On infinitesimal holomorphically projective transformations in compact Kaehlerian manifolds

By Izumi HASEGAWA and Kazunari YAMAUCHI (Received January 30, 1979)

§1. Introduction.

One of the authers has proved the following theorems (K. Yamauchi [6], [8]).

THEOREM A. In a compact orientable Riemannian manifold with non-positive constant scalar curvature, an infinitesimal projective transformation is necessarily an infinitesimal isometry.

THEOREM B. Let M be a compact, orientable and simply connected n-dimensional ($n \ge 3$) Riemannian manifold with constant scalar curvature R. If M admits a non-isometric infinitesimal projective transformation, then M is isometric to a sphere of radius $\sqrt{n(n-1)/R}$.

It is natural to consider the Kaehlerian analogues corresponding to the above theorems. In this paper, we shall investigate the infinitesimal holomorphically projective transformations in compact Kaehlerian manifolds with constant scalar curvature and prove the following theorems.

THEOREM 1. In a compact Kaehlerian manifold with non-positive constant scalar curvature, an infinitesimal holomorphically projective transformation is necessarily an infinitesimal isometry.

THEOREM 2. Let M be a compact and simply connected n-dimensional $(n=2m\geq 4)$ Kaehlerian manifold with constant scalar curvature R. If M admits a non-isometric infinitesimal holomorphically projective transformation, then M is holomorphically isometric to a complex m-dimensional projective space with the Fubini-Study metric of constant holomorphic sectional curvature R/m(m+1).

T. Kashiwada announced Theorem 1. However the proof given in [2] turned to be incomplete.

In this paper, we assume that the Riemannian manifolds under consideration are connected, differentiable and of dimension ≥ 3 .

§2. Preliminaries.

Let M be a Kaehlerian manifold of real dimension $n(n=2m\geq 4)$. Then the Riemannian metric g_{ji} and the complex structure J_i^h satisfy the following equations:

(2.1)
$$J_i^a J_a^h = -\delta_i^h, \quad g_{ba} J_j^b J_i^a = g_{ji},$$

 $\nabla_k J_i^h = 0, \quad \nabla_k g_{ji} = 0,$

where ∇_k denotes the operator of covariant differentiation with respect to g_{ji} .

Let R_{kji}^{h} be the Riemannian curvature tensor and put $R_{ji} := R_{aji}^{a}$ (Ricci tensor), $R := g^{ba} R_{ba}$ (scalar curvature) and $H_{ji} := J_{j}^{a} R_{ai}$. Then we can easily verify that these tensors satisfy the following identities:

(2.2)
$$R_{kji}{}^{a}J_{a}{}^{h} = R_{kja}{}^{h}J_{i}{}^{a}, \qquad R_{kjih} = R_{kjba}J_{i}{}^{b}J_{h}{}^{a}, R_{ji} = R_{ba}J_{j}{}^{b}J_{i}{}^{a}, \qquad H_{ji} + H_{ij} = 0, H_{ji} = H_{ba}J_{j}{}^{b}J_{i}{}^{a} = -(1/2)J^{ba}R_{baji} = J^{ba}R_{bjia}.$$

An infinitesimal isometry or a Killing vector field X^h is defined by

$$(2.3) \qquad \mathscr{L}_X g_{ji} \equiv \nabla_j X_i + \nabla_i X_j = 0,$$

where \mathscr{L}_X denotes the operator of Lie differentiation with respect to X^h . In a compact orientable Riemannian manifold, a necessary and sufficient condition for a vector field X^h to be an infinitesimal isometry is

and

(2.5)
$$\nabla^a \nabla_a X^h + R_a{}^h X^a = 0$$
.

An infinitesimal affine transformation X^{\hbar} is defined by

(2.6)
$$\mathscr{L}_{x}\left\{ \begin{matrix} h \\ ji \end{matrix} \right\} \equiv \nabla_{j} \nabla_{i} X^{h} + R_{aji}{}^{h} X^{a} = 0 ,$$

where $\begin{pmatrix} h \\ ji \end{pmatrix}$ is the Christoffel's symbol.

In a compact orientable Riemannian manifold, an infiitesimal affine transformation is necessarily an infinitesimal isometry.

An infinitesimal homorphically projective transformation or, for simplicity, an infinitesimal HP-transformation X^h is defined by

(2.7)
$$\mathscr{Z}_{X}\left\{\begin{matrix}h\\ji\end{matrix}\right\} = F_{j}\delta_{i}^{h} + F_{i}\delta_{j}^{h} - F_{a}J_{j}^{a}J_{i}^{h} - F_{a}J_{i}^{a}J_{j}^{h},$$

where F_i is a certain vector.

In this case, we shall call F_i the associated vector of the transformation. If F_i vanishes, then the infinitesimal HP-transformation reduces to an affin one.

Contracting (2.7) with respect to h and i, we get

(2.8)
$$\nabla_{j}\nabla_{a}X^{a} = (n+2)F_{j},$$

which shows that the associated vector is gradient.

A vector field X^n is called contravariant analytic or, for simplicity, analytic, if it satisfies

(2.9)
$$\mathscr{L}_X J_i^h \equiv -J_i^a \nabla_a X^h + J_a^h \nabla_i X^a = 0.$$

Transvecting (2.7) with g^{ji} , we have (2.5). In a compact Kaehlerian manifold, (2.5) is equivalent to (2.9), whence an infinitesimal HP-transformation is analytic.

For a vector field X^{h} and tensor field Y_{i}^{h} , the following identities are well known:

(2.10)
$$\nabla_{k} \mathscr{L}_{X} \begin{Bmatrix} h \\ ji \end{Bmatrix} - \nabla_{j} \mathscr{L}_{X} \begin{Bmatrix} h \\ ki \end{Bmatrix} = \mathscr{L}_{X} R_{kji}^{h} ,$$

(2.11)
$$\mathscr{Z}_{\mathcal{X}} \nabla_{j} Y_{i}^{h} - \nabla_{j} \mathscr{Z}_{\mathcal{X}} Y_{i}^{h} = Y_{i}^{a} \mathscr{Z}_{\mathcal{X}} \begin{Bmatrix} h \\ ja \end{Bmatrix} - Y_{a}^{h} \mathscr{Z}_{\mathcal{X}} \begin{Bmatrix} a \\ ji \end{Bmatrix}.$$

Using these identities for the infinitesimal analytic HP-transformation X^{h} with the associated vector F_{i} , we obtain the following identities:

$$(2.\ 12) \qquad {\it V}^a {\it V}_a {\it F}^h + {\it R}_a{}^h {\it F}^a = 0 \ , \label{eq:2.12}$$

$$(2. 13) \qquad 2R_a{}^hF^a = - {\it V}^h({\it \Delta} f)\,,$$

where $f := \frac{1}{n+2} \nabla_a X^a$ and $\Delta f := \nabla^a \nabla_a f$,

$$(2. 14) J_j{}^a \, \nabla_i F_a \! + \! J_i{}^a \nabla_a F_j \! = \! 0 \; ,$$

(2.15)
$$\mathscr{L}_{X}R_{ji} = -(n+2)\nabla_{j}F_{i}$$
,

and

(2.16)
$$\mathscr{Z}_{X}R_{kji}{}^{h} = -\delta_{k}{}^{h}\nabla_{j}F_{i} + \delta_{j}{}^{h}\nabla_{k}F_{i} + J_{k}{}^{h}J_{i}{}^{a}\nabla_{j}F_{a} -J_{j}{}^{h}J_{i}{}^{a}\nabla_{k}F_{a} - 2J_{i}{}^{h}J_{j}{}^{a}\nabla_{k}F_{a}.$$

§ 3. Proofs of theorems.

LEMMA 1. If a compact Kaehlerian manifold M with constant scalar curvature R admits an infinitesimal HP-transformation X^h , then there exists the following formula:

$$(3.1) \qquad \Delta f = -\frac{2R}{n}f,$$

where $f:=\frac{1}{n+2}\nabla_a X^a$. PROOF. From (2.7), (2.14), Ricci identity and Bianchi identity, we have

$$(3.2) 0 = \nabla^{b} (\nabla_{b} \nabla_{j} X_{i} + R_{abji} X^{a} - F_{b} g_{ji} - F_{j} g_{bi} + F_{a} J_{b}^{a} J_{ji} + F_{a} J_{j}^{a} J_{bi}) = (R_{abji} - 2R_{bjia}) \nabla^{b} X^{a} - R_{ai} \nabla_{j} X^{a} + R_{j}^{a} \nabla_{a} X_{i} - (\nabla_{a} R_{ji}) X^{a} - (\Delta f) g_{ji} - \nabla_{i} F_{j} + \nabla^{b} F_{a} J_{j}^{a} J_{bi}.$$

Operating $abla^j$ to the above equation, we obtain

$$(3.3) 0 = -2\nabla_i R_{ba} \nabla^b X^a$$
$$= \nabla_i R_{ba} \mathscr{L}_X g^{ba}$$
$$= n\nabla_i (\Delta f) + 2RF_i,$$

whence $n\Delta f + 2Rf$ is constant. Then we have

$$\Delta f = -\frac{2R}{n}f$$

because of

(3.4)
$$\int_{M} \Delta f d\sigma = \int_{M} f d\sigma = 0 ,$$

where $d\sigma$ denotes the volume element of M.

Q. E. D.

PROOF OF THEOREM 1.

Since

$$(3.5) \qquad \qquad \varDelta \rho^2 = 2\rho \varDelta \rho + 2 \left(\nabla^a \rho \right) \left(\nabla_a \rho \right)$$

for any function ρ on M, it follows

(3. 6)
$$\int_{\mathcal{M}} (\nabla^{a} \rho) \left(\nabla_{a} \rho \right) d\sigma = - \int_{\mathcal{M}} \rho \varDelta \rho d\sigma .$$

From (3.6) and Lemma 1, we have

(3.7)
$$\int_{M} F^{a} F_{a} d\sigma = \frac{2R}{n} \int_{M} f^{2} d\sigma.$$

So, if R is non-positive, then F_i vanishes. This means X^h is an infinitesimal affine transformation and consequently an infinitesimal isometry by the compactness of M. Q. E. D.

M. Obata [3] announced and S. Tanno [5] proved the following

LEMMA 2. Let M be a complete and simply connected Kaehlerian manifold. In order for M to admit a non-constant function ρ satisfying

$$(3.8) \qquad \nabla_{k}\nabla_{j}\nabla_{i}\rho + (c/4)\left(2\nabla_{k}\rho g_{ji} + \nabla_{j}\rho g_{ki} + \nabla_{i}\rho g_{kj} - \nabla_{a}\rho J_{j}^{a}J_{ki} - \nabla_{a}\rho J_{i}^{a}J_{kj}\right) = 0$$

for some positive constant c, it is necessary and sufficient that M is holomorphically isometric to a complex projective space with Fubini-Study metric of constant holomorphic sectional curvature c.

LEMMA 3. Let M be a compact Kaehlerian manifold with constant scalar curvature R. If M admits an infinitesimal HP-transformation X^h , then $Y^h := \frac{2R}{n(n+2)} X^h + F^h$ is an infinitesimal isometry and consequently F^h is an infinitesimal HP-transformation.

PROOF. Using Lemma 1, we have

(3.9)
$$\nabla_a Y^a = \frac{2R}{n(n+2)} \nabla_a X^a + \Delta f$$
$$= \frac{2R}{n} f - \frac{2R}{n} f = 0 .$$

On the other hand, we have

(3.10)
$$\nabla^a \nabla_a Y^h + R_a^h Y^a = 0$$
,

because X^h and F^h are analytic.

Thus Y^h is an infinitesimal isometry and it is clear that F^h is an infinitesimal HP-transformation. Q. E. D.

PROOF OF THEOREM 2. Using Lemma 3 and Lemma 1, we have

(3.11)
$$\nabla_{k} \nabla_{j} F_{i} = -R_{akji} F^{a} - \frac{2R}{n(n+2)} (F_{k} g_{ji} + F_{j} g_{ki} - F_{a} J_{k}^{a} J_{ji} - F_{a} J_{j}^{a} J_{ki}) .$$

Since F_i is gradient, using (3.11), we have

$$(3.12) 0 = \nabla_{k} \nabla_{j} F_{i} - \nabla_{k} \nabla_{i} F_{j} = -2R_{a_{k}ji} F^{a} - \frac{2R}{n(n+2)} (F_{j} g_{ki} - F_{i} g_{kj} - 2F_{a} J_{k}^{a} J_{ji} - F_{a} J_{j}^{a} J_{ki} + F_{a} J_{i}^{a} J_{kj}).$$

Substituting this result into (3.11), we obtain

(3.13)
$$\nabla_{k} \nabla_{j} F_{i} + \frac{R}{n(n+2)} (2F_{k} g_{ji} + F_{j} g_{ki} + F_{i} g_{kj} - F_{a} J_{j}^{a} J_{ki} - F_{a} J_{i}^{a} J_{kj}) = 0.$$

Since X^{h} is non-isometric, R is positive. Therefore, from Lemma 2, Theorem 2 was proved. Q. E. D.

References

- [1] S. FUJIMURA: Infinitesimal Q-projective transformations of a quaternion Kählerian manifold, (to appear).
- [2] T. KASHIWADA: Notes on infinitesimal HP-transformations in K\u00e4hler manifolds with constant scalar curvature, Nat. Sci. Rep. Ochanomizu Univ., 25 (1974), 67-68.
- [3] M. OBATA: Riemannian manifolds admitting a solution of a certain system of differential equations, Proc. U. S.-Japan Sem. in Differential Geom., Kyoto, Japan, 1965, 101-114.
- [4] S. TACHIBANA and S. ISHIHARA: On infinitesimal holomorphically projective transformations in Kählerian manifolds, Tôhoku Math. J., 12 (1960), 77-101.
- [5] S. TANNO: Some differential equations on Riemannian manifolds, J. Math. Soc. Japan, 30 (1978), 509-531.
- [6] K. YAMAUCHI: On infinitesimal projective transformations, Hokkaido Math. J., 2 (1974), 262–270.
- [7] K. YAMAUCHI: On infinitesimal projective transformations satisfying the certain conditions, Hokkaido Math. J., 7 (1978), 74-77.
- [8] K. YAMAUCHI: On infinitesimal projective transformations of a Riemannian manifold with constant scalar curvature, (to appear).
- [9] K. YANO: Differential geometry on complex and almost complex spaces, Pergamon Press, 1965.

Izumi HASEGAWA Mathematics Laboratory Sapporo College Hokkaido University of Education Sapporo, 064 Kazunari YAMAUCHI Mathematical Institute College of Liberal Arts Kagoshima University Kagoshima, 890