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1. Introduction

Recently the theory of quantum dynamical semi-groups have made very
interesting progress ([2, 3, 7, 13]). In the present paper we shall show
various ergodic theorems (that is, a mean ergodic theorem, an individual
ergodic theorem and a local ergodic theorem) for such dynamical semi-groups.
As is well known, von Neumann’s mean ergodic theorem was generalized
to many abstract spaces.

In 1966, I. Kov\"acs and J. Szt\"ucs [9] proved an ergodic type theorem
which is considered as a non-commutative mean ergodic theorem and has
many applications in mathematical physics. The individual ergodic theorem
was also investigated by many authors, but the almost everywhere con-
vergence can not be discussed on abstract spaces. However, recently E. C.
Lance [12] and Y. G. Sinai and V. V. Anshelvich [17] have shown non-
commutative analogues of the Birkhoff’s individual ergodic theorem for aut0-
morphisms of operator algebras. As is stated in [12], [17], we can discuss
“almost everywhere convergence” on von Neumann algebras because of its
rich structure as the natural non-commutative generalization of L^{\infty} algebras
over probability measure spaces. There is no notion of underlying measure
space in the present situation. However, Egoroff’s theorem implies that
a sequence of measurable functions converges almost everywhere if and only
if the sequence converges uniformly on measurable subsets of measure arbi-
trary close to 1. The uniform convergence for bounded functions corre-
sponds to the norm convergence in L^{\infty}-algebras and measurable subsets
correspond to its characteristic functions. Thus we may restate the almost
everywhere convergence by means of the measure, L^{\infty}-norm and the cha-
racteristic functions. This restatements fit naturally into our setting. On
the other hand, the s0-called local ergodic theorem, which was first estab-
lished by N. Wiener, gives a powerful tool to investigate the asymptotic be-
havior of dynamical systems as the time parameter tarrow+0 . This result
was also extended to the general settings by many authors. We present
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a non-commutative analogue of the local ergodic theorem. To our knowledge,
this has never been discussed for operator algebras.

2. Preliminaries

We assume familiarity with the basic theory of von Neumann algebras
as contained in [4], [16] and [18]. Let M be a von Neumann algebra and
let M_{*} be the predual of M. Since M is the conjugate space of M_{*} , M_{*}

has the natural embedding in M^{*} and we shall identify M_{*} with its image
in M^{*} which is characterized as the space of all ultraweakly continuous
linear functionals of M.

A (quantum) dynamical semi-group on M is a one-parameter semigroup
\alpha=\{\alpha_{t}\}_{t\geqq 0} of normal positive linear maps of M into itself such that (1) \alpha_{0}=

I_{M} (the identity map of M) (2)\alpha_{t}(1)=1 for all t\geqq 0(1 denotes the identity
element of M) (3)\alpha is ultraweakly continuous (that is, the function tarrow\phi

(\alpha_{t}(A)) is continuous in t on [0, \infty) for each \phi\in M_{*} and A\in M). Since
each \alpha_{t} is normal positive and \alpha_{t}(1)=1 , it has the preadjoint \alpha_{t^{*}} which means
that \alpha_{t} is the adjoint map of \alpha_{l^{*}} , and the family \alpha_{*}\equiv\{\alpha_{t}* ; t\geqq 0\} becomes
a weakly (hence strongly) continuous one-parameter semi-group of positive
contractions on M_{*} .

Let \Phi be a unital 2-positive linear map. Then \Phi(A)^{*}\Phi(A)\leqq\Phi(A^{*}A)

for all A in M([1,6]) . We denote by M^{\alpha} the set of all fixed elements
of M with respect to \alpha , that is, M^{\alpha}= {A\in M:\alpha_{t}(A)=A for all t\geqq 0}, then
M^{\alpha} is a ultraweakly closed self adjoint linear subspace of M. If each \alpha_{t}

is 2-positive and there exists a faithful family of \alpha-invariant states of M,
then M^{\alpha} is a von Neumann subalgebra of M because of the above inequality.

Now for each element A of M and f\in L^{1}(R^{+}) , an integral \int_{0}^{\infty}f(t)\alpha_{t}(A)dt

is well-defined in the sense that \phi(\int_{0}^{\infty}f(t)\alpha_{t}(A)dt)=\int_{0}^{\infty}\phi(\alpha_{t}(A))f(t)dt for
every \phi\in M_{*} . Indeed, \phi(\alpha_{t}(A)) is a bounded continuous function of t for
fixed \phi and A from the ultraweak continuity of the dynamical semi-group

and hence \int_{0}^{\infty}\phi(\alpha_{t}(A))f(t)dt is a continuous linear functional on M_{*} . We

denote by \int_{0}^{T}\alpha_{t}(A)dt the above integral for the characteristic function f of
[0, T] (0<T<\infty) and by f*\alpha(A) for a general function f\in L^{1}(R^{+}) . Then
it is easy to verify the inequality ||f* \alpha(A)||\leqq||A||\int_{0}^{\infty}|f(t)|dt , and we shall use
other elementary properties of this integral without any references.
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3. Statement of Main Theorem

In this section we shall state main theorems. The first result is a mean
ergodic theorem for dynamical semi-groups. The results for automorphism
groups were obtained in [9, 12, 15]. The existence of the conditional expec-
tation in Theorem A was shown in [11] for semi-groups of certain positive
maps. However, the present formulation fits naturally into Theorem B.

Assertion (3) of Theorem A is a non-commutative generalization of the
classical mean ergodic theorem for positive contraction semi-groups on L^{1} -

spaces.
THEOREM A. (A non-commutative mean ergodic theorem) Let M be

a von Neumann algebra and \alpha=\{\alpha_{t}\}_{t\geqq 0} a dynamical semi-group on M.
Suppose that there exists a \alpha-invariant faithful normal state \rho on M. Then
the followings hold.

(1) For each A in M, the strong limit of \frac{1}{T}\int_{0}^{T}\alpha_{t}(A)dt as Tarrow+\infty

exists, which will be denoted by \epsilon(A) .
(2) \epsilon is a faithful normal positive norm one projection of M onto

M^{\alpha} , and \epsilon\circ\alpha_{t}=\alpha_{t}\circ\epsilon=\epsilon for all t\geqq 0 , and \rho\circ\epsilon=\rho . If every \alpha_{l} is 2-p0sitive,
then \epsilon is a conditional expectation of M onto the von Neumann subalgebra
M^{\alpha} .

(3) For each \phi\in M_{*} , \frac{1}{T}\int_{0}^{T}\alpha_{t^{*}}(\phi)dt converges in the norm of M_{*} as
Tarrow+\infty and this limit equals to \epsilon_{*}(\phi) where \epsilon_{*} denotes the preadjoint of

\epsilon . Moreover, \epsilon_{*} is a norm one projection onto M_{*}^{a_{*}}\equiv\{\phi\in M_{*}: \alpha_{t^{*}}(\phi)=\phi

for all l\geqq 0}.
The second result is a non-commutative analogue of the individual

ergodic theorem. The result for discrete automorphism groups was proved
in [12] and the similar result was obtained in [17] for the group of transla-
tions on the algebra of quasi-local observables.

THEOREM B. (A non-commutative individual ergodic theorem) Let
M, \alpha=\{\alpha,\}_{t\geqq 0} , \rho and \epsilon be as in Theorem A. Then, for each A in M and
positive real \delta>0 , there exists a projection E in M each that \rho(1-E)<\delta and

\lim_{Tarrow+\infty}||(\frac{1}{T}\int_{0}^{T}\alpha_{t}(A)dt-\epsilon(A))E||=01

Finally the non-commutative local ergodic theorem is formulated in
the present situation as follows. The commutative case was proved in [10].

THEOREM C. (A non-commutative local ergodic theorem) Let M, \alpha=

\{\alpha_{t}\}_{t\geqq 0} and \rho be as in Theorem A. Then, for each A in M and \delta>0 ,
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there exists a projection E such that \rho(1-E)<\delta and

\lim_{Tarrow+0}||(\frac{1}{T}\int_{0}^{T}\alpha_{t}(A)dt-A)E||=0

The proof of these three theorems will be given in the following sec-
tions.

4. Proof of Theorem A

The non-commutative mean ergodic theorems for automorphism groups
are proved by applications of the classical mean ergodic theorems for Hilbert
space operators. We pursue a similar line.

PROOF OF THEOREM A.
Let \pi_{\rho} be the Gelfand-Naimark-Segal representation of M associated

with \rho on the Hilbert space H_{\rho} . Since \rho is faithful normal, \pi_{\rho} is faithful
normal and \pi_{\rho}(M) is a von Neumann algebra with the cyclic and separating
vector \xi_{\rho}([4]) . Put K_{\rho}=the norm closure of { \pi_{\rho}(A)\xi_{\rho} : A=A^{*} in M}. By
allowing multiplication by real scalars only, we can consider H_{\rho} as a real
Hilbert space with the inner product \langle \rangle={\rm Re} ( ,\cdot ) where ( , ) is the inner
product in the complex Hilbert space H_{\rho} constructed from \rho and Re z means
the real part of a complex number z. We remark that the two inner pr0-

ducts \langle , \rangle and ( , ) define the same norm in H_{\rho} . Hence K_{\rho} becomes a
real Hilbert subspace of the real Hilbert space H_{\rho} . Since each \alpha_{t} is positive
and \alpha_{t}(1)=1 , (\alpha_{t}(A))^{2}\leqq\alpha_{t}(A^{2}) for all hermitian A in M([8]) .

Put T_{t}\pi_{\rho}(A)\xi_{\rho}=\pi_{\rho}(\alpha_{t}(A))\xi_{\rho} for hermitian element A in M(t\geqq 0) . Then
each T_{t} is a real linear contraction on the dense real linear subspace \{\pi_{\rho}

(A)\xi_{\rho} : A=A^{*} in M} of K_{\rho} by the above inequality for \alpha_{t} . We denote its
extension to K_{\rho} also by T_{t} . Then the family \{T_{t} ; t\geqq 0\} becomes a weakly
(hence strongly) continuous one-parameter semi-group of real linear contrac-
tions on K_{\rho} . Then the proof will proceed along the following three steps.

Step 1. (The existence of the limit in (1))
Let E be the orthogonal projection onto {\xi\in K_{\rho} ; T_{t}\xi=\xi for all t\geqq 0}.

Then, from the mean ergodic theorem for the contraction semi-group \{T_{t}\}

(see [5]), \frac{1}{T}\int_{0}^{T}T_{t}dt converges strongly to E as Tarrow+\infty . Hence for any

hermitian A in M and X\in\pi_{\rho}(M)’ (the commutant of \pi_{\rho}(M)), we have

\pi_{\rho}(\frac{1}{T}\int_{0}^{T}\alpha_{t}(A)dt)X\xi_{\rho}=X\pi_{\rho}(\frac{1}{T}\int_{0}^{T}\alpha_{t}(A)dt)\xi_{\rho}

=X \frac{1}{T}\int_{0}^{T}T_{t}dt\pi_{\rho}(A)\xi_{\rho}
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Hence \pi_{\rho}(\frac{1}{T}\int_{0}^{T}\alpha_{t}(A)dt)X\xi_{\rho} converges to XE\pi_{\rho}(A)\xi_{\rho} in the norm of K_{\rho} (hence

in the norm of H_{\rho}) as Tarrow+\infty . Hence for any A in M and X\in\pi_{\rho}(M)’ .
\pi_{\rho}(\frac{1}{T}\int_{0}^{T}\alpha_{t}(A)dt)X\xi_{\rho} converges to a limit in H_{\rho} as Tarrow+\infty . Since \{\pi_{\rho}(\frac{1}{T}

\int_{0}^{T}\alpha_{t}(A)dt);T>0\} is uniformly bounded and since \{X\xi_{\rho} ; _{X}\in\pi_{\rho}(M)’\} is dense

in H_{\rho} by the separation property of \xi_{\rho} , \pi_{\rho}(\frac{1}{T}\int_{0}^{T}\alpha_{t}(A)dt) converges strongly

to a limit as Tarrow+\infty . Since \pi_{\rho}(M) is strongly closed ([4]), this limit must
belong to \pi_{\rho}(M) , that is, there is an uniquely determined element of M, de-

noted by \epsilon(A) , such that \pi_{\rho}(\frac{1}{T}\int_{0}^{T}\alpha_{t}(A)dt)arrow\pi_{\rho}(\epsilon(A)) strongly as Tarrow+\infty .

Since \pi_{\rho} is faithful normal, this means that \frac{1}{T}\int_{0}^{T}\alpha_{t}(A)dt converges to \epsilon(A)

strongly.

Step 2. (Properties of \epsilon)

From the definition of \epsilon , it is easy to see that \epsilon is an unital norm one
positive linear map, and \rho\circ\epsilon=\rho which implies that \epsilon is faithful.

To see the normality of the map \epsilon it suffices to prove that 0\leqq A_{\gamma}\leqq 1

and A_{\gamma}\downarrow_{\gamma}0 implies that the weak convergence of \pi_{\rho}(\epsilon(A_{\gamma})) to 0. Fix \xi\in H

and X\in\pi_{\rho}(M)’ Then by considering the real part and the imaginary part
of the bounded real linear functional (\cdot, X^{*}\xi) on K_{\rho} , we have \eta_{1} and \eta_{2} in
K_{\rho} such that (\cdot, X^{*}\xi)=\langle\cdot, \eta_{1}\rangle+i \langle \cdot, \eta_{2}\rangle on K_{\rho} . Hence we have

(\pi_{\rho}(\epsilon(A_{\gamma}))X\xi_{\rho} , \xi)

=(E\pi_{\rho}(A_{\gamma})\xi_{\rho}, X^{*}\xi)

=\langle E\pi_{\rho}(A_{\gamma})\xi_{\rho} , \eta_{1}\rangle+i\langle E\pi_{\rho}(A_{\gamma})\xi_{\rho}, \eta_{2}\rangle

={\rm Re} ( \pi_{\rho}(A_{\gamma})\xi_{\rho} , E\eta_{1})+i Re (\pi_{\rho}(A_{\gamma})\xi_{\rho}, E\eta_{2})

From this relation and the fact that A_{\gamma}\downarrow_{\gamma}0 implies \pi_{\rho}(A_{\gamma})\downarrow_{\gamma}0 , it follows easily
that \pi_{\rho}(\epsilon(A_{\gamma})) converges to 0 weakly.

Next, from the definition of \epsilon , we have \epsilon\circ\alpha_{t}=\alpha_{t}\circ\epsilon=\epsilon(t\geqq 0) , \epsilon\circ\epsilon=\epsilon and
M^{\alpha}=\epsilon(M) . Thus \epsilon is a normal norm one projection of M onto M^{\alpha} .

If every \alpha_{t} is 2-positive, then \epsilon is a conditional expectation of M onto
M^{\alpha} by Tomiyama’s Theorem [19], because M^{\alpha} is a von Neumann subalgebra
of M as is stated in section 2.
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Step 3. (The assertion (3))

Since \epsilon is ultraweakly continuous, it has a preadjoint \epsilon_{*} which is a
bounded linear operator on M_{*} . Fix X_{1} , X_{2} in \pi_{\rho}(M)’ Then, by the same
reason as in step 2, we have \eta_{1} and \eta_{2}\dot{i}nK_{\rho} such that (\cdot, X_{1}^{A_{\downarrow}}X_{2}\xi_{\rho})=\langle\cdot, \eta_{1}\rangle

+i \langle \cdot, \eta_{2}\rangle on K_{\rho} . Put \phi(A)=(\pi_{\rho}(A)X_{1}\xi_{\rho}, X_{2}\xi_{\rho})(A\in M) . Then we have

|| \frac{1}{T}\int_{0}^{T}\alpha_{t*}(\phi)dt-\epsilon_{*}(\phi)||

= \sup_{\sim}||_{\acute{I}}A||<1,A\in MA(\frac{1}{T}\int_{0}^{T}\alpha_{t*}(\phi)dt)-A(\epsilon_{*}(\phi))|

\leqq 2\sup_{\sim}|||A|\downarrow<1,A=A^{*}\in M(\frac{1}{T}\int_{0}^{T}\alpha_{t}(A)dt-\epsilon(A))(\phi)|

=2 \sup_{<||A|I\sim 1,A=A^{*}\in M}|(\pi_{\rho}(\frac{1}{T}\int_{0}^{T}\alpha_{t}(A)dt)X_{1}\xi_{\rho}, X_{2}\xi_{\rho})

-( \pi_{\rho}(\epsilon(A))X_{1}\xi_{\rho}, X_{2}\xi_{\rho}) |

=2 \sup_{||A||\leq 1,A=A^{*}\in M}| ( ( \frac{1}{T}\int_{0}^{T}T_{t}dt-E)\pi_{\rho}(A)\xi_{\rho} , X_{1}^{*}X_{2}\xi_{\rho}) |

=2 \sup_{<||AIl\backslash 1,A=A^{*}\in M}|\{\langle( \frac{1}{T}\int_{0}^{T}T_{t}dt-E)\pi_{\rho}(A)\xi_{\rho} , \eta_{1}\rangle

+i \langle(\frac{1}{T}\int_{0}^{T}T_{t}dt-E)\pi_{\rho}(A)\xi_{\rho} , \eta_{2}\rangle\}|

=2 \sup_{<||A|I\backslash 1,A=A^{*}\in M}|\langle\pi_{\rho}(A)\xi_{\rho} , ( \frac{1}{T}\int_{0}^{T}T_{t}dt-E)^{*}\eta_{1}\rangle

+i\langle\pi_{\rho}(A)\xi_{\rho} , ( \frac{1}{T}\int_{0}^{T}T_{t}dt-E)^{*}\eta_{2}\rangle|

\leqq 2||(\frac{1}{T}\int_{0}^{T}T_{t}^{*}dt-E)\eta_{1}||+2||(\frac{1}{T}\int_{0}^{T}T_{t}^{*}dt-E)\eta_{2||}

where T_{t}^{*}. is the adjoint operator of T_{t} with respect to the inner product
\langle

,\cdot
\rangle in K_{\rho} .
Since \{T_{t}^{\star}\}_{t\geqq 0} is a weakly (hence strongly) continuous contraction semi-

group on K_{\rho} , by the mean ergodic theorem \frac{1}{T}\int_{0}^{T}T_{t}^{*}dt converges strongly
to the projection onto {\xi\in K_{\rho} : T_{t}^{*}’\xi=\xi for all t\geqq 0}. Since each T_{t} is a con-
traction, the subspace coincides with {\xi\in K_{\rho} : T_{t}\xi=\xi for all t\geqq 0}. Therefore
the last term in the above inequality converges to 0 as Tarrow+\infty .

Since \rho is faithful, the linear span of the family \{(\pi_{\rho}(\cdot)X_{1}\xi_{\rho}, X_{2}\xi_{\rho}):X_{1} , X_{2}\in

\pi_{\rho}(M)’\} is norm dense in M_{*}([16]) . Hence for every \phi\in M_{*} , \frac{1}{T}\int_{0}^{T}\alpha_{t*}(\phi)dt
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converges to \epsilon_{*}(\phi) as Tarrow+\infty in norm. The remainder of the proof follows
immediately from the properties of \epsilon . Thus all the proof are completed.

5. Proof of Theorem B

For the proof of Theorem B we need five lemmas. The first two

lemmas are technical ones. Before we state the lemmas, define the fun-
ctions f_{k}(t)(k=1,2, 3, \cdots) as follows:

f_{k}(t)=

-

\frac{2}{\pi}(^{\frac{}{(\frac{1}{k})^{2}+t^{2}}-}\frac{1}{k}\frac{k}{k^{2}+t^{2}}) t\geqq 0

0 t<0

Then ||f_{k}||_{1}\leqq 2 and \int_{-\infty}^{\infty}f_{k}(t)dt=0 for every k\geqq 1 .

Lemma 5. 1. Let \{T_{t}\}_{t\geqq 0} be a strongly continuous one-parameter semi-
group of contractions on a {real or complex) Hilbert space H such that
T_{0}=I, and let E be the orthogonal projection onto {\xi\in H;T_{t}\xi=\xi for all
t\geqq 0\} . Let f_{k} be as defined above. Then, for every \xi\in H,

|| \int_{0}^{\infty}f_{k}(t)T_{t}\xi dt-(\xi-E\xi)||arrow 0 as karrow\infty

PROOF. At first, we assume that H is a real Hilbert space and each
T_{t} is a real linear contraction on H. Then we shall consider the complexi-
fication H_{C} of H. More precisely, let H_{C} denote the cartesian product H\cross

H in which the algebraic operations and an inner product as a complex
space are defined by the relations,

\{\xi_{1}, \xi_{2}\}+\{\eta_{1}, \eta_{2}\}=\{\xi_{1}+\eta_{1}, \xi_{2}+\eta_{2}\}

(\alpha+i\beta)\{\xi, \eta\}=\{\alpha\xi-\beta\eta, \alpha\eta+\beta\xi\}

\langle\{\xi_{1}, \xi_{2}\} ,\{\eta_{1}, \eta_{2}\}\rangle

=(\xi_{1}, \eta_{1})+(\xi_{2}, \eta_{2})+i\{(\xi_{2}, \eta_{1})-(\xi_{1}, \eta_{2})\}

where ( ) is the inner product of H.
Then H_{C} becomes a complex Hilbert space. For each T_{t} , put \hat{T}_{t}\{\xi, \eta\}=

\{T_{t}\xi, T_{t}\eta\} for \{\xi, \eta\}\in H_{C} . Then it is readily verified that \{\hat{T}_{t}\}_{t\geqq 0} is a strongly
continuous one-parameter semigroup of complex h.near contractions on H_{C}

such that \hat{T}_{0}=I_{H_{C}} . A bounded operator \hat{E}, which is defined by \hat{E}\{\xi, \eta\}=

\{E\xi, E\eta\} , is the orthogonal projection onto { \{\xi, \eta\}\in H_{C} ; \hat{T}_{t}(\{\xi, \eta\})=\{\xi, \eta\}
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for all t\geqq 0}. For any \xi\in H, we have

|| \frac{1}{T}\int_{0}^{T}f_{k}(t)\hat{T}_{t}\{\xi, 0\} dt-(\{\xi, 0\}-\hat{E}\{\xi, 0\})||

=|| \frac{1}{T}\int_{0}^{T}f_{k}(t)T_{t}\xi dt-(\xi-E\xi)||

from the definition of the norm of H_{C} and easy calculations. Therefore,
it is sufficient to prove the lemma for complex linear contractions \{T_{t}\}_{t\geqq 0}

on a complex Hilbert space H.
Let \{U_{t}\}_{-\infty<t<\infty} be a unitary dilation of the complex linear contraction

semi-group \{T_{t}\}_{t\geqq 0} , that is, \{U_{t}\}_{-\infty<t<\infty} is a strongly continuous one-parameter
group of unitary operators on a Hilbert space K containing H as a closed
subspace such that U_{t}=P_{H}T_{t}|_{H} for t\geqq 0 , where P_{H} is the orthogonal pr0-
jection onto H([14]) . Then by the Stone’s Theorem we have the spectral
representation

U_{t}= \int_{-\infty}^{\infty}e^{iC\lambda}dE_{\lambda} (-\infty<t<\infty)t

Then for each \xi\in H,

\int_{0}^{\infty}f_{k}(t)T_{t}\xi dt

=P_{H}( \int_{0}^{\infty}\int_{-\infty}^{\infty}f_{k}(t)e^{it\lambda}dE_{\lambda}\xi dt)

=P_{H}( J_{-\infty}^{\infty}.\int_{0}^{\infty}.f_{k}(t)e^{il\lambda}dtdE_{\lambda}\xi)

Put g_{k}( \lambda)=\int_{0}^{\infty}f_{k}(t)e^{it\lambda}dt . Then each g_{k}(\lambda) is continuous in \lambda and \{g_{k}\}_{h- 1}^{\infty}- is
uniformly bounded. Moreover, a simple calculation implies that

g_{k}( \lambda)=\frac{2}{\pi}(\int_{0}^{\infty}\frac{e^{i\frac{1}{k}S\lambda}}{1+s^{2}}ds-\int_{0}^{\infty}\frac{e^{iks\lambda}}{1+s^{2}}ds) ,

and hence by the dominated convergence Theorem and a property of the
Fourier transform, we have lim g_{k}(\lambda)=1 for any non-zero \lambda , and g_{k}(0)=0

karrow\infty

for all k. Thus it follows that

\lim_{karrow\infty}\int_{0}^{\infty}f_{k}(t)T_{t}\xi dt=P_{H}(\xi-\int_{-\infty}^{\infty}\chi_{0}(\lambda)dE_{\lambda}\xi)=P_{H}(\xi-(E_{0}-E_{0-0})\xi)

for \xi\in H where \chi_{0} is the characteristic function of {0}. Since E_{0}-E_{0-0} is the
projection onto the space of all fixed points of \{U_{t}\} , the relation P_{H}U_{t}|_{H}=

T_{t}(t\geqq 0) implies P_{H}(E_{0}-E_{0-0})|_{H}=E . Thus we have the desired conclusion.
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The next lemma is a continuous version of Lemma 4. 1 in [12].

Lemma 5. 2. If f is an L^{1}(R) -function, then

\lim_{Tarrow+\infty}\int_{-\infty}^{\infty}|\frac{1}{T}\int_{0}^{T}f(s-t)dt|ds=0

PROOF. Consider the one-parameter contraction semi-group \{V_{t}\}_{t\geqq 0} of
translations on L^{1}(R) , that is, V_{t}h(s)=h(s-t) for h\in L^{1}(R) . It is known
(see [5]) that for this semi-group the mean ergodic theorem holds in L^{1}(R) :

\frac{1}{T}\int_{0}^{T}V_{t}dt converges strongly to 0 as Tarrow+\infty . The assertion of the lemma

follows from the relation

\int_{-\infty}^{\infty}|\frac{1}{T}\int_{0}^{T}f(s-t)dt|ds=||(\frac{1}{T}\int_{0}^{T}V_{t}dt)f||_{1}

Now we shall show an uniform ergodic lemma which is one of the
key steps.

Lemma 5. 3. Let M, \alpha=\{\alpha_{t}\}_{t\geqq 0} , \rho and \epsilon be as in Theorem B, and f_{k}

as in Lemma 5. 1. For each A\in M, define A_{k}=f_{k}*\alpha(A)+\epsilon(A) (k\geqq 1) .
Then ||A_{z},||\leqq 3||A|| and A_{k} converges to A in the strong*-topology as karrow

\infty , and \lim_{Tarrow+\infty}||\frac{1}{T}\int_{0}^{T}\alpha_{t}(A_{k})dt-\epsilon(A_{k})||=0(k\geqq 1) .

PROOF. The first inequality follows easily. We shall show the last
assertion.

|| \frac{1}{T}\int_{0}^{T}\alpha_{s}(A_{k})ds-\epsilon(A_{k})||

=|| \frac{1}{T}\int_{0}^{T}\int_{0}^{\infty}f_{k}(t)\alpha_{t+S}(A) dtds-e (f_{k}*\alpha(A))||

=|| \frac{1}{T}\int_{0}^{T}\int_{s}^{\infty}f_{k}(h-s)\alpha_{h}(A) dhds- \epsilon(A)\int_{0}^{\infty}f_{k}(t)dt||

=|| \frac{1}{T}\int_{0}^{T}\int_{0}^{\infty}f_{k}(h-s)\alpha_{h}(A)dhds||

=|| \int_{0}^{\infty}(\frac{1}{T}\int_{0}^{T}f_{k}(h-s)ds)\alpha_{h}(A)dh||

\leqq||A||\int_{0}^{\infty}|\frac{1}{T}\int_{0}^{T}f_{k}(h-s)ds|dh

Then, from Lemma 5. 2 it fo11_{oWS_{\lrcorner}}^{\Gamma}
. that \lim_{Tarrow+\infty}||\frac{1}{T}\int_{0}^{T}\alpha_{t}(A_{k})dt-\epsilon(A_{k})||=0 .

Next, let (H_{\rho}, \pi_{\rho}, \xi_{\rho}) , K_{\rho} and \{T_{t}\}_{\iota\geqq 0} , E be as in the proof of Theorem A.
If A is hermitian, then A_{k} is hermitian and we have
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\pi_{\rho}(A_{k})\xi_{\rho}=\int_{0}^{\infty}f_{k}(t)T_{t}\pi_{\rho}(A)\xi_{\rho}dt+E\pi_{\rho}(A)\xi_{\rho} , so \pi_{\rho}(A_{k})\xi_{\rho}arrow\pi_{\rho}(A)\xi_{\rho}

(karrow\infty) by Lemma 5. 1. Hence, from the same arguments as in the proof
of step (1) of Theorem A, A_{k}arrow A strongly as karrow\infty .
For two hermitian elements B, C in M, we have

(B+iC)_{k}=f_{k}*\alpha(B+iC)+\epsilon(B+iC)

=f_{k}*\alpha(B)+\epsilon(B)+i(f_{k}*\alpha(C)+\epsilon(C))

=B_{k}+iC_{k}

Hence, for any A in M, A_{k}arrow A in the strong*-topology as karrow\infty . This
completes | he proof.

Now we need the following crucial lemma which is essentially due to
E. C. Lance [12] and is considered as a non-commutative maximal ergodic
theorem.

Lemma 5. 4. (E. C. Lance) Let M be a von Neumann algebra and \Phi

be a normal positive linear map on M such that \Phi(1)=1 , and let \rho be
a \Phi -invariant faithful normal state of M. Let B be a positive element
with norm less than 1. Then there exists a positive element C in M such

that ||C||\leqq 2 , \rho(C)\leqq 4(\rho(B))^{\frac{1}{2}} and \frac{1}{n}(B+\Phi(B)+\cdots+\Phi^{(n-1)}(B))\leqq C for every
integer n.

The proof of this lemma follows from the careful inspection of Theorem
2. 1, Lemma 5. 1 and 5. 2 in [12].

The following lemma is easily obtained from the above lemma.
Lemma 5. 5. Let M be a von Neumann algebra and \alpha=\{\alpha_{t}\}_{t\geqq 0}a

dynamical semi-groups on M. Suppose that there exists a \alpha -invariant faith-
ful normal state \rho of M. Let B be a positive element in the unit ball of
M. Then there exists a positive element C in M such that 0\leqq C\leqq 2 , \rho(C)

\leqq 4(\rho(B))^{\frac{1}{2}} and \frac{1}{T}\int_{0}^{T}\alpha_{t}(B)dt\leqq C+\frac{1}{T}1 for all T\geqq 1 .

PROOF. Put A= \int_{0}^{1}\alpha_{t}(B)dt , then we have

\frac{1}{T}\int_{0}^{T}\alpha_{t}(B)dt

= \frac{1}{T}(A+\alpha_{1}(A)+\cdots+\alpha_{1}^{N-1}(A))+\frac{1}{T}\int_{N}^{N+r}\alpha_{t}(B)dt

\leqq\frac{1}{N}(A+\alpha_{1}(A)+\cdots+\alpha_{1}^{N-1}(A))+\frac{1}{T}(\alpha_{1})^{N}\int_{0}^{1}\alpha_{t}(B)dt



186 S. Watanabe

where N is the integral part of T and r=T-N. Since A and \alpha_{1} satisfy
all assumptions of Lemma 5. 4, and \rho(A)=\rho(B) , there exists an element C
in M which is independent of T and satisfies the conclusions of Lemma
5. 5.

Now we are in the position to prove Theorem B. For the proof, let
us introduce a convenient notation. For the canonical decomposition A=
A_{(1)}-A_{(2)}+i(A_{(3)}-A_{(4)}) of A\in M into the positive elements put [A]=A_{(1)}+

A_{(2)}+A_{(3)}+A_{(4)} . Then 0\leqq A_{(k)}\leqq[A]\leqq 4||A||1(1’\leqq k\leqq 4) .

PROOF OF THEOREM B.
Fix an arbitrary A\in M and consider the element A_{k} in Lemma 5. 3.

Then we may assume that ||[A-A_{k}]||\leqq 1 for all k\geqq 1 . By Lemma 5. 5, for
each integer k\geqq 1 , there exists C_{k} in M such that 0\leqq C_{k}\leqq 2 , \rho(C_{k})\leqq 4(\rho([A-

A_{k}]))^{\frac{1}{2}} and \frac{1}{T}\int_{0}^{T}\alpha_{t}([A-A_{k}])dt\leqq C_{k}+\frac{1}{T}1 . Then, from Lemma 5. 3, A-A_{k}

arrow 0 in the strong*-topology and hence [A-A_{k}]-0 strong ([12]). From the
above inequality, \rho(C_{k})-0, so C_{k}arrow 0 strongly because \rho is faithful. Then by
the Saito’s non-commutative Egoroff’s Theorem ([18]), for any \delta>0 there
exists a projection E_{0} in M and a subsequence (we also denote this subsequ-

ence by \{C_{k}\}) of \{C_{k}\} such that \rho(1-E_{0})<\frac{\delta}{2} and ||C_{k}E_{0}|| \leqq\frac{1}{k} for all k\geqq 1 .
We also denote by \{A_{k}\} the subsequence of \{A_{k}\} corresponding to \{C_{k}\} .
Then

|| \frac{1}{T}\int_{0}^{T}\alpha_{t}([A-A_{k}])dtE_{0}||\leqq(\frac{1}{k}+\frac{1}{T})^{\frac{1}{2}}

so that

|| \frac{1}{T}\int_{0}^{T}\alpha_{t}(A-A_{k})dtE_{0}||

\leqq\sum_{i=1}^{4}||\frac{1}{T}\int_{0}^{T}\alpha_{t}((A-A_{k})_{(i)})dtE_{0}||

\leqq\sum_{i=1}^{4}||\frac{1}{T}\int_{0}^{T}\alpha_{t}([A-A_{k}])dtE_{0}||^{\frac{1}{2}}

\leqq 4(\frac{1}{k}+\frac{1}{T})^{\frac{1}{4}} for all T>1 and k\geqq 1

Since \epsilon is normal, it is continuous in the strong*-topology on every bounded
set ([16]). Hence \epsilon(A_{k})- \epsilon(A) in the strong*-topology. Hence there exists
again a projection E\leqq E_{0} in M and a subsequence \{A-A_{k_{n}}\}_{n\geqq 1} of \{A-

A_{k}\}_{k\geqq 1} ( karrow\infty as narrow\infty) such that \rho(E_{0}-E)<\frac{\delta}{2} and ||( \epsilon(A)-\epsilon(A_{k}))E||\leqq\frac{1}{n} .
Consequently we have
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||(’ \frac{1}{T}\int_{0}^{T}\alpha_{t}(A)dt-\epsilon(A))E||

\leqq||\frac{1}{T}\int_{0}^{T}\alpha_{t}(A-A_{k_{n}})dtE||+||(\frac{1}{T}\int_{0}^{T}\alpha_{t}(A_{k_{n}}) dt-\epsilon(A_{k_{n}}))E||

+||(\epsilon(A)-\epsilon(A_{k_{n}}))E||

\leqq 4(\frac{1}{k_{n}}+\frac{1}{T})^{\frac{1}{4}}+||(\frac{1}{T}\int_{0}^{T}\alpha_{l}(A_{k_{n}})dt-\epsilon(A_{k_{n}}))E||+\frac{1}{n}

Hence for an arbitrary fixed n\geqq 1 , we have

\varlimsup_{Tarrow+\infty}||(\frac{1}{T}\int_{0}^{T}\alpha_{t}(A)dt-\epsilon(A))E||\leqq 4(\frac{1}{k_{n}})^{\frac{1}{4}}+\frac{1}{n}

which implies the existence of the limit. Thus all the proof of Theorem
B is completed.

6. Proof of Theorem C

The method of the proof of Theorem C is almost the same as Theorem
B. We shall need three lemmas, of which key ones are Lemma 6. 2 and
6. 3.

Lemma 6. 1. Let \{T_{t}\}_{t\geqq 0} be a strongly continuous one-parameter semi-
group of contractions on a Hilbert space H such that T_{0}=I. Define f_{k}

as follows :

f_{k}(t)=|k0

0>t or t> \frac{1}{k}

0 \leqq t\leqq\frac{1}{k}

Then for every \xi\in H, \int_{0}^{\infty}f_{k}(t)T_{t}\xi dt-\xi (as karrow\infty ) in the norm of H.

PROOF. The proof follows from the relation

|| \int_{0}^{\infty}f_{k}(t)T_{t}\xi dt-\xi||=||k\int^{\frac{1}{0k}}T_{t}\xi dt-\xi|| (\xi\in H)

Lemma 6. 2. Let \alpha=\{\alpha_{t}\}_{t\geqq 0} be a dynamical semi-group on a von Neu-
mann algebra M and f_{k} as in Lemma 6. 1. For each A\in M, define A_{k}=

f_{k}*\alpha(A)(k=1,2,3, \cdots) . Then ||A_{k}||\leqq||A|| , A_{k}arrow A as karrow\infty in the strong

* -topology and \lim_{Tarrow+0}||\frac{1}{T}\int_{0}^{T}\alpha_{t}(A_{k})dt-A_{k}||=0 for each k\geqq 1 .

PROOF. The inequality ||A_{k}||\leqq||A|| is obvious. From the definition of
A_{k} , we have for each k\geqq 1 ,
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|| \frac{1}{T}\int_{0}^{T}\alpha_{s}(A_{k})ds-A_{k}||

=|| \frac{1}{T}\int_{0}^{T}\int_{0}^{\infty}f_{k}(t)\alpha_{t+s}(A) dtds- \int_{0}^{\infty}f_{k}(t)\alpha_{t}(A)dt||

=|| \int_{0}^{\infty}(\frac{1}{T}\int_{0}^{T}f_{k} (h – s) ds-f_{k}(h)) \alpha_{h}(A)dh||

\leqq||A||\int_{0}^{\infty}|\frac{1}{T}\int_{0}^{T}f_{k}(h-s)ds-f_{k}(h)|dh

Then it follows that the last term converges to 0 from direct computations.
The remainder of the proof follows from Lemma 6.1 and the same argu-
ments as in the proof of Lemma 5. 3. The proof is completed.

The following lemma is considered as a non-commutative maximal
ergodic theorem.

Lemma 6. 3. Let \alpha=\{\alpha_{t}\}_{t\geqq 0} be a dynamical semi-group on a von Neu-
mann algebra M and \rho a \alpha-invariant faithful normal state of M. Suppose
that B is a positive element in the unit ball of M. Then there exists a

positive element C\in M such that 0\leqq C\leqq 2 , \rho(C)\leqq 4(\rho(B))^{\frac{1}{2}} and \frac{1}{T}\int_{0}^{T}\alpha_{t}(B)dt

\leqq C for all T in (0, 1] .

PROOF. Put D_{n}= \{\frac{k}{2^{n}} ; k=1,2,3, \cdots , 2^{n}\} for each integer n\geqq 1 , then
D_{1}\subset D_{2}\subset D_{3}\subset\cdots\subset D_{n}\subset\cdots . For an arbitrary fixed integer n\geqq 1 , define B_{n}

and \beta_{n} as follows : B_{n}= \int^{\frac{1}{02^{n}}}\alpha_{t}(B)dt ,
\beta_{n}=\alpha_{\frac{1}{2n}} . Then 2^{n}B_{n} and \beta_{n} satisfy all

assumptions of Lemma 5. 4. Since \frac{1}{s}\int_{0}^{s}\alpha_{t}(B)dt=\frac{1}{N}(2^{n}B_{n}+\cdots+\beta_{n}^{N-1}(2^{n}B_{n}))

for s= \frac{N}{2^{n}}\in D_{n}(1\leqq N\leqq 2^{n}) , by Lemma 5. 4, there exists a positive element
C_{n}\in M (which depends on n but not on N(1\leqq N\leqq 2^{n}) ) such that 0\leqq C_{n}\leqq 2 ,

\rho(C_{n})\leqq 4\rho(2^{n}B_{n})^{\frac{1}{2}}=4(\rho(B))^{\frac{1}{2}} and \frac{1}{s}\int_{0}^{s}\alpha_{t}(B)dt\leqq C_{n} for all s\in D_{n} . If C\in M is

a weak cluster point of \{C_{n}\} , then 0\leqq C\leqq 2 , \rho(C)\leqq 4(\rho(B))^{\frac{1}{2}} and \frac{1}{s}\int_{0}^{s}\alpha_{t}(B)dt

\leqq C for all s \in\bigcup_{n=1}D_{n} because \{D_{n}\} is the monotone increasing family. Mor-

eover, \bigcup_{n=1}^{\infty}D_{n} is dense in (0, 1] , thus we have \frac{1}{T}\int_{0}^{T}\alpha_{t}(B)dt\leqq C for every T

in (0, 1] .
Now we shall show the local ergodic theorem.
PROOF OF THEOREM C. Fix an arbitrary A\in M and consider the ele-
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ment A_{k} in Lemma 6. 2. By the same arguments as in the proof of TheO-
rem B, we have a projection E\in M such that \rho(1-E)<\delta and

\varlimsup_{Tarrow+0}||(\frac{1}{T}\int_{0}^{T}\alpha_{t}(A)dt-A)E||\leqq 4(\frac{1}{k_{n}})^{\frac{1}{4}}+\frac{1}{n}

for every n\geqq 1 , where \{k_{n}\} is a sequence of positive integers such that
k_{n}arrow\infty as narrow\infty . Thus we have

\lim_{Tarrow+0}||(\frac{1}{T}\int_{0}^{T}\alpha_{t}(A)dt-A)E||=0

which is the desired conclusion. The proof is completed.
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