to G. Then we must show that (\tilde{P}, -)=(B^{\mu-1}, \xi^{\mu-1}) or equivalently
\tilde{P}=B^{\mu-1} .

For this purpose we shall prove by induction that \tilde{P}\subset B^{p} for all 0\leqq p\leqq

\mu-1 . Assume that \tilde{P}\subset B^{p} for some 0\leqq p\leqq\mu-2 . Let \theta^{(\mu-1)}= \{\theta_{j}\}_{j\leqq\mu-2} be
a normal (\mu-1) system in (\tilde{P},\overline{\xi}) , and \{R^{l}\}_{l\leqq\mu-2} its curvature. Similarly let \theta’(p+1\rangle

= \{\theta_{j}’\}_{j\leqq p} be a normal pre-(p+l)-system in ( B^{p}, \xip), and \{R^{\prime\iota}\}_{l\leqq p} its curvature.
Let \iota be the injection \tilde{P}arrow B^{p\dagger 1} . Then by Lemma 3. 17 below we have
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\iota^{*}R^{p}’=R^{p}

Since B^{p+1}=\{z\in B^{p}|R^{\prime p}(z)\in Z_{*}^{p,2}\} and since R^{p} takes values in Z_{*}^{p,2} , it
follows that \tilde{P}\subset B^{p\dagger 1} , completing our induction. Thus we have \tilde{P}\subset B^{\mu-1} and
hence \tilde{P}=B^{\mu-1} , which proves the uniqueness part of Theorem 3. 7.

LEmma 3. 17. \iota^{*}R’ p_{=R^{p}} .
Proof. Clearly we have \iota^{*}\theta_{-}’=\theta_{-} . The structure equation for \theta^{(\mu-}1

)

induces the equations

\Theta_{j}^{q+1}\equiv\frac{1}{2}\sum_{j-q-1l\leqq q}Rlj(\theta_{-}\Lambda\theta_{-})

,
j\leqq q-1 , 0\leqq q\leqq p ,

and similarly the structure equation for \theta^{\prime(p+1} ) the equations

\iota^{*}\Theta_{j-}^{\prime q+1}\equiv_{q-1}\frac{1}{2}\sum_{lj\leqq q}(\iota^{*}R’\iota) (\theta_{-}\Lambda\theta_{-}) , j\leqq q-1 , 0\leqq q\leqq p.

By condition (\mu-1.1) for \theta^{(\mu-}1
)
, and conditions (p. 1) , (p+1. b) for \theta^{\prime(p+1} )

it follows that
\iota^{*}\theta_{q}’\equiv\theta_{q}-1 , 0\leqq q\leqq p .

We further notice that both \theta^{(\mu-1)} and \theta’
(p\dagger 1) are normal, and especially

\Theta^{0_{j}}\equiv 0 , j\leqq-2 . Therefore we deduce from the proof of Lemma 3. 9 that
j

\iota^{*}\theta_{j}’\equiv\theta_{j}j-p-2’
j\leqq p , and \iota^{*}R’ l =R^{l} , l\leqq p . (See also the proof of Lemma 3. 12.)

Thus we obtain Lemma 3. 17.
3. 9. Proof of Lemma 3. 13.
Lemma 3. 18. \mathscr{L}_{\rho^{(X_{k})}}*\theta_{p}\equiv--1[X_{k}, \theta_{p-k}] .

PROOF. This fact can be derived from (p. 1) and (p+1. b) as follows:
Putting

\alpha=\mathscr{L}_{\rho^{(X_{k})*}}\theta_{p}+[Xk, \theta_{p-k}]
,

we must show that \alpha(A^{*})=0 for every A\in \mathfrak{u}^{p} . Let A\in \mathfrak{u}^{p} . Then we have

(\mathscr{L}_{\rho^{(X_{k})*}}\theta_{p})(A^{*})=\rho(X_{k})^{*}\theta_{p}(A^{*})-\theta_{p}([\rho(X_{k})^{*}, A^{*}])

=-\theta_{p} ([\rho(X_{k}), A]^{*}),
and hence

\alpha(A^{*})=-\theta_{p}([\rho(X_{k}), A]^{*})+[X_{k} , \theta_{p-k}(A^{*})]

If A\in q^{p} , we have [\rho(X_{k}), A]\in q^{p} , because q^{p} is an ideal of 1I^{p} , and hence
it follows that \alpha(A^{*})=0 . If A is of the form \rho(Y_{r}) with some 0\leqq r\leqq p

and some Y_{r}\in \mathfrak{g}_{r} , it follows that
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\alpha(\rho(Y_{r})^{*})=-\theta_{p}(\rho([X_{k}, Y_{r}])^{*})+[X_{k}, \theta_{p-k} (\rho(Y_{r})^{*})]=0 .

We have thus shown \alpha(A^{*})=0 for every A\in \mathfrak{u}^{p} , proving Lemma 3. 18.
By (p. 2) we have \mathscr{L}_{\rho^{(x_{k})*\theta_{j}\equiv-}}^{q}j-p-1[Xk, \theta_{j-k}] , j\leqq p-1, and by Lemma 3. 5

we have \mathscr{L}_{\rho^{(X_{k})*}}\theta_{j}= -[Xk, \theta_{j-k}.], j<0. From these facts together with Lem-
ma 3. 18 we see that there is a unique function f^{p+1} : B^{p}arrow C_{+}^{p+1,1} such that

(3. 10) \mathscr{L}_{\rho^{(X_{k})*}}\theta_{j}\equiv-j-p-2[Xk, \theta_{j-k}]+f^{p+1}(\theta_{j-p-1}) , j\leqq p .

LEMMA 3. 19. \mathscr{L}_{\rho^{(X_{k})*}}R^{p} =(R^{p-k})^{x_{k}}+\partial f^{p+1}

Now Lemma 3. 13 can be obtained from (3. 10) and Lemma 3. 19 in the
following manner. We first remark that R^{p} takes values in Z_{*}^{p,2}+\partial W^{p+1,1} .
From Lemmas 1. 12 and 1. 15 we see that (R^{p-k})^{X_{k}} takes values in Z_{*}^{p,2}

(cf. the proof of Lemma 3. 16). Therefore it follows from Lemmas 3. 3,

3. 4 and 3. 19 that f^{p+1}=0 . Thus Lemma 3. 13 follows.
We shall now prove Lemma 3.19. The structure equation for \theta^{(p+}1 )

gives the equations

(3. 11) \Theta_{j-}^{p+1}\equiv_{p-1}\frac{1}{2}\sum_{lj\leqq p}Rlj(\theta_{-}\Lambda\theta_{-})- j\leqq p-1 .

where

(3. 12) \Theta_{j}^{p+1}=d\theta_{j}+\frac{1}{2}\sum_{u+v=j}[\theta_{u}, \theta_{v}]

Since \mathscr{L}_{\rho^{(X_{k})}}*\theta_{i}\equiv_{i}0 , i<0, it follows from (3. 11) and (3. 12) that

(3. 13) d \mathscr{L}_{\rho^{(}}x_{k})*\theta_{j}+\sum_{u+v=j}[\mathscr{L}_{\rho^{(X_{k}I^{*}}}\theta_{u}, \theta_{v}]

\equiv\frac{1}{2}\sum_{j-p-1l\leqq p}(\mathscr{L}_{\rho^{(X_{k})*}}Rlj) ( \theta_{-}\Lambda\theta_{-})-\sum_{l\leqq p}R_{j}^{l}(\rho(X_{k})\theta_{-}\Lambda\theta_{-})

(Note that \mathscr{L}_{\rho^{(X_{k}I^{*}}}\theta_{-}=-\rho(X_{k})
\theta_{-}).

We have d\theta_{i}\equiv 0j-p-1 ’ i\leqq j-p-2 , and

d \theta_{j-p-1}\equiv-\frac{1}{2}\sum_{rj+s=j-p-1}[\theta_{r}, \theta_{s}]-p-1

(In the following the letters r and s mean negative integers.) By (3. 11) and
(3. 12) we have

d \theta_{j-k-p-1}\equiv-\frac{1}{2}\sum_{uj+v=j-k}[\theta_{u}, \theta_{v}]+\frac{1}{2}\sum_{l\leqq p}Rlj-k(\theta_{-}\Lambda\theta_{-}) .

Therefore it follows from (3. 10) that



62 N. Tanaka

(3. 14) \mathscr{L}_{\rho^{(x_{k})*\theta_{j}\equiv-}}j-p-1[Xk’ d\theta_{j-k}]+f^{p\dagger 1}(d\theta_{j-p-1})

\equiv\frac{1}{2}\sum_{j-p-1u+v=j-k}[X_{k}, [ \theta_{u}, \theta_{v}]]-\frac{1}{2}\sum_{l\leqq p}[X_{k} , R_{j-k}^{l} (\theta_{-}\Lambda\theta_{-})]

- \frac{1}{2}\sum_{r+s=j-p-1}fp\dagger 1([\theta_{r}, \theta_{s}] )
Furthermore we see from (3. 10) that
(3. 15)

\sum_{u+v-j}[\mathscr{L}_{\rho^{(X_{k})*}}\theta_{u}, \theta_{v}]

\equiv-\sum_{j-p-1u+v=j}[[X_{k}, \theta u-k] , \theta_{v}]+\sum_{u+v=j} [f^{p+1}(\theta_{u-p-1}), \theta_{v}].
We have

(3. 16) \frac{1}{2}\sum_{u+v=j-k}[X_{k}, [ \theta_{u}, \theta_{v}]]-\sum_{u+v=j}[[X_{k}, \theta_{u-k}] , \theta_{v}]_{j-}\equiv_{p-1} 0 .

(3. 17) \sum_{u+v=j}[f^{p+1}(\theta_{u-p-1}), \theta_{v}] \equiv\sum_{j-p-1r+s=j-p-1}[f^{p+1}(\theta_{r}), \theta_{s}]
If l>p-k , we have

R_{j-k}^{l}
( \theta_{-}\Lambda\theta_{-})=\sum_{r+s=j-k-l-1}R^{l}(\theta_{r}\Lambda\theta_{s})\equiv j-p-10 .

whence

(3. 18) \sum_{l\leqq p}[X_{k}, R_{j-k}^{\gamma}.( \theta_{-}\Lambda\theta_{-})]_{j-}\equiv_{p-1}\sum_{l\leqq p}[X_{k}, R_{j-k}^{l-k}(\theta_{-}\Lambda\theta_{-})]

Similarly if l>p-k , we have

R_{j}^{l} (\rho(X_{k})\theta_{-}\Lambda\theta_{-})=\sum_{r+s=j-l-1}Rl([X_{k}, \theta_{r-k}] \Lambda\theta_{s})

j-p-1\equiv 0 ,

whence

(3. 19) \sum_{l\leqq p}R_{j}^{l}(\rho(X_{k})\theta_{-}\Lambda\theta_{-})
\equiv\sum_{j-p-1l\leqq p}R_{j}^{l-k}(\rho(X_{k})\theta_{-}\Lambda\theta_{-})

Moreover recalling the definitions of the operator \partial and the functions (R^{l-k})^{x_{k}} ,
we obtain

(3. 20) \frac{1}{2}(\partial f^{p+1})_{j}(\theta_{-}\Lambda\theta_{-})=\sum_{r+s=j-p-1}[f^{p+1}(\theta_{r}),
\theta_{s}]

- \frac{1}{2}\sum_{r+s=j-p-1}fp \dagger 1 ( [\theta_{r}, \theta_{s}]),

(3. 21) \frac{1}{2}((R^{l-k})^{x_{k}})_{j}(\theta_{-}\wedge\theta_{-})=-\frac{1}{2}[X_{k},
R_{j-k}^{l-k}(\theta_{-}\Lambda\theta_{-})]

+R_{j}^{l-k}(\rho(X_{k})\theta_{-}\Lambda\theta_{-})
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From (3. 13)\sim (3. 21) it follows immediately that

\sum_{l\leqq p}(\mathscr{L}_{\rho^{(X_{k})}}*R_{j}^{l})

(\theta_{-}\Lambda\theta_{-})

\equiv\sum_{j-p-1l\leqq p}((R^{l-k})^{X_{k}})_{j}(\theta_{-}\Lambda\theta_{-})+(\partial f^{p+1})_{j}(\theta_{-}\Lambda\theta_{-}) ,

meaning the \mathscr{L}_{\rho^{(X_{k})*}}R^{l}=(R^{l-k})^{x_{k}} , l<p , and

\mathscr{L}_{\rho^{(x_{k})*}}R^{p} =(R^{p-k})^{x_{k}}+\partialfp+1

We have thereby completed the proof of Lemma 3. 19.
3. 10. Proof of Lemma 3.14. Since Y\in q^{p} , we have (\mathscr{L}_{Y*}\theta_{p})(A^{*})=-\theta_{p}

([Y, A]^{*}) for every A\in \mathfrak{u}^{p} (cf. the proof of Lemma 3. 18). Hence we obtain

\mathscr{L}_{Y}*\theta_{p}\equiv 0-1

By (p. 2) we have \mathscr{L}_{Y^{*}}\theta_{j}\equiv 0 , j\leqq p-1, and by Lemma 3. 5 we have \mathscr{L}_{Y^{*}}\theta_{j}

j-p-1
=-Y(\theta_{j-p-1}) , j<0 . From these facts we see that there is a unique func-
tion f^{p+1} : B^{p}arrow C_{+}^{p+1,1} such that

(3. 22) \mathscr{L}_{Y^{*}}\theta j j-p-2\equiv(-Y+f^{p+1}) (\theta_{j-p-1})j j\leqq p

Lemma 3. 20. \mathscr{L}_{Y_{*}}R^{p} =\partial(-Y+f^{p+1}) .
Now Lemma 3. 14 can be obtained from (3. 22) and Lemma 3. 20 in

the following manner: We have Y=Y’+\rho(X_{p+1})=Y’-\pi_{-}(\partial X_{p+1}) , and \partial\pi_{-}

(\partial X_{p+1})=-\partial\pi_{+}(\partial X_{p+1}) . Therefore from Lemma 3. 20 we obtain

\mathscr{L}_{Y*}R^{p} =-\partial Y+\partial\pi_{-} (\partial X_{p+1}) +\partialfp+1

=-\partial Y’ +\partial(f^{p\dagger 1}-\pi_{+}(\partial X_{p+1}))
\langle

Hence it follows as before that f^{p+1}=\pi_{+}(\partial X_{p+1}) and \mathscr{L}_{Y*}R^{p} =-\partial Y’ . Moreo-
ver if 0\leqq j\leqq p , we have

f^{p+1}(\theta_{j-p-1})=\pi_{+}(\partial X_{p+1})(\theta_{j-p-1})=-[X_{p+1}, \theta_{j-p-1}]

Consequently we see from (3. 22) that

\mathscr{L}_{Y*}\theta_{j}\equiv-[X_{p+1}, \theta_{j-p-1}]-Yj-p-2

’ (\theta_{j-p-1})j j\leqq p .

Thus Lemma 3. 14 follows.
We now proceed to the proof of Lemma 3. 20, which is analogous to

that of Lemma 3. 19. First of all we obtain

d \mathscr{L}_{Y}*\theta_{j}+\sum_{u+v=j}[\mathscr{L}_{Y*}\theta_{u}, \theta_{v}]

j-p-1 \equiv\frac{1}{2}\sum_{\iota\leqq p}(\mathscr{L}_{Y*}R_{j}^{l})
( \theta_{-}\Lambda\theta_{-})-\sum_{l\leqq p}R_{j}^{l}(Y\theta_{-}\Lambda\theta_{-})

, j\leqq p-1
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Putting g^{p+1}=-Y+f^{p+1} , we further obtain the following equah.ties:

d \mathscr{L}_{Y}*\theta_{j}\equiv g^{p\dagger 1}(d\theta_{j-p-1})\equiv-\frac{1}{2}\sum_{r+s=j-p-1}g^{p+1}-p-1_{j-p-1}(j[\theta_{r}, \theta_{s}]),
\sum_{u+v=j}[\mathscr{L}_{Y}*\theta_{u}, \theta_{v}] \equiv\sum_{j-p-1r+s=j-p-1}[g^{p+1}(\theta_{r}), \theta_{s}] ,

R_{j}^{l}(Y \theta_{-}\wedge\theta_{-})=\sum_{r+s=j-l-1} R^{l}(Y\theta_{r-p-1}\Lambda\theta_{s})\equiv 0j-p-1 ’

From these equalities it follows immediately that
\sum_{t\leqq p}(\mathscr{L}_{Y}*R_{j}^{l}) (\theta_{-}\Lambda\theta_{-})\equiv(\partial g^{p\dagger 1})_{j}(\theta_{-}\Lambda\theta_{-})j-p-1 ’

meaning that \mathscr{L}_{Y}*R^{l} =0, l<p , and
\mathscr{L}_{Y^{*}}^{-}R^{p} =\partial g^{p}\dagger 1

We have thus proved Lemma 3. 20.
3. 11. Proof of Lemma 3. 15. As before we have

\mathscr{L}_{Z^{*}}\theta_{p}\equiv 0-1

By (p. 2) we have
\mathscr{L}’ z*\theta j\equiv j-p-10 , j\leqq p-1 , and by Lemma 3. 5 we have \mathscr{L}_{Z}*\theta_{j}

\equiv 0 , j<0 . From these facts we see that there is a unique function f^{p+1} :
B^{p}arrow C_{+}^{p+1,1}j-p-2 such that
(3. 23)

\mathscr{L}_{Z*}\theta_{j}\equiv f^{p+1}(\theta_{j-p-1})j-p- , j\leqq p

Lemma 3. 21. \mathscr{L}_{Z*}R^{p} =\partial f^{p+1} .
The proof of this lemma is quite similar to that of Lemma 3. 20, and

therefore it is omitted. Lemma 3. 15 follows easily from (3. 23) and Lemma
3. 21.

\S 4. The existence of normal connections of type \mathfrak{G}

The main aim of this section is to accomplish the proof of Theorem
2. 7, (1). Let (P^{\#}, \xi) be a G_{0}^{ff}-structure of type \mathfrak{M} on a manifold M. By
Theorem 3. 7 (P^{\#}, \xi) is reduced to a unique \tilde{G}-structure of type (\mathfrak{M}, \mu-1) ,
(\tilde{P}, -) , on M in a natural manner.

4. 1. The set of normal pre-\mu-systems. Let \theta^{(\mu)}= \{\theta_{j}\}_{j\leqq\mu-1}

.
be a system

of \mathfrak{g}_{j} grvalued 1-forms \theta_{j} on \tilde{P} which is compatible with \check{\xi} , \iota . e. , \theta_{j}= -j’ j<0 .
Then we recall that \theta^{(\mu)} is a pre-\mu system in (\tilde{P},-) if it satisfies the following
three conditions (\mu. a) , (\mu. b) , and (\mu. c) :

(\mu. a) The system \theta^{(\mu-1)}= \{\theta_{j}\}_{j\leqq\mu-2} is a normal (\mu-1) system in (\tilde{P}, -) ,
i . e. , for any j\leqq\mu-2\theta_{j} satisfies the following conditions:
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(\mu-1.1) \theta j(\rho(X_{r})^{*})=\delta_{jr}X_{r} , X_{r}\in \mathfrak{g}_{r} , 0\leqq r\leqq\mu-1,

(\mu-1.2) i) R_{a}^{*}\theta_{j}=Ad(a^{-1})\theta_{j} , a\in G_{0},
ii)

\mathscr{L}_{\rho^{(x_{r})*\theta_{j}\equiv-}}j-\mu[Xr’ \theta_{j-r}] , X_{r}\in \mathfrak{g}_{r} , 0\leqq r\leqq\mu-1.

(\mu. b) \theta_{\mu-1} (\rho(X_{r})^{*})=\delta_{\mu-1,\gamma}X_{r} , X_{r}\in \mathfrak{g}_{r} , 0\leqq r\leqq\mu-1.

(\mu. c) R_{a}^{*}\theta_{\mu-1}=Ad(a^{-1})\theta_{\mu-1} , a\in G_{0} .
Let \theta^{(\mu)} be a pre-\mu-system in (\tilde{P}, -) . Then we have the structure equa-

tion :

\Theta_{j}^{\mu}\equiv\frac{1}{2}\sum_{lj\leqq\mu-1}R_{j}^{l}(\theta_{-}\Lambda\theta_{-})-\mu

’
j\leqq\mu-2

We recall that \theta^{(\mu)} is normal if the curvature \{R^{l}\}_{l\leqq\mu-1} satisfies the following
conditions:

i) R^{l}=0 for l<0 ,
ii) \partial^{*}R^{l} =0 for 0\leqq l\leqq\mu-1.

Lemma 4. 1. Let \theta^{(\mu)} be a normal pre-\mu-system in (\tilde{P},-) . Let 1\leqq

k\leqq\mu-1, and X_{k}\in \mathfrak{g}_{k} . Then there is a unique function g_{\rho X_{k})}( : \tilde{P}arrow \mathfrak{g}_{k} such
that

\mathscr{L}_{\rho^{(}X_{k})*\theta_{j}\equiv-}[Xk, \theta_{j-k}]+ [g_{\rho^{(X_{k})}}, \theta_{j-\mu}] , j\leqq\mu-1

PROOF. The proof of this lemma is quite similar to that of Lemma
3. 13 (see 3. 9). First of all we see that there is a unique function f^{\mu} : Parrow

C_{+}^{\mu,1}=C^{\mu,1} such that

\mathscr{L}_{\rho^{(x_{k})*\theta_{j}\equiv-}}j-\mu-1[Xk, \theta_{j-k}]+f^{\mu}(\theta_{j-\mu}) , j\leqq\mu-1

Then we can show that
\mathscr{L}_{\rho^{(X_{k})}}*R^{\mu-1}=(R^{\mu-1-k})^{x_{k}}+\partial f^{\mu} .

Since \theta^{(\mu)} is normal, both R^{\mu-1} and (R^{\mu-1-k})^{x_{k}} take values in Z_{*}^{\mu-1,2} . Hence
\partial f^{\mu}=0 . Therefore it follows from Lemma 1. 14 that there is a unique func-
tion g_{\rho}(x_{k}\rangle : \tilde{P}arrow \mathfrak{g}_{\mu} such that f^{\mu}=-\partial g_{\rho^{(X_{k})}} , proving Lemma 4. 1.

Let \Delta be the set of all normal pre-\mu-systems in (\tilde{P}, -) . Let \alpha= \{\alpha_{j}\}_{j\leqq\mu-1} ,
\beta= \{\beta j\}j\leqq\mu-1\in\Delta . By (2) of Lemma 3. 12 there is a unique function f_{\alpha\beta} : Parrow

\mathfrak{g}_{\mu} such that

(4. 1)
\alpha_{j}\equiv\beta_{j}+j-\mu-1 [fa\mbox{\boldmath $\beta$}’ \beta_{j-\mu}], j\leqq\mu-1

Let 1\leqq k\leqq\mu-1, and X_{k}\in \mathfrak{g}_{k} . By Lemma 4. 1 there is a unique function
g_{\rho(X_{k})}^{a} : \tilde{P}arrow \mathfrak{g}_{\mu} such that
(4. 2)

\mathscr{L}_{\rho^{(X_{k})*}}\alpha jj-\mu-1\equiv-[X_{k}, \alpha_{j-k}]+ [ g_{\rho}^{\alpha}

(Xk)’ \alpha_{j-\mu}], j\leqq\mu-1
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We can easily prove the following

Lemma 4. 2. f_{\alpha\beta}+f_{\beta\gamma}=f_{\alpha\gamma} .

Lemma 4. 3. (1) R_{a}^{*}f_{\alpha\beta}=Ad(a^{-1})f_{\alpha\beta} , a\in G_{0} .
(2) \mathscr{L}_{\rho}(X_{k})*f_{\alpha\beta}=g_{\rho}^{\alpha}(Xk)-g \rho(X_{k})\beta .
PROOF. (1) can be obtained by applying R_{a}^{*} to (4. 1) and using (\mu-1.

2), i), and (\mu. c) (cf. the proof of Lemma 3. 10). Similarly (2) can be obtained
by applying \mathscr{L}_{\rho^{(x_{k})*}} to (4. 1) and using (4. 2).

Lemma 4. 4. (1) R_{a}^{*}g_{\rho(x_{k})}^{\alpha}=Ad(a^{-1})g_{\rho(Ad(a)x_{k})}^{a} , a\in G_{0} .
(2) If 1\leqq r, s\leqq\mu-1, and if X_{r}\in \mathfrak{g}_{r} and Y_{s}\in \mathfrak{g}_{s} , then we have:

\mathscr{L}_{\rho}(X_{r})*g_{\rho}^{\alpha}(Ys ) -\mathscr{L}_{\rho}(Y_{s})*g_{\rho}^{\alpha}(Xr ) -g_{\rho}^{\alpha}(IXr’ Y_{o}1) =\delta_{\mu,r+s}[X_{r}, Y_{s}]

PROOF. (1) can be obtained by applying R_{a}^{*} to (4. 2) and using (\mu-1 .
2), i), (\mu, c) and the following equalities:

R_{a}^{*}\mathscr{L}_{\rho}(X_{k})*\alpha_{j}=\mathscr{L}_{(R_{a^{-1}}})_{*\rho}(x_{k})*R_{a}^{*}\alpha_{j}

=\mathscr{L}_{\rho}(Ad(a)X_{kI}*R_{a}^{*}\alpha j .

(2) Applying \mathscr{L}_{\rho^{(x_{r})^{*}}} to the equalities

\mathscr{L}_{\rho}(Y_{S})*\alpha_{j}\equiv-[Y_{s}, \alpha_{j-s}]+j-\mu-1 [ g_{\rho}^{a}(Ys )’ \alpha_{j-\mu}],

we obtain

\mathscr{L}_{\rho^{(x_{r})*\mathscr{L}_{\rho^{(}Y_{s_{j-\mu-1}^{)*\alpha_{j}\equiv-}}}}}
[ Y_{s} , \mathscr{L}_{\rho}(Xr^{)*\alpha}j-s]

+ [\mathscr{L}_{\rho}(x_{r})*Q_{\rho(Y_{S})}^{a}, \alpha_{j-\mu}]

j-\mu-1\equiv[Y_{s}, [ X_{r} , \alphaj-r-s]]
+ [\mathscr{L}_{\rho}(x_{r})*g_{\rho(Y_{s})}^{\alpha}, \alpha_{j-\mu}]

Since
\mathscr{L}_{\rho^{(x_{r})*\mathscr{L}_{\rho^{(}Y_{S})*-\mathscr{L}_{\rho^{(Y_{S})*\mathscr{L}_{\rho^{(x_{r})*=\mathscr{L}_{\rho^{(\mathfrak{c}X_{r},Y_{S}1)^{*}}}}}}}}}} ,

it follows that

\mathscr{L}_{\rho}(\mathfrak{c}x_{r} , Y_{s_{j-1}^{J)^{*\alpha_{j}\equiv-}}}-,t[[X_{r}, Y_{s}],
\alpha j-\gamma-S]

+ [ \mathscr{L}_{\rho}(x_{r})^{*}g_{\rho(Y_{S})}^{\alpha}-\mathscr{L}_{\rho}(Ys^{)*Q_{\rho}^{a}}(Xr )’ \alpha_{j-\mu}].

On the other hand if r+s<\mu , we have

\mathscr{L}_{\rho^{(\mathfrak{c}}X_{r},Y_{s}}J) *\alpha_{j}\equiv-j-\mu-1[[X_{r}, Y_{s}], \alpha_{j-r-s}]
+[g_{\rho}^{a}

([Xr ’ Y_{S}I )’ \alpha_{j-\mu}]
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Furthermore if r+s>\mu , we have [X_{r}, Y_{s}]=0, and if r+s=\mu , we have
\rho([X_{r}, Y_{s}])=0 . Thus (2) follows.

4. 2. The principal fibre bundle P. Consider the kernel G’=\exp \mathfrak{g}_{\mu}

of the homomorphism \rho : G’arrow\tilde{G} . For any \alpha, \beta\in\Delta we define a map \sigma_{\alpha\beta} :
\tilde{P}arrow G’ by

\sigma_{\alpha\beta}= \exp f_{\alpha\beta}(

Then by Lemma 4. 2 we see that the system \{\sigma_{\alpha\beta}\} gives a system of tran-
sition functions, i . e. ,

\sigma_{\alpha\beta}\sigma_{\beta\gamma}=\sigma_{\alpha\gamma}

Hence the system \{\sigma_{\alpha\beta}\} defines a principal fibre bundle P over the base space
\tilde{P} with structure group G’ And there corresponds to every \alpha the canonical
triviali zation

\psi_{\alpha} : Parrow\tilde{P}\cross G’

Let \rho denote the projection Parrow\tilde{P}. Then \psi_{\alpha} may be expressed as follows:
\psi_{\alpha}(z)=(\rho(z), \sigma_{\alpha}(z))

, z\in P .

For any \alpha, \beta we have

\sigma_{\alpha}(z)=\sigma_{\alpha\beta}(\rho(z))\sigma_{\beta}(z) . z\in P ,

and putting \psi_{\alpha\beta}=\psi_{\alpha}\circ\psi_{\beta}^{-1} , we obtain

\psi_{\alpha\beta}(x, u) =(x, \sigma_{\alpha\beta}(x) u) , (x, u)\in\tilde{P}\cross G’

We shall show that the group G’ acts on P to the right in a natural
manner, so that P becomes a principal fibre bundle over the base space
M and \rho : Parrow\tilde{P} becomes a homomorphism of P onto \tilde{P} corresponding to
the homomorphism \rho : G’arrow\tilde{G} .

First of all for any z\in P and a\in G_{0} we define za\in P by

\psi_{\alpha}(za)=(\rho(z) a, a^{-1}\sigma_{\alpha}(z)a)

By (1) of Lemma 4. 3 we have \sigma_{\alpha\beta}(xa)=a^{-1}\sigma_{\alpha\beta}(x) a, x\in\tilde{P}, showing that za
does not depend on the choice of \alpha . Clearly the group G_{0} acts on P by the
rule P\cross G_{0}\ni(z, a)arrow za\in P. For any X\in \mathfrak{g}_{0} we denote by X^{*} the vector field
on P induced from the 1-parameter group of transformations zarrow z\cdot\exp tX.

Let us define subspaces \mathfrak{n} and \mathfrak{p} of \mathfrak{g}’=\sum_{j=0}^{u}\mathfrak{g}_{j} respectively by

\mathfrak{n}=\sum_{j=1}^{\mu}\mathfrak{g}_{j} ,
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\mathfrak{p}
= \sum_{j=1}^{\mu-1}\mathfrak{g}_{j}

Then 1t is an ideal of \mathfrak{g}’ , and we have:

\mathfrak{g}’=\mathfrak{g}_{0}+\mathfrak{n} (direct sum),

\mathfrak{n}=\mathfrak{p}+\mathfrak{g}_{\mu} (direct sum)

For any A\in\rho(\mathfrak{n})=\rho(P) and \alpha\in\Delta let us define a function g_{A}^{a} : \tilde{P}arrow \mathfrak{g}_{\mu} by

g_{A}^{\alpha}= \sum_{r=1}^{\mu-1}g_{A_{r}}^{\alpha} ,

where A_{r} is the \rho(\mathfrak{g}_{r}) -component of A with respect to the decomposition
\rho(\mathfrak{n})=\sum_{r=1}^{\mu-1}\rho(\mathfrak{g}_{r}) .

Let X\in \mathfrak{n} . Then we define a vector field X^{*} on P by

(\psi_{\alpha^{*}}X^{*})_{(x,u)}=(\rho(X)_{x}^{*} , (g_{\rho(X)}^{a}(x)+X’)_{u}),\cdot (x, u)\in\tilde{P}\cross G’ :

where X’ stands for the \mathfrak{g}_{\mu} -component of X with respect to the decomp0-
sition \mathfrak{n}=\mathfrak{p}+\mathfrak{g}_{\mu} . (Note that we are identifying \mathfrak{g}_{\mu} with the Lie algebra of
all left invariant vector fields on G’ .) We show that X^{*} does not depend
on the choice of \alpha . Indeed let (Y, Z)\in T(\tilde{P})_{x}\cross T(G’)_{u} . Then we have

(\psi_{\beta\alpha})_{*}(Y, Z)=(Y, (Yf_{\beta\alpha}+\tilde{Z})_{u})’
’

where Z is the unique element of \mathfrak{g}’ with \dot{\check{Z}}_{u}=Z. Hence using (2) of Lemma
4. 3, we obtain

(\psi_{\beta\alpha})_{*}(\rho(X)_{x}^{*}, (g_{\rho(X)}^{\alpha}(x))_{u})=(\rho(X)_{x}^{*}, (\rho(X)_{x}^{*}f_{\beta\alpha}+g_{\rho(X)}^{\alpha}(x))_{\sigma_{\beta\alpha^{(x)u}}})

=(\rho(X)_{x}^{*}, (g_{\acute{\rho}(X)}^{B}(x))_{\sigma_{\beta\alpha^{(x)u}}})-

which proves our assertion.
Let us now calculate the integral curves of X^{*} . For any A\in\rho(\mathfrak{n}) and

\alpha\in\Delta we define a function \overline{g}_{A}^{\alpha} : \tilde{P}arrow \mathfrak{g}_{\mu} by

\overline{g}_{A}^{\alpha}(x)=\int_{0}^{1}g_{A}^{\alpha} ( x\cdot\exp tA) dt , x\in\tilde{P} ,

and define a map \epsilon_{A}^{\alpha} : \tilde{P}arrow G’ by

\epsilon_{A}= \exp \overline{g}_{A}^{a}

Lemma 4. 5. Let X\in \mathfrak{n} and z\in P. Let z_{t}=z_{X}(t) be the maximal in-
tegral curve of X^{*} with z_{0}=z . Then z_{t} is defifined for any t\in R, and
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\psi_{\alpha}(z_{t})=(\rho(z)\cdot\exp t\rho(X), \sigma_{\alpha}(z)\cdot\epsilon_{t\rho(X)}^{\alpha}(\rho(z))\cdot\exp tX’) . t\in R .
p_{ROOF} . Put \psi_{\alpha}(z_{t}) =(x_{t}, u_{t}) , which is a maximal integral curve of \psi_{\alpha^{*}}X^{*} .

Hence we have

\frac{dx_{t}}{dt}=\rho(X)_{x_{t}}^{*} ,

\frac{du_{t}}{dt}=(g_{\rho(X)}^{\alpha}(x_{t})+X’)_{u_{t}}

Since x_{0}=\rho(z) , it follows that

x_{t}=\rho(z)\cdot\exp t\rho(X) .
If we define a curve v_{t} of \mathfrak{g}_{\mu} by \exp v_{t}=u_{t} , it also follows that

\frac{dv_{t}}{dt}=g_{\rho(X)}^{\alpha}(\rho(z)\cdot\exp t\rho(X))+X’ ,

whence

v_{t}=v_{0}+ \int_{0}^{t}g_{\rho(X)}^{\alpha}(\rho(z)\cdot\exp t\rho(X))dt+tX’

=v_{0}+\overline{g}_{c_{\rho}}(XJ (\rho(z))+tX’

Since u_{0}=\sigma_{\alpha}(z) , we therefore obtain

u_{t}=\sigma_{\alpha}(z)\cdot\epsilon_{t\rho(X)}^{\alpha}(\rho(z))\cdot\exp tX’-
’

proving Lemma 4. 5. (From the discussion above it is clear that z_{l} is defifined
for any t\in R .)

We denote by N the connected Lie subgroup of G’ generated by the
ideal \mathfrak{n} of \mathfrak{g}’ , which is nothing but the subgroup \exp \mathfrak{g}_{1}\cdots\exp \mathfrak{g}_{\mu} of G’ (cf.
Lemma 1. 7). From the very definition of \mathfrak{n} we can easily verify that the
exponential map \exp maps \mathfrak{n} diffeomorphically onto N. (This fact also fol-
lows from the facts that \mathfrak{n} is nilpotent and that N is simply connected.)

Let z\in P and a\in N. Taking account of Lemma 4. 5, we defifine za\in P
by za=z_{X}(1) , i. e. ,

\psi_{\alpha}(za)=(\rho(z) \exp\rho(X), \sigma_{\alpha} (z) . \epsilon_{\rho(X)}^{a} (\rho(z))\cdot\exp X’) ,

where X is the unique element of \mathfrak{n} with a=\exp X. In particular if a\in G" ,
we have \psi_{a}(za)=(p(z) \sigma_{\alpha}(z) a) , and hence the group G’ acts on P by the
rule P\cross G’\ni(z, a)arrow za\in P. Note that this action is nothing but the action
of G’ on the principal fibre bundle P over \tilde{P}.
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By Lemma 1. 7 every element a of G’ can be written uniquely in the
form :

a=a_{0}\cdot b ,

where a_{0}\in G_{0} and b\in N. This being said, for any z\in P and a\in G’ we
define za\in P by

za=(za_{0})b .

Every element X of \mathfrak{g}’ can be written uniquely in the form:

X=X_{0}+Y .

where X_{0}\in \mathfrak{g}_{0} and Y\in \mathfrak{n} . Then we define a vector field X^{*} on P by

X^{*}=X_{0}^{*}+Y^{*}

Furthermore we denote by \tilde{\pi} the projection \tilde{P}arrow M, and define a map \pi :
Parrow M by

\pi=\tilde{\pi}\circ\rho .

These being prepared, we shall prove the following

THEOREM 4. 6. (1) The group G’ acts on P by the rule P\cross G’\ni

(z, a)arrow za\Leftarrow Parrow .
(2) With respect to this action of G’P is a principal fifibre bundle

over the base space M with structure group G’ with projection \pi .
(3) The projection \rho : Parrow\tilde{P} is a homomorphism corresponding to the

homomorphism \rho : G’arrow\tilde{G} .
(4) For any X\in \mathfrak{g}’X^{*} is the vector fifield on P induced from the 1-

parameter group of transformations zarrow z\cdot\exp tX.
We first prove the following

Lemma 4. 7. [X^{*}, Y^{*}]= [X, Y]^{*} , X, Y\in \mathfrak{n} .

PROOF. By (2) of Lemma 4. 4 we have

\mathscr{L}_{\rho^{(XI^{*}}}g_{\rho(Y)}^{\alpha}-\mathscr{L}_{\rho^{(Y)^{*}}} g\rho a(X)-g \rho\alpha([X, YI ) = [X, Y]’

Therefore it follows that

[\psi_{\alpha^{*}}X^{*}, \psi_{a^{*}}Y^{*}] (x,u) =([\rho(X)^{*}, \rho(Y)^{*}]_{x} , (\rho(X)_{x}^{*}g_{\rho(Y)}^{\alpha}-\rho(Y)_{x}^{*}g_{\rho(X)}^{\alpha})_{u})

=(\rho([X, Y])_{x}^{*}, (g_{\rho([X,Y])}^{\alpha}(x)+[X, Y]’)_{u})

=(\psi_{\alpha^{*}} [X, Y]^{*})_{(x,u)}

Hence we obtain [X^{*}, Y^{*}]= [X, Y]^{*} , proving Lemma 4. 7.
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Lemma 4. 8. The group N acts on P by the rule P\cross N\ni(z, a)arrow za\in P.
PROOF. Fix any point x_{0} of \tilde{P}, and consider the orbit x_{0}\cdot\rho(N) of \rho(N)

through x_{0} . Put Q=\rho^{-1}(x_{0}\cdot\rho(N)) , which is a submanifold of P diffeomor-
phic with \rho(N)\cross G" and hence with a Euclidean space. It is clear that for
every X\in \mathfrak{n} the vector field X^{*} is tangent to Q. This being said, we denote
by \tilde{X} the restriction of X^{*} to Q. Then by Lemma 4. 7 we have [\tilde{X},\tilde{Y}]=

[\overline{X,Y}] , X, Y\in \mathfrak{n} . Furthermore it is easy to see that for every z\in Q the as -

signment Xarrow\tilde{X}_{z} gives a linear isomorphism of \mathfrak{n} onto T(Q)_{z} . Since Q is
simply connected, we know from these facts that there is a map \varphi : Qarrow N

such that

\varphi_{*}X_{z}=X_{\varphi^{(z)}} . X\in \mathfrak{n} , z\in Q

(For example, see [5]). Clearly \varphi is a local diffeomorphism. If z\in Q and
X\in \mathfrak{n} , we know from Lemma 4. 5 that z\cdot\exp tX is an integral curve of \tilde{X}.
Since \varphi(z) .\exp tX is an integral curve of X, it follows that \varphi(z\cdot\exp tX)=

\varphi(z)(\exp tX. Hence we have shown that

\varphi(za)=\varphi(z) a j z\in Q , a\in N

If z\in Q , a\in N, and Y\in \mathfrak{n} , we therefore see that \varphi(z\cdot(a\cdot\exp tY))=\varphi(z) .a.
\exp tY is an integral curve of Y, meaning that z . (a\cdot\exp tY) is an integral
curve of \tilde{Y}. Hence z\cdot(a\cdot\exp tY)=(za)\cdot\exp t Y. We have thereby shown that

(za) b=z(ab) , z\in Q , a, b\in N .

proving Lemma 4. 8.
Lemma 4. 9. (zb) a=z(ba) , z\in P, b\in N, a\in G_{0} .
PROOF. By (1) of Lemma 4. 4 we can easily verify that

\overline{g}_{Ad(a^{-1}}^{\alpha})A(xa)=Ad(a^{-1})\overline{g}_{A}^{a}(x) , x\in\tilde{P} . a\in G_{0} , A\in\rho(\mathfrak{n}) ,

whence

\epsilon_{Ad(a^{-1})A}^{\alpha}(xa)=a^{-1}\epsilon_{A}^{\alpha}(x)a\tau

Therefore if z\in P, a\in G_{0} , and X\in \mathfrak{n} , we obtain:

\psi_{\alpha}((z\cdot\exp X)\cdot a)=(\rho(z\cdot\exp X)\cdot a, a^{-1}\sigma_{\alpha}(z\exp X)a)

=(\rho(z) . \rho(\exp X) \cdot a , a^{-1}\sigma_{a}(z)\epsilon_{\rho(X)}^{\alpha} (\rho(z))\cdot\exp X’\cdot a)

=(\rho(za) \rho(\exp Ad (a^{-1})X) , \sigma_{\alpha} (za) \epsilon_{\rho}^{\alpha}(Ad(a-1)X) (\rho(za))\exp Ad (a^{-1})X’)

= (
\alpha

((za)\cdot\exp Ad (a^{-1})X)=\psi_{\alpha}(z\cdot(\exp X\cdot a))
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(Note that \exp X\cdot a=a\cdot\exp Ad (a^{-1})X and Ad (a^{-1})X\in \mathfrak{n} .) Hence we have
shown that (z\cdot\exp X)a=z\cdot(\exp X\cdot a) , proving Lemma 4. 9.

From Lemmas 4. 8 and 4. 9 we can easily derive the following

Lemma 4. 10. The group G’ acts on P by the rule P\cross G’\ni(z, a)arrow

z\^a P.
Lemma 4. 11. (1) \rho(za)=\rho(z) \rho(a) , z\in P, a\in G’ .
(2) The group G’ freely acts on P, i . e. , if z\in P, a\in G’ , and za=z,

then a=e.
(3) Let z, w\in P. Then \pi(z)=\pi(w) if and only if there is an a\in G’

such that w=za.

PROOF. (1) is clear. (2) We have \rho(za)=\rho(z) \rho(a)=\rho(z) , whence \rho(a)

=e, i . e. , a\in G’ . Hence a=e, proving (2). (3) If w=za, we have \pi(w)=

\tilde{\pi}(\rho(w))=\tilde{\pi}(\rho(z)\rho(a))=\tilde{\pi}(\rho(z))=\pi(z) . Conversely suppose that \pi(w)=\pi(z) .
Since \tilde{\pi}(\rho(w))=\tilde{\pi}(\rho(z)) , there is an d\in G’ such that \rho(w)=\rho(z) \rho(d)=\rho(za’) .
Hence there is an d’\in G” such that w=(zd)d’=z(dd’) .

We have thus proved (1)\sim(3) of Theorem 4. 6. (4) of Theorem 4. 6 is
now clear.

4. 3. The systems \theta . Let P be the principal fibre bundle over the
base space M with structure group G’ which was constructed in the previous
section. Our task from now on is to show that P is endowed with a normal
connection of type G.

For any \alpha\in\Delta we define a function f_{a} : Parrow \mathfrak{g}_{\mu} by

\sigma_{\alpha}=\exp f_{a}

Then we have
f_{\alpha}=\rho^{*}f_{\alpha\beta}+f_{\beta} . \alpha, \beta\in\Delta

Let \theta\in\Delta . For any j\leqq\mu-1 we define a \mathfrak{g}_{j} grvalued 1-form \overline{\theta}_{j} on P by

\theta_{j}=\rho^{*}\theta j^{-[f_{\theta}}
’

\rho^{*}\theta_{j-\mu}] ,

and denote by
- the system \{\overline{\theta}_{j}\}_{j\leqq\mu-1} . Clearly we have

- j^{=}\rho^{*}\theta_{j}=\rho j*- , j<0
Hereafter the symbols

\equiv k
will be considered with respect to the system

\{\overline{\theta}_{j}\}_{j<0} .
Lemma 4. 12. The system \overline{\theta}= \{\overline{\theta}_{j}\}_{j\leqq\mu-1} has the following properties :

(1) -j (X_{r}^{*})=\delta_{jr}X_{r} , X_{r}\in \mathfrak{g}_{r} , 0\leqq r\leqq\mu .

(2) i) R_{a}^{*}\overline{\theta}_{j}=Ad(a^{-1})\overline{\theta}_{j} : a\in G_{0} ,
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ii) \mathscr{L}X_{r}^{*} j- j-\mu-1\equiv-
[ X_{r}, -j-r] , X_{r}\in \mathfrak{g}_{r} , 0\leqq r\leqq\mu .

PROOF. (1) We first remark that for every X\in \mathfrak{g}’X^{*} and \rho(X)^{*} are
\rho-related, i. e. , \rho_{*}X_{z}^{*}=\rho(X)_{\rho^{(z)}}^{*} , z\in P. Let 0\leqq r\leqq\mu-1, and let X_{r}\in \mathfrak{g}_{r} .
Then using (\mu-1.1) and (\mu. b) , we obtain

\overline{\theta}_{j}(X_{r}^{*})=\rho^{*}(\theta j (\rho(X_{r})^{*}))-[f_{\theta} , \rho^{*}(\theta_{j-\mu}(\rho(X_{r})^{*}))]

=\delta_{jr}X_{r}

Now let X_{\mu}\in \mathfrak{g}_{\mu} . Since \rho(X_{\mu}) =0, we clearly have \overline{\theta}_{j}(X_{\mu}^{*}) =0. We have thus
proved (1).

(2) Let a\in G_{0} . Then we have R_{a}^{*}f_{\theta}=Ad(a^{-1})f_{\theta} and R_{a}\circ\rho=\rho\circ R_{a} .
Therefore using (\mu-1.2) , i) and (\mu. c) , we obtain R_{a}^{*}\overline{\theta}_{j}=Ad(a^{-1})\overline{\theta}_{j} . In
particular we have \mathscr{L}_{X_{0}^{*}}\overline{\theta}_{j}= -[Xo, \overline{\theta}_{j}], X_{0}\in \mathfrak{g}_{0} . Now let 1\leqq r\leqq\mu-1, and
let X_{r}\in \mathfrak{g}_{r} . By Lemma 4. 5 we have \sigma_{\theta}(z\cdot\exp tX_{r}) =\sigma_{\theta}(z)\cdot\epsilon_{t\rho(X_{r})}^{\theta}(\rho(z)) , z\in P,
whence \mathscr{L}_{X_{r}^{*}}f_{\theta}=\rho^{*}g_{\rho(x_{r})}^{\theta} . Therefore using (4. b) , we obtain

\mathscr{L}_{X_{r}^{*}} - j=\rho^{*} (\mathscr{L}_{\rho}(x_{r})*\theta j)-[\mathscr{L}_{X_{r}^{*}}f_{\theta}, \rho^{*}\theta_{j-\mu}]

-[f_{\theta}, \rho^{*} (\mathscr{L}_{\rho}(x_{r})^{*\theta_{j-\mu})]}

j-\mu-1\equiv-[X_{r}, \rho^{*}\theta_{j-r}]+ [ \rho^{*} g\rho \mbox{\boldmath $\theta$}(Xr )’ \rho^{*}\theta_{j-\mu}]

-[\rho^{*}g_{o(X_{r})}^{\theta}, \rho^{*}|\theta_{j-\mu}]+[f_{\theta} , [X_{r}, 0^{*}\theta_{j-r-\mu}]]

j-\mu-1\equiv-
[Xr’ \overline{\theta}_{j-r}]

Finally let X_{\mu}\in \mathfrak{g}_{\mu} . Then we have \sigma_{\theta}(z\cdot\exp tX_{\mu}) =\sigma_{\theta}(z)\cdot\exp tX_{\mu} , whence
\mathscr{L}x_{\mu}*f_{\theta}=X\mu. Hence we obtain

\mathscr{L}X\mu*\theta_{j}=-[\mathscr{L}_{X_{\mu}^{*}}f_{\theta}, \rho^{*}\theta_{j-\mu}]=-[X_{\mu}, \rho^{*}\theta_{j-\mu}]

j-\mu-1\equiv-[X_{\mu},\overline{\theta}_{j-\mu}]

We have thus proved (2).
Let \{R^{l}\}_{l\leqq\mu-1} be the curvature of the normal pre-\mu-system \theta in (\tilde{P}, -) .

For any j\leqq\mu-2 we define a \mathfrak{g}_{j} grvalued 2-form \Theta_{j}^{\mu} on P by

\overline{0_{j}^{\mu}H}=d\theta_{j}+\frac{1}{2}\sum_{u+v=j}[\theta_{u},\overline{\theta}_{v}]

Put \overline{\theta}_{-}=\sum_{j<0}\overline{\theta}_{j} .

Lemma 4. 13. \overline{0_{j}^{\mu}\mu}\equiv_{\mu}\frac{1}{2}\sum_{lj\leqq\mu-1}(\rho^{*}R_{j}^{l})-(\theta_{-}\Lambda\theta-) , j\leqq\mu-2 .

PROOF. The form \theta_{j} may be expressed as follows :
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\theta_{j}=\rho^{*}\theta_{j}+(\partial f_{\theta}) (\rho^{*}\theta_{j-\mu})

Therefore we deduce from the proof of Lemma 3. 9 that

\overline{0_{j}^{\prime t}H}\equiv\rho^{*}\Theta_{j}+\frac{1}{2}(\partial\partial f_{\theta})(\overline{\theta}_{-}\Lambda\overline{\theta}_{-})j-\mu

Hence the lemma follows from the structure equation for the normal pre-
\mu system \theta .

Lemma 4. 14. For any \alpha , \beta\in\Delta we have

-jjj-\mu-1\equiv- , j\leqq\mu-1

PROOF. This fact follows immediately from (4. 1) and the fact that
f_{\alpha}=\rho^{*}f_{\alpha\beta}+f_{\beta} .

4. 4. An existence theorem for normal connections of type \mathfrak{G} . By
Lemma 4. 14 we know that if \alpha , \beta\in\Delta , then \overline{\alpha}_{j}=\overline{\beta}_{j} , j\leqq 0 . This being said,
we denote by \eta j the 1-form \overline{\alpha}_{j} for any j\leqq 0 , and denote by \eta the system
\{\eta_{j}\}_{j\leqq 0} . Note that \eta_{j}=\rho^{*}\overline{\xi}_{j} if j<0 .

In the subsequent two paragraphs we shall prove the following
THEOREM 4. 15. There is a unique normal connection of type \mathfrak{G} , \omega ,

in P which is compatible with \eta , i . e. , \eta_{j}=\omega j ’
j\leqq 0 .

Let \omega be the unique connection whose existence is assured by the the0-
rem. Then we have \omega_{-}=\rho_{-}^{*}\overline{\xi} , indicating that the pair (P, \omega) induces the
given G_{0}^{f1}-structure of type \mathfrak{M} , (P^{\mu}, \xi) . Accordingly (2) of Theorem 2. 7
follows from Theorem 4. 15. The pair (P, \omega) will be called the normal con-
nection of type \mathfrak{G} associated with (P^{f1}, \xi) .

4. 5. Normal p system (p\geqq\mu) . Let p\geqq\mu . Let \omega^{(p)}= \{\omega_{j}\}_{j\leqq p-1} be a
system of \mathfrak{g}_{j} grvalued 1-forms \omega_{j} , j\leqq p-1, on P. Assume that \omega^{(}p

) is compat-
ible with \eta , i . e. , \omega_{j}=\eta_{j} , j\leqq 0 . Then we say that \omega^{(p)} is a p system in (P, \eta)

if it satisfies the following conditions:

(p. 1) \omega_{j}(X_{r}^{*})=\delta_{jr}X_{r} , X_{r}\in \mathfrak{g}_{r} . 0\leqq r\leqq\mu .
(p. 2) i) R_{a}^{*}\omega_{j}=Ad(a^{-1})\omega_{j} , a\in G_{0} ,

ii_{/}^{\backslash }

\mathscr{L}_{X_{g}^{*}} . \omega_{j}\equiv-j-p-1[Xr’ \omega_{j-\gamma}]-,
X_{r}\in \mathfrak{g}_{r} , 0\leqq r\leqq\mu ,

where the symbols \equiv are considered with respect to the system \{\omega_{j}\}_{j<0} .
j-p-1

Let \omega^{(}p
) be a p system in (P, \eta) . Let q\leqq p and j\leqq q-2 . We define

a \mathfrak{g}grvalued 2-form \Omega_{j}^{q} on P by

\Omega_{j}^{q}= do)j+ \frac{1}{2}

u,v \leqq q-,,1\sum_{u+v=j}[\omega_{u}, \omega_{v}]
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In the following the symbols
\equiv k

will be considered with respect to the system
\{\omega_{j}\}_{j<0} . Similarly to the proof of Lemma 3. 6 we can show that there are
unique functions K^{l} : Parrow C^{l,2} , l\leqq p-1, such that

\Omega_{j}^{p}\equiv\frac{1}{2}\sum_{\iota j\leqq p-1}K_{j}^{l}-p (\omega_{-}\Lambda\omega_{-}) . j\leqq p-2 :

where \omega_{-}=\sum_{j<0}\omega_{j} . The system of the equations above will be called the
structure equation, and the system of functions, \{K^{l}\}_{l\leqq p-1} , will be called the
curvature. Clearly the structure equation induces the equations

\Omega_{j}^{q}\equiv_{q}\frac{1}{2}\sum_{lj\leqq q-1}K_{j}^{l}- (\omega_{-}\Lambda\omega_{-}) , j\leqq q-2 . q\leqq p

Finally we say that the p system \omega^{(}p
) is normal if the curvature satisfies

the following conditions:

i) K^{l}=0 for l<0 ,

ii) \partial^{*}K^{l} =0 for 0\leqq l\leqq p-1

From Lemmas 4. 12 and 4. 13 we know that for any \theta\in\Delta , \theta gives a normal
\mu system in (P, \eta) .

Lemma 4. 16. For any p\geqq\mu , (P, \eta) admits a normal p-system.
This lemma will be proved in the next paragraph.
LEmma4.17 . Let p\geqq\mu . Let \omega^{(p)} and \omega’ (p) be two normal p-systems

in (P, \eta) . Then we have

\omega_{j}’\equiv\omega_{j}j-p-1 , j\leqq p-1

PROOF. First consider the case where p=\mu . In the same manner as
in the proof of Lemma 3. 12, (2), we can find a unique function g_{\mu} : Parrow \mathfrak{g}_{\mu}

such that
\omega_{j}’\equiv\omega_{j}+[g_{\mu}, \omega_{j-\mu}]j-\mu-1 ,\cdot j\leqq\mu-1

In particular we have \omega_{0}’=\omega_{0}+[g_{\mu}, \omega_{-\mu}] . Since \omega_{0}=0)’ 0^{=\eta}0 ’ it follows that
[g_{\mu}, \omega_{-\mu}]=0 . Hence g_{\mu}=0 , proving the lemma for p=\mu . (Let X\in \mathfrak{g}_{\mu} be such
that [X, \mathfrak{g}_{-\mu}]=0 . Then we have X=0. Indeed B(X, \mathfrak{g}_{-\mu})=B(X, [\mathfrak{g}_{-\mu}, E])\subset

B([X, \mathfrak{g}_{-\mu}], E)=0 , whence X=0.) Next consider the case where p\geqq\mu+1.

For any q\geqq\mu+1 we have C^{q1}\dotplus=C^{q1}, and \mathfrak{g}_{q}=0 . Consequently it follows
from Lemma 1. 14 that the map \partial : C^{q1}\dotplusarrow C^{q-1,2} is injective. Therefore start-
ing from the equalitie

\omega_{j}’\equiv\omega_{j}j-\mu-1 , j\leqq\mu-1 ,
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and reasoning similarly to the prood of Lemma 3. 9, we can prove the equali-
ties

\omega_{j}’\equiv\omega_{j}j-p-1 , j\leqq p-1 ,

which completes the proof of the lemma.
Utilizing Lemmas 4. 16 and 4. 17, we shall now prove Theorem 4. 15.

Let \omega^{(3\mu)}= \{\omega_{j}\}_{j\leqq 3\mu-1} and \omega’=(3\mu)\{\omega_{j}’\}_{j\leqq 3\mu-1} be two normal 3\mu system in (P, \eta) .
Since \omega_{j}=\omega_{j}’=0 if j<-\mu or j>\mu , it follows from Lemma 4. 17 that

\omega_{j}’=\omega_{j} . -\mu\leqq j\leqq\mu t

This being remarked, we define a \mathfrak{g} -valued 1-form \omega on P by

\omega=\sum_{j=-\mu}^{\mu}\omega_{j} .

From the very conditions for a 3\mu-system it is easy to see that the system
\langle 0)j\}

-\mu\leqq j\leqq\mu satisfies the following:

(1) \omega_{j}=\eta_{j} , j\leqq 0 .
(2) \omega_{j}(X_{r}^{*})=\delta_{jr}X_{r} , X_{r}\in \mathfrak{g}_{r} . 0\leqq r\leqq\mu .
(3) i) R_{a}^{*}\omega_{j}=Ad(a^{-1})\omega_{j} , a\in G_{0} ,

ii) L_{X_{r}^{*}}\omega_{j}=-[X_{r}, \omega_{j-r}] . X_{r}\in \mathfrak{g}_{r} . 0\leqq r\leqq\mu 1

These clearly mean that \omega is a connection of type \mathfrak{G} in P compatible with \eta .
Let \{K^{l}\}_{l\leqq 3\mu-1} be the curvature of \omega^{(3\mu)} . \omega^{(3\mu)} being normal, we have:

i) K^{l}=0 for l<0 ,

ii) \partial^{*}K^{l} =0 for 0\leqq l\leqq 3\mu-1

Furthermore it is easy to see that the structure equation for \omega^{(3\mu)} yields
the equations

d \omega_{j}+\frac{1}{2}r
-u \leqq r,’ S’\leqq\mu\sum_{+s=j}[\omega_{r}, \omega_{s}]=\frac{1}{2}\sum_{l\leqq 3\mu-1}K_{j}^{l}(\omega_{-}\Lambda\omega_{-}) . -\mu\leqq j\leqq\mu

Putting K= \sum_{l\leqq 3u-1}K^{l} , we therefore see that

d \omega+\frac{1}{2}[\omega, \omega]=\frac{1}{2}K(\omega_{-}\Lambda\omega_{-})

and hence K is the curvature of \omega . In this way we have proved that \omega

is a normal connection of type \mathfrak{G} in P compatible with \eta .
Let \omega’ be another normal connection of type \mathfrak{G} in P compatible with \eta .
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Then the system \omega^{\prime(3\mu)}=\{\omega_{j}’\}_{j\leqq 3\mu-1} gives a normal 3\mu-system in (P, \eta) (see

2. 3). Hence \omega and \omega’ coincide, as we have remarked above. We have thus
proved Theorem 4. 15.

4. 6. Proof of Lemma 4. 16. Let p\geqq\mu . Let \omega^{(p+1)}= \{c\iota)_{j}\}_{j}\leqq p be a system

of \mathfrak{g}_{j} valued 1\prime forms\omega_{j} , j\leqq p , on P. Then we say that \omega^{(p+}1 ) is a pre
(p+1) -system in (P, \eta) if it satisfies the following conditions:

(p+1. a) \omega^{(p)}=\{\omega_{j}\}_{j\leqq p-1} is a p-system in (P, \eta)

(p+1. b) \omega p(X_{r}^{*})=\delta_{pr}X_{r} . X_{r}\in \mathfrak{g}_{r} , 0\leqq r\leqq\mu .

(p+1. c) R_{a}^{*}\omega_{p}=Ad(a^{-1})\omega_{p} . a\in G_{0} .

Let \omega^{(p+}1 ) be a pre-(P+l)-system in (P, \eta) . For any j\leqq p-1 we define
a \mathfrak{g}_{j} -valued 2-form \Omega_{j}^{p+1} on P by

\Omega_{j}^{p+1} = d(Dj+ \frac{1}{2}

u,v \leqq p\sum_{u+v=j},,
[\omega_{u}, \omega_{v}]

As before it can be shown that there are unique functions K^{l} : Parrow C^{l2}, ,
l\leqq p , such that

\Omega_{j-}^{p+1}\equiv_{p-1}\frac{1}{2}\sum_{lj\leqq p}K_{j}^{l} (\omega_{-}\Lambda\omega_{-}) . j\leqq p-1

The system of the equations above will be called the structure equation
(for \omega^{(p+1)} ), and the system of functions, \{K^{l}\}_{l\leqq p} , will be called the curvature
(of \omega^{(p+1)} ). The structure equation for \omega^{(p+}1 ) induces the equations

\Omega_{j}^{p}\equiv_{p}\frac{1}{2}\sum_{lj\leqq p-1}K_{j}^{l}(\omega_{-}\Lambda\omega_{-})- , j\leqq p-2 .

which together form the structure equation for the p-system \omega^{(p)} . In the
same manner as in the proof of Lemma 3. 10, it can be shown that

R_{a}^{*}K^{p}=(K^{p})^{a} , a\in G_{0} .

Finally we say that the pre-(P+l)-system \omega^{(p+}1 ) is normal if the curvature
\{K^{l}\}_{l\leqq p} satisfies the following conditions :

i) K^{l}=0 for l<0 ,

ii) \partial^{*}K^{l} =0 for 0\leqq l\leqq p-1

Lemma 4. 18. A normal pre-(p+l)-system is a normal (p+1) -system

PROOF. Let \omega^{(p+1} ) be a normal pre-(P+l)-system in (P, \eta) . Let 1\leqq k\leqq

\mu , and let X_{k}\in \mathfrak{g}_{k} . Then we must show that

\mathscr{L}_{X_{k}^{*}}\omega jj-p-2\equiv-[Xk, \omega_{j-k}]-,
j\leqq p
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The proof of this fact is quite similar to that of Lemma 3. 13 (see 3. 9).
First of all we see that there is a unique function f^{p+1} : Parrow C_{+}^{p+1,1}=Cp+1,1

such that

\mathscr{L}_{X_{k}^{*}}\omega jj-p-2\equiv-[X_{k}, \omega_{j-k}]+f^{p+1}(\omega_{j-p-1}) , j\leqq p

Then we can show that

\mathscr{L}_{X_{k}^{*}}K^{p}=(K^{p-k})^{x_{k}}+\partial f^{p+1}

Since \omega^{(p+}1 ) is normal, and since the map \partial : C^{p+11},arrow C^{p2}, is injective, it fol-
lows that f^{p+1}=0 , proving the lemma.

Let us now prove Lemma 4. 16, which is carried out by induction on
the integer p\geqq\mu (cf. the proof of Lemma 3. 11). As we have remarked
before, (P, \eta) admits a normal \mu-system. Thus we assume that for some
p\geqq\mu (P, \eta) admits a normal p-system, say \omega^{(p)}=\{\omega_{j}\}_{j\leqq p-1} .

We take a connection \alpha (in the usual sense) in P, and denote by \omega_{p}

the \mathfrak{g}_{p} -component of \omega with respect to the decomposition
\mathfrak{g}’=\sum_{j\geqq 0}\mathfrak{g}_{j} . Then we

have
\omega_{p}(X_{r}^{*})=\delta_{rp}X_{r} , X_{r}\in \mathfrak{g}_{r} , 0\leqq r\leqq\mu ,

R_{a}^{*}\omega_{p}=Ad(a^{-1})\omega_{p} , a\in G_{0j}

indicating that the system \omega^{(p+1)}=\{0)_{j}\}_{j\leqq p} formed by \{\omega_{j}\}_{j\leqq p-1} and \omega_{p} gives
a pre-(p+l)-system in (P, \eta) . We shall modify \omega^{(p\dagger 1)} to obtain a normal
pre-(p+l)-system

The space C^{p2}, is decomposed as follows:
C^{p,2}=Z_{A_{1}}^{p,2}+\partial C^{p+1} , 1

Let \{K^{l}\}_{l\leqq p} be the curvature of \omega^{(p+}1 )
. K^{p} taking values in C^{p,2} , we denote

by L^{p} the \partial C^{p+}c|p -component of K^{p} . Since C_{+}^{p+1,1}=C^{p+11},=Z_{*}^{p+1,1}+\partial \mathfrak{g}_{p+1}=

Z_{*}^{p+1,1} , and since H^{p\dagger 11},(\mathfrak{G})=0 , we see that there is a unique function f^{p+1} :
Parrow C^{p+1,1}+ such that L^{p}=-\partial f^{p+1} . Since R_{a}^{*}K^{p}=(K^{p})^{a} , a\in G_{0} , it follows from
Lemma 1. 11 that

R_{a}^{*}f^{p+1}=(f^{p+1})^{a}j a\in G_{0} .
Using the function f^{p\dagger 1} , we now modify \omega^{(p\dagger 1)} as follows :

\omega_{j}’=\omega_{j}+f^{p+1}(\omega_{j-p-1})j j\leqq p

Let \omega’=(p+1)\{\omega’j\}j\leqq p . Then in the same manner as in the proof of Lemma
3. 11, we see that \omega’(p+1) is a normal pre-(P+l)-system in (P, \eta) . By Lemma
4 . 18 \omega^{\prime(p+1)} is a normal (p+1)-system in (P, \eta) , thus completing the proof
of Lemma 4. 16
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4. 7. REMARK. Let (P^{f1}, \xi) (resp. ( P^{\prime\#} , \xi’ )) be a G_{0}^{\#}GVstructure of type
\mathfrak{M} on a manifold M (resp. on M’), and (P, \omega) (resp. (P’ , \omega’ )) the normal
connection of type \mathfrak{G} on M (resp. on M’ ) associated with (P^{\#}, \xi) (resp. with
(P^{\prime\#}, \xi’)) . Then we know that every isomorphism \varphi : (P, \omega)arrow(P’, \omega)’ induces
an isomorphism \varphi^{\#} : (P^{\#}, \xi) -(P’#, \xi’ ) in a natural manner (see 2. 3). Conversely

we remark that every isomorphism \varphi^{\#} : (P^{f1}, \xi) -(P’#, \xi’ ) induces an isomor-
phism \varphi : (P, \omega)arrow(P’, \omega’) in a natural manner.

Although this fact follows from (2) of Theorem 2. 7 which will be proved

in the next section, we shall give a direct proof of it from now on. By

Theorem 3. 7 (P^{ff}, \xi) (resp. ( P^{\prime\#} , \xi’ )) is reduced to a unique \tilde{G} -structure of
type (9Ji, \mu-1) , (\tilde{P}, -) (resp. ( \tilde{P}’,\tilde{\xi}’ )), on M (resp. on M’) in a natural manner.
Clearly the image \varphi^{\#}(\tilde{P}) of \tilde{P} by \varphi^{\#} defines a \tilde{G} GVstructure of type (\mathfrak{M}, \mu-1) ,

from which follows that \varphi^{r}(P)=P’ , and hence \varphi^{\#} induces an isomorphism
\tilde{\varphi} : (\tilde{P}, -)-(P’, \tilde{\xi}’ ). Let \Delta (resp. \Delta’ ) be the set of all normal pre-\mu system in
(\tilde{P},-) (resp. in (P\sim’,\tilde{\xi}’ )). For every \alpha’= \{\alpha’j\} j\leqq\mu-1\in\Delta’ let \tilde{\varphi}^{*}\alpha’ denote the system
\{\tilde{\varphi}^{*}\alpha_{j}’\}_{j\leqq\mu-1} . Then it is clear that \tilde{\varphi}^{*}\alpha’\in\Delta , the assignment \alpha’arrow\tilde{\{}*\alpha’ gives

an injective map of \Delta’ onto \Delta , and
f_{\alpha\beta}=\tilde{\varphi}^{*}f_{\alpha’\beta’}’ . \alpha’ , \beta’\in\Delta’ ,

where \alpha=\tilde{\varphi}^{*}\alpha’ and \beta=\tilde{\varphi}^{*}\beta’ . Hence \tilde{\varphi} gives rise to an isomorphism \varphi : Parrow

P’ as G’ -bundles in a natural manner. Moreover we clearly have
g_{\rho(X)}^{a}=\tilde{\varphi}^{*}g_{\rho(\acute{X}):}^{\prime\alpha}

\alpha’\in\Delta’ , X\in \mathfrak{p} .

Hence it follows that \varphi gives an isomorphism Parrow P’ as G’ -bundles, and
\overline{\tilde{\varphi}^{*}\alpha’}= {

*\overline{\alpha}’ . Consequently we see that \varphi^{*}\omega’ gives a normal connection of
type \mathfrak{G} in P compatible with \eta , and hence \varphi^{*}\omega’=0) by Theorem 4. 15, proving
our remark.

\S 5. The uniqueness of normal connections of type \mathfrak{G}

In this section we shall prove (2) of Theorem 2. 7.

5. 1. The \tilde{G} -structures corresponding to normal connections of type G.

Lemma 5. 1. Let (P, \omega) be a normal connection of type \mathfrak{G} on a manifold

M, and (\tilde{P},\tilde{\xi}) the corresponding \tilde{G} -structure. Then (\tilde{P}, -) is of type (\mathfrak{M} ,

\mu-1) .
Consider the kernel G’=\exp \mathfrak{g}_{\mu} of the homomorphism \rho : G’arrow\tilde{G} . Then

P is a principal fibre bundle over the base space \tilde{P} with structure group

G’ . The proof of Lemma 5. 1 is preceded by the following

Lemma 5. 2. There is a cross section \psi:\tilde{P}arrow P having the following
properties :
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1) \psi(z\cdot a) =\psi(z)\cdot a, z\in\tilde{P}, a\in G_{0} .
2) \psi(z\cdot\rho(a))\equiv\psi(z)\cdot a (mod G’), z\in\tilde{P}, a\in G’-

PROOF. Let Q be a reduction of P to G_{0} . (Such a reduction necessarily
exists, because the homogeneous space G’/G_{0} is diffeomorphic with the space
\sum_{j=1}^{t}’ \mathfrak{g}_{j} (Lemma 1. 7).) Let \rho be the projection Parrow\tilde{P}. Clearly \rho maps Q in-
jectively into \tilde{P}, and hence the image \rho(Q) of Q by \rho gives a G_{0}-subbundle
of \tilde{P}. If we put

\tilde{N}=\exp \mathfrak{g}_{1}\cdots\exp \mathfrak{g}_{\mu-1} ,

we see from Lemma 1. 7 that every element z of \tilde{P} can be written uniquely
in the form:

z=\rho(y\cdot b) ,

where y\in Q and b\in\tilde{N}. Now define a map \psi : \tilde{P}arrow P by

\psi(z)=y . b .

Then we can easily verify that \psi has the required properties.
Proof of Lemma 5. 1. Let \psi be a cross section \tilde{P}arrow P having the pr0-

perties in Lemma 5. 2. For any j\leqq\mu-1 we put \theta_{j}=\psi^{*}\omega_{j} . We shall show
that the system \theta^{(\mu)}= \{\theta_{j}\}_{j\leqq\mu-1} is a normal pre-\mu system in (\tilde{P}, -) , which implies
that (\tilde{P},-) is of type (\mathfrak{M}, \mu-1) . First of all we have \psi^{*}0)-= -, because \omega_{-}=

\rho^{*^{-}} and \rho\circ\psi=1 . Hence \theta^{(\mu)} is compatible with the basic form \overline{\xi} .
Let 0\leqq r\leqq\mu-1 , and X_{r}\in \mathfrak{g}_{r} . From property 2) for \psi we easily see

that

\psi_{*}(\rho(X_{r})_{z}^{*})=(X_{r})_{\psi(z)}^{\star_{\backslash }}.+Y_{\psi(z)}^{*} , z\in\tilde{P} .

where Y is a suitable element of \mathfrak{g}_{\mu} depending on X_{r} and z. Since \omega_{j}(X_{r}^{*})=

\delta_{jr}X_{r} , it follows that

(5. 1) \theta j (\rho(X_{r})^{*})=\delta_{jr}X_{r} , X_{r}\in \mathfrak{g}_{r} , 0\leqq r\leqq\mu-1

By property 1) for \psi we have \psi\circ R_{a}=R_{a}\circ\psi, a\in G_{0} . We have R_{a}^{*}\omega_{j}=Ad

(a^{-1})\omega_{j} , a\in G_{0} . Hence we obtain

(5. 2) R_{a}^{*}\theta_{j}=Ad(a^{-1})\theta_{j} . a\in G_{0} .

Let K be the curvature of \omega . By Lemma 2. 5 we have

\Omega_{j}^{\mu}\equiv_{\mu}\frac{1}{2}\sum_{lj\leqq\mu-1}- K_{j}^{l} (\omega_{-}\Lambda\omega_{-}) , j\leqq\mu-2 .

hence
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(5. 3) \Theta_{j}^{\prime\ell}\equiv\frac{1}{2}\sum_{lj\leqq’\iota-1}(\psi^{*}K_{j}^{l})(\theta_{-}\Lambda\theta_{-})-/\ell

i j\leqq\mu-2 .

Let 0\leqq r\leqq\mu-1, and X_{r}\in \mathfrak{g}_{r} . Let j\leqq\mu-2 . Then using (5. 1), we have
\mathscr{L}_{\rho^{(X_{r})*\theta_{j}=\rho(X_{r})^{*}\rfloor d\theta_{j}=\rho(X_{r})^{*}\rfloor\Theta_{j}^{\mu}-}}[Xr’ \theta_{j-r}] ,

and from (5. 3) we obtain

\rho(X_{r})^{*}\rfloor\Theta_{j}^{u}\equiv j-/\ell 0 .

Therefore it follows that

(5. 4) \mathscr{L}_{\rho^{\langle}}x_{r})*\theta_{j}\equiv-[X_{r}, \theta_{j-r}]j-\mu i
X_{r}\in g_{r} , 0\leqq r\leqq\mu-1

Now we see from (5. 1), (5. 2) and (5. 4) that \theta^{(\mu)} gives a pre-\mu system
in (\tilde{P}, -) . Thus equations (5. 3) together form the structure equation for
\theta^{(\mu)} . Since \omega is normal, it is clear that \theta^{(\mu)} is normal, proving our assertion.

5. 2. Some lemmas on normal connections of type \mathfrak{G} . Let P be a
principal fibre bundle over a base manifold M with structure group G’ .
where \dim M=\dim \mathfrak{m} . Suppose that there are given two normal connections
of type \mathfrak{G} , \omega and \omega’ , in P such that

\omega_{-}’=\omega_{-}

We remark that for each p\geqq\mu the system \omega^{(p)}=\{oJ_{j}\}
j\leqq p-1 satisfies all the

conditions for normal p-systems stated in 4. 5 (except that \omega^{(}p
) is compatible

with \eta). The same remark holds for the system \omega’=(p)\{\omega_{j}’\}_{j\leqq p-1} . There
fore we have the following two lemmas (cf. Lemmas 3. 9, and 4. 17).

Lemma 5. 3. There is a unique function g_{\mu} : Parrow \mathfrak{g}_{\mu} such that

\omega_{j}’\equiv\omega_{j}+[g_{\mu}, \omega_{j-\mu}]j-,\alpha-1
, j\leqq\mu-1

Lemma 5. 4. Assume that the function g_{\mu} vanishes. Then for each
p\geqq\mu we have

\omega_{j}’\equiv\omega_{j}j-p-1 , j\leqq p-1

Hence the two connections \omega and \omega’ coincide.
Lemma 5. 5. The function g_{\mu} in Lemma 5. 3 satisfifies the equality

R_{a}^{*}g_{\mu}=Ad(a^{-1})g_{\mu} . a\in G’

Proof. By Lemma 1. 7 it suffices to prove that

R_{a}^{*}g_{\mu}=Ad(a^{-1})g_{\mu} , a\in G_{0}

and
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\mathscr{L}_{X_{r}}*g_{\mu}=0
,

X_{r}\in \mathfrak{g}_{r} , 1\leqq r\leqq\mu r

which can be obtained in a similar way to the proof of Lemma 4. 3.
5. 3. The uniqueness of normal connections of type G. Let (P, \omega)

(resp. (P’ , \omega’ )) be a normal connection of type \mathfrak{G} on a manifold M (resp.
on M’), (\tilde{P}, -) (resp. (\tilde{P}’,\tilde{\xi}’)) the corresponding \tilde{G}-structure, and (P^{\#}, \xi) (resp.
(P^{\prime\#}, \xi’)) the corresponding G_{0}^{\#}-structure of type M. Suppose that there is
given an isomorphism \varphi^{\#} : (P^{\#}, \xi) -,(P’ \# , \xi’ ).

By Lemma 5. 1 we know that both (\tilde{P},\tilde{\Leftrightarrow\xi}) and (\tilde{P}’,\tilde{\xi}’) are of type (\mathfrak{M},
\mu-1) . Therefore we have \varphi^{\#}(P)=P’ , as we have already seen in 4. 7, and
hence \varphi^{\#} induces an isomorphism \tilde{\varphi} : (\tilde{P},\tilde{\xi})- (P’,\tilde{\xi}’) .

Let \rho (resp. \rho’ ) denote the projection Parrow\tilde{P} (resp. P’arrow\tilde{P}’ ). It is easy
to see that there is a bundle isomorphism \varphi : Parrow P’ which induces \tilde{\varphi} , i . e. ,
\rho’\circ\varphi= {\tilde{\varphi}\circ\varphi . (This follows from the fact that there are reductions Q and
Q’ of P and P’ respectively to G_{0} such that \tilde{\varphi}(\rho(Q))=\rho’(Q’) (cf. the proof
of Lemma 5. 2). Clearly \varphi^{*} l

’ is a normal connection of type \mathfrak{G} in P. Since
\omega_{-}=\rho^{*}\tilde{\xi} , \omega_{-}’=\rho’\tilde{\xi}’*,\tilde{\varphi}^{*}\tilde{\xi}’=\tilde{\xi} , and \rho’\circ\varphi=\tilde{\varphi}\circ\rho , we obtain

\varphi^{*}\omega_{-}’=cv_{-}

Thus we may apply the arguments in 5. 2 to the two connections \omega and
\varphi^{*}\omega’ .

Lemma 5. 6. There is a unique bundle isomorphism \varphi : Parrow P’ which
satisfifies the following conditions:

1) \varphi induces \tilde{\varphi} .
2)

\varphi^{*}\omega’jj-\mu-1\equiv 0)_{j} , j\leqq\mu-1

By Lemma 5. 4 the second condition means that \varphi^{*}0 ’=0) or in other
words, \varphi gives an isomorphism (P, \omega)arrow(P’, \omega)’ . Thus (2) of Theorem 2. 7
follows from Lemma 5. 6.

Proof of Lemma 5. 6. We first prove the existence. Let us consider
a bundle isomorphism \varphi : Parrow P’ which induces \tilde{\varphi} . By Lemma 5. 3 there is
a unique function g_{\mu} : Parrow \mathfrak{g}_{\mu} such that

(5. 5)
\varphi^{*}c\iota’ j\equiv\omega_{j}+[g_{\mu}, \omega_{j-\mu}]j-\mu-1 ’ j\leqq\mu-1 ,

and by Lemma 5. 5 g_{\mu} satisfies the following equality

g_{\mu}(z\cdot a)=Ad(a^{-1})g_{\mu}(z) . z\in P_{j} a\in G’

Putting \sigma(z)=\exp g_{\mu}(z) , we define a map \varphi 1 : Parrow P’ by
\varphi 1(z)=\varphi(z)\cdot\sigma(z) , z\in P-
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Since \sigma(z\cdot a)=a^{-1}\sigma(z)a , z\in P, a\in G’ . we see that \varphi_{1} gives a bundle isomor-
phism Parrow P’ . Furthermore it is clear that \varphi 1 induces \tilde{\varphi} . Let z\in P and
X\in T(P)_{z} . Then we have

\varphi_{1^{*}}X =(R_{\sigma(z)})_{*\{}o_{*}X+Y_{\varphi_{1}(z)}^{*}
,

where Y is a suitable element of \mathfrak{g}_{\mu} depending on z and X. Let j\leqq\mu-1.

By condition (C. 3) for \omega’ we have

R_{\sigma(x)}^{*}\omega_{j}=\omega j-\prime\prime[g_{\mu}(z), \omega_{j-\mu}’] ,

and hence
(\varphi_{1}^{*}\omega_{j}’)(X)=(R_{\sigma(z)}^{*}\omega_{j})

’
(\varphi_{*}X)

= (\varphi^{*}\omega_{j}’) (X)-[g_{\mu}(z), (\varphi^{*}\omega_{j-\mu}’)(X)]

Therefore we obtain
\varphi_{1^{O}}^{*}

’
=\varphi^{*}oy’ j-[g_{\mu}, \varphi^{*}0)_{j-\mu}’]

This equality together with (5. 5) gives

\varphi_{1^{O}}^{*}

’
\equiv\omega j-\mu-1j j j\leqq\mu-1 ,

which proves the existence.
Let us now prove the uniqueness. Let \varphi 2 be any bundle isomorphism

Parrow P’ which satisfies the conditions in Lemma 5. 6. Since \rho’(\varphi_{2}(z))=\tilde{\varphi}(\rho(z))

=\rho’(\varphi_{1}(z)) , z\in P, we see that there is a unique function g_{\mu} : Parrow \mathfrak{g}_{\mu} such
that \varphi_{2}(z)=\varphi_{1}(z)\cdot\sigma(z) , z\in P, where \sigma(z)=\exp g_{\mu}(z) . Then we see from the
discussions above that

\varphi_{2}^{*}\omega_{j}’=\varphi_{1}^{*} ty_{j}’-[g_{\mu}, \varphi_{1}^{*}\omega)_{j-\mu}’]- j\leqq\mu-1

Since
\varphi_{1}^{*}\omega’jj-\mu-1\equiv\omega jj-\mu-1\equiv\varphi_{2}^{*}

\omega)

’
j , j\leqq\mu-1 ,

it follows that [g_{\mu}, \omega_{j-\mu}]\equiv j-\mu-10 , j\leqq\mu-1. This means that g_{\mu}=0 and hence
\varphi_{1}=\varphi 2 ’ proving the uniqueness.

We have thereby completed the proof of Lemma 5. 6.
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