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bounding parallelizable manifolds
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Introduction

The purpose of this paper is to study free cyclic group actions on h0-
motopy spheres constructed by S. Weintraub [3]. He applied an equivariant
plumbing technique to construct semifree cyclic group actions on highly-
connected 4k-dimensional manifolds. The boundaries of these manifolds
are elements of bP_{4k} and they admit free Z_{p}-actions for any integer p. We
call these “Weintraub’s actions”

On the other hand, it is well known that L\’opez De Medrano [1] con-
structed free involutions on homotopy spheres with non-trivial Browder-
Liversay invariants. It is apparent that L\’opez’s construction cannot be ap-
ph.ed to get any other free cyclic group actions except involutions. However,
we shall prove that certain examples of L\’opez’s involutions on homotopy
spheres of bP_{4k} extend to free Z_{2q}-actions for any q which are realized by
“Weintraub’s actions” raised above. This is the main motivation of this
research.

The results are summarized as follows. One of the properties about
Weintraub’s actions has been found in [3, Theorem 1. 7] and in \S 2, we
state this in an alternative form for our argument.

THEOREM 1. Suppose that p is any integer. Choose a unimodular,
even, symmetric matrix A and denote \sigma(A) its index. For any k\geqq 2 and
collection \{a_{1}, \cdots, a_{k}\} with (a_{i},p)=1 , there is a free Z_{p}-action T_{A} on a homO-
topy sphere \Sigma_{A}\in bP_{4k} the Atiyah-Singer invariant of which has the form

\sigma(T_{A}, \Sigma_{A}^{4k-1})=\prod_{i=1}^{k}(\frac{1+t^{a_{i}}}{1-t^{a_{i}}})^{2}-\sigma(A)

Here \Sigma_{A}=\sigma(A)/8\Sigma_{1} , where \Sigma_{1} is the generator of bP_{4k} and t=\exp(2\pi i/p) .
Hereafter, by (T_{A}, \Sigma_{A}) we denote the free Z_{p}-action on the homotopy

sphere constructed for any p and A under the assumptions of Theorem 1.
As to the normal cobordism classes of such actions, we shall prove the
following result.
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THEOREM 2. Let T_{A} be a free Z_{p} action on \Sigma_{A} . Then, there exists
a homotopy equivalence

f:\Sigma_{A}/T_{A}-L^{4k-1}(p, a_{1^{ }},\cdots, a_{k}, a_{1}, \cdots, a_{k})

such that the normal invariant \eta(f) is zero in

[L^{4k-1}(p, a_{1^{ }},\cdots, a_{k}, a_{1^{ }},\cdots, a_{k}) , G/O],\cdot

there L^{4k-1}(p, a_{1^{ }},\cdots, a_{k}, a_{1}, \cdots, a_{k}) is the (4k-1) -dimensional standard lens
space.

In \S 3, we look at the effect on the action of choosing a different matrix
with the same index.

THEOREM 4. Suppose that p is any odd integer or 2, 4 and 6. Let
T_{A_{i}} be a free Z_{p} -action on a homotopy sphere \Sigma_{A_{i}} for i=1,2 . Then, \Sigma_{A_{1}}/T_{A_{1}}

is h -cobordant to \Sigma_{A_{2}}/T_{A_{2}} if and only if \sigma(A_{1})=\sigma(A_{2}) .
As to the L\’opez’s involutions, a difficulty lies in determing the differen-

tiable structures of constructed homotopy spheres, and in general they are
unknown. But P. Orlik and C. P. Rourke [2] showed, using L\’opez’s con-
struction, that for each i\in Z there exists a homotopy sphere \Sigma_{i}^{4k-1}(=i\Sigma_{1}) ,
bounding a parallelizable manifold M_{i} , and an involution T_{i} such that the
Browder-Livesay invariant I(T_{i}, \Sigma_{i})=\sigma(M_{i})=8i . When we concentrate our
attension on these L\’opez’s involutions, in \S 4 we have the following.

THEOREM 6. Suppose that p=2q(q\geqq 1) . There exists a free Z_{p} action
T_{A} on \Sigma_{A}\in bP_{4k} which satisfifies that if we restrict this action to the Z_{2} -

action on \Sigma_{A} , then (T_{i}, \Sigma_{i}) is equivariantly diffeomorphic to (T_{A}^{q}, \Sigma_{A}) .
S. Weintraub kindly informed me that instead of lens space

L^{4k-1}(p, a_{1^{ }},\cdots, a_{k}, a_{1^{ }},\cdots, a_{k})

one can use lens spaces L^{4k-1}(p, a_{1^{ }},\cdots, a_{2k}) with (a_{i}, p)=1 for i=1 , \cdots , 2k (see
Remark 4. 1).

1. Constructions of Z_{p}-action

This section is devoted to the preliminaries of proofs of Theorem 1, 2.
We shall present some notations which will be used frequently.

Let D^{2k}(S^{2k-1})(p, a_{1^{ }},\cdots, a_{k}) be the unit disk (sphere) in C^{k} with the Z_{p} -

action t(Z_{1}^{ },\cdots, Z_{k})=(t^{a_{1}}z_{1^{ }},\cdots, t^{a_{k}}z_{k}) , t=\exp(2\pi i/p) .
Let S^{2k}(p, a_{1}, \cdots, a_{k}) be the suspension of S^{2k-1}(p, a_{1^{ }},\cdots, a_{k}) , i . e. , the

unit sphere in C^{k}\cross R with the Z_{p} action t(z_{1^{ }},\cdots, z_{k}, x)=(t^{a_{1}}Z_{1^{ }},\cdots, t^{a_{k}}z_{k}, x) .
By L^{4k-1}(p, a_{1^{ }},\cdots, a_{k}, a_{1}, \cdots, a_{k}) we denote the (4k-1) -dimensional lens space
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with the type (a_{1^{ }},\cdots, a_{k}, a_{1^{ }},\cdots, a_{k}) . Sometimes, we write simply,

L(p)=L^{4k-1}(p)=L^{4k-1}(p, a_{1}, a_{1})=L^{4k-1}(p, a_{1^{ }},\cdots, a_{k}, a_{1}, \cdots, a_{k}) ,
L^{4k-1} (p, - a_{1}, a_{1})=L^{4k-1}(p, - a_{1}, a_{2}, \cdots, a_{k}, a_{1}, a_{2}, \cdots, a_{k}) ,

D^{2k}(p, a_{1})=D^{2k}(p, a_{1}, \cdots, a_{k}) ,
S^{2k}(p, a_{1})=S^{2k}(p, a_{1}, \cdots, a_{k}) . and so on.

The following two lemmas are crucial for our argument. Lemma 1.1
is the special case of [3, Lemma 1. 6], but it is sufficient to our need.

Lemma 1. 1. For any integer k\geqq 2 and collection \{a_{1}, \cdots, a_{k}\} with (a_{i}, p)

=1, there are D^{2k} bundles E_{+} , E_{0} and E_{-} over S^{2k} with semi-free Z_{p} actions
T satisfying

(1) T is a bundle map preserving the O-section.
(2) The action T on the 0-section is S^{2k}(p, a_{1}, \cdots, a_{k}) and T has no

fifixed points outside the O-section.
(3) The normal representations of each fifixed point are

\int D^{2k}(p_{ a_{1}},, \cdots, a_{k})\cross D^{2k}(p, a_{1}, \cdots, a_{k})|

(i) for E_{+} ,
(D^{2k}(p_{ a_{1}},, \cdots, a_{k})\cross D^{2k}(p_{ a_{1}},, \cdots, a_{k})f

(ii) /D^{2k}(p, a_{1}, \cdots, a_{k})\cross D^{2k}(p, a_{1}, \cdots, a_{k})\ldots

,
a_{k})\} for E_{0} ,1 D^{2k}(p, - a_{1}, a_{2}, \cdots, a_{k})\cross D^{2k}(p,

a_{1} ,

(iii) \int D^{2k}(p, a_{1}, \cdots, a_{k})\cross D^{2k}(p, ^{-a_{1}}’ \cdot\cdot\cdot\cdot\cdot\cdot,’ a_{k})a_{k})|\int for E_{-}

|D^{2k}(p, - a_{1}, a_{2}, \cdots, a_{k})\cross D^{2k}(p,
a_{1} ,

Here D^{2k}(p, -)\cross D^{2k}(p, -) is a local trivialization around a fifixed point.
(4) The Euler classes of bundles E_{+} , E_{0} and E_{-} are taken to be 2, 0

and -2 mod any multiple of 2p times respectively. Furthermore, these
bundles are stably trivial.

We write simply E for one of the above bundles. E has two isolated
fixed points. Let denote N_{1} , N_{2} the equivariant tubular neighborhoods of
the fixed points in E. It follows from (3) that N_{i}/Z_{p} is diffeomorphic to
L^{4k-1}(p, a_{1}, a_{1}) or to L^{4k-1}(p, - a_{1}, a_{1}) . Put W=E- int \{\bigcup_{i=1}^{2}N_{i}\}/Z_{p} .

Lemma 1. 2. W defifines a “normal cobordism” between \partial E/Z_{p} and
\{\bigcup_{i=1}^{2}\partial N_{i}/Z_{p}\} , i . e. , there is a normal map H:Warrow L^{4k-1}(p) covered by a

bundle map b:\nu_{W}arrow\nu_{L(p)} , where \nu_{W}, \nu_{L(p)} are stable normal bundles of
W, L^{4k-1}(p) respectively {note that H is not a degree 1 map). Moreover,

the map H_{-} of the boundary components \partial_{-}W=\{\bigcup_{i=1}^{2}\partial N_{i}/Z_{p}\} onto L^{4k-1}(p)
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is either the identity map or the orientation reversing diffeomorphism. Here,
the latter diffeomorphism is settled in the proof of the lemma.

PROOF OF THE Lemma 1. 1. Let
d:S^{2k}(p, a_{1^{ }},\cdots, a_{k})-S^{2k}(p, a_{1}, \cdots, a_{k})\cross S^{2k}(p, a_{1^{ }},\cdots, a_{k})

be the diagonal embedding which is invariant under the action. Let
H_{2k}(S^{2k}\cross S^{2k})=\langle\alpha\rangle+\langle\beta\rangle

with the first factor representing \alpha and the second representing \beta . For any
l\in Z, we take |l| -embedded spheres S^{2k}’s in the free part of

S^{2k}(p, a_{1^{ }},\cdots, a_{k})\cross S^{2k}(p, a_{1^{ }},\cdots, a_{k})

each of which represents \beta . Taking their equivariant connected sum with
d(S^{2k}(p, a_{1}, \cdots, a_{k})) , i . e. ,

d(S^{2k}(p_{ a_{1}},, \cdots, a_{k}))_{z_{p}}\#|l|S^{2k}\subset S^{2k}(p, a_{1}, \cdots, a_{k})\cross S^{2k}(p, a_{1}, \cdots, a_{k}) ,

we have a stably trivial normal bundle E_{+} over S^{2k} which is invariant under
the action. E_{+} has the Euler class

\chi(E_{+})=(\alpha+(pl+1)\beta)\cdot(\alpha+(pl+1)\beta)=2+2pl

Clearly, E_{+} satisfies (1), (2) and (3).
Let q be the equivariant diffeomorphism of S^{2k-1}(p, a_{1^{ }},\cdots, a_{k}) onto

S^{2k-1} (p, - a_{1}, a_{2}, \cdots, a_{k}) defined by q(z_{1}, \cdots, z_{k})=(\overline{z}_{1}, z_{2}, \cdots, z_{k}) . Here \overline{z} is the
conjugate of z in C. Denote the 2k-dimensional sphere with a Z_{p}-action
obtained by attaching D^{2k}(p, a_{1}, \cdots, a_{k}) to D^{2k}(p, - a_{1}, a_{2}, \cdots, a_{k}) by means of
g by

S_{1}^{2k}(p, a_{1^{ }}, \cdots, a_{k})=D^{2k}(p, a_{1^{ }},\cdots, a_{h})\bigcup_{g}D^{2k}(p, - a_{1}, a_{2^{ }},\cdots, a_{k})

which is again S^{2k}(p, a_{1^{ }},\cdots, a_{k}) . We also define equivariant embeddings

d’ : S_{1}^{2k}(p, a_{1^{ }},\cdots, a_{k})-S_{1}^{2k}(p, a_{1}, \cdots, a_{k})\cross S_{1}^{2k}(p, a_{1}, \cdots, a_{k})

and
\iota:S_{1}^{2k}(p, a_{1}, \cdots, a_{k})-S_{1}^{2k}(p, a_{1^{ }},\cdots, a_{k})\cross S^{2k}(p, a_{1^{ }},\cdots, a_{k})

by setting

d’((Z_{1}^{ },\cdots, z_{k}, x))=((z_{1}, \cdots, z_{k}, x), (\overline{Z}_{1}, Z_{2}^{ },\cdots, Z_{k}, X))
,\cdot

\iota(z)=(z, x_{1})j

where (z_{1^{ }},\cdots, z_{k}, x) , z\in S_{1}^{2k}(p, a_{1}, \cdots, a_{k}) and x_{1} is a fixed point of S^{2k}(p, a_{1} , \cdots ,
a_{k}) . Making use of d’-,\iota, we obtain the desired bundles E_{-} , E_{0} accordingly.
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PROOF OF Lemma 1. 2. The fixed points of S^{2k}(p, a_{1^{ }},\cdots, a_{k}) are written
as x_{1}=(\overline{0}, 1) , x_{2}=(\overline{0}, -1),\overline{0}=(0, \cdots, 0)\in C^{k} . Denote the equivariant tubular
neighborhood of x_{i} in E by N_{i} for i=1,2, as before. Make N_{i} small to
be contained in D^{2k}\cross D^{2k} of (3) of Lemma 1. 1. From the construction of
E, there exists an equivariant embedding

i:E5S^{2k}(p, a_{1})\cross S^{2k}(p, a_{1})5D^{2k+1}(p, a_{1})\cross D^{2k+1}(p, a_{1})1

It is easily seen that the equivariant normal bundle \nu_{i} of E in
D^{2k+1}(p, a_{1})\cross D^{2k+1}(p, a_{1})

is trivial, i . e. , \nu_{i}=E\cross D^{1}\cross D^{1} , and the action on the part D^{1}\cross D^{1} of \nu_{i} is
trivial. Then, we have an embedding

E- int \{\bigcup_{i=1}^{2}N_{i}\}\subset D^{2k+1}(p, a_{1})\cross D^{2k+1}(p, a_{1})-(\overline{0}\cross D^{1})\cross(\overline{0}\cross D^{1})

\cong(D^{2k}(p, a_{1})\cross D^{2k}(p, a_{1})-\overline{0}\cross\overline{0})\cross D^{1}\cross D^{1} .
It induces an embedding of the quotient spaces

i:WGL^{4k-1}(p)\cross I\cross D^{1}\cross D^{1}

which has a trivial normal bundle. Hence this defines a “normal cobordism”,
i. e. , there is a normal map H:Warrow L^{4k-1}(p) which is covered by a bundle
map b : \nu_{W}arrow\nu_{L} . Comparing with (3) of Lemma 1. 1 and looking at the
inclusion maps of the boundary components carefully, the map H of D^{2k}\cross

D^{2k}- int N_{i}/Z_{p} onto L^{4k-1}(p) is as follows with respect to E_{+} , E_{0} and E_{-}:

(i) D^{2k}(p, a_{1})\cross D^{2k}(p, a_{1})- int N_{i}/Z_{p}=L^{4k-1}(p)\cross I-L^{4k-1}(p)

H=Pr\cdot(1\cross 1) .
H_{-}=id on \partial N_{i}/Z_{p}=L^{4k-1}(p) for i=1,2

(ii) D^{2k}(p, a_{1})\cross D^{2k}(p, a_{1})- int N_{1}/Z_{p}-L^{4k-1}(p)

H=Pr\cdot(1\cross 1) . H_{-}=id on \partial N_{1}/Z_{p}=L^{4k-1}(p) ,

D^{2k}(p, - a_{1})\cross D^{2k}(p, a_{1})- int N_{2}/Z_{p}-L^{4k-1}(p)

H=Pr\cdot(c\cross 1) , H_{-}=c\cross 1 on \partial N_{2}/Z_{p}=L^{4k-1}(p, - a_{1}, a_{1}),\cdot

where c is the map induced from the map \tilde{c} of D^{2k}(p, - a_{1}) onto D^{2k}(p, a_{1})

defifined by \tilde{c}(z_{1}, z_{2^{ }},\cdots, z_{k})=(\overline{z}_{1}, Z_{2}^{ },\cdots, z_{k}) .
(iii) D^{2k}(p, a_{1})\cross D^{2k}(p, - a_{1})- int N_{1}/Z_{p}-L^{4k-1}(p)

H=Pr\cdot(1\cross c) , H_{-}=1\cross c on \partial N_{1}/Z_{p}=L^{4k-1}(p, a_{1}, - a_{1}) ,

D^{2k}(p, - a_{1})\cross D^{2k}(p, a_{1})- int N_{2}/Z_{p}-L^{4k-1}(p)

H=Pr\cdot(c\cross 1) , H_{-}=c\cross 1 on \partial N_{1}/Z_{p}=L^{4k-1}(p, - a_{1}, ai)
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Next, we consider to plumb bundles equivariantly at a fixed point or
at a free point of the actions. In particular, our aim is to consider plum-
bings on the quotient spaces.

Lemma 1. 3. Suppose that E^{i} ’s are plumbed one after another at a

fifixed point on each (i . e. , the graph is a tree) and denote M’ its resulting
manifold. Let N(pts) be the tubular neighborhoods of the fifixed points in
M’\sim

, so that they are a union of N_{i}’s of Lemma 1. 2 for i=1,2 . Then the
cobordism V’=M’- int N(pts)/Z_{p} defifines a normal cobordism G’ : V’-arrow L(p)

between \partial M’/Z_{p} and \{\bigcup_{F}\partial N_{i}/Z_{p}, i=1,2\} covered by a bundle map
b’ : \nu_{V’}-\nu_{L(p)}

Here F is the set of fifixed points.
Under the situation of Lemma 1. 3, we shall prove
Lemma 1. 4. If we do further plumbings in the free part of the action

in M’ , and if we denote its manifold by M, then the resulring cobordism
V=M- int N(pts)/Z_{p} defifines a normal cobordism G:Varrow L(p) between
\partial M/Z_{p} and \{\bigcup_{I}, \partial N_{i}/Z_{p}, i=1,2\} . The map G on the boundary components

\{\bigcup_{F}\partial N_{i}/Z_{p}, i=1,2\} is unchanged, i . e. , =G’-

PROOF OF Lemma 1. 3. The normal representations (3) of Lemma 1. 1
inform us how to plumb two bundles together equivariantly, i . e. , around
a fixed point, the two spaces D^{2k}\cross D^{2k} are equivariantly diffeomorphic by the
map h:D^{2k}\cross D^{2k}arrow D^{2k}\cross D^{2k} , h(x, y)=(y, x) . When we consider plumbings
on the quotient spaces, plumbing E^{1} with E^{2} together equivariantly at a fixed
point (for example, at x_{2}\in N_{2}\subset E^{1} and x_{1}\in N_{1}\subset E^{2}) is equivalent to taking
E^{1}- int \{N_{1}\cup N_{2}\}/T\cup E^{2}- int \{N_{1}\cup N_{2}\}/T and identifying D^{2k}\cross D^{2k}- int N_{2}/Z_{p}

with D^{2k}\cross D^{2k}- int N_{1}/Z_{p} by the induced map h’ from h. If we put the
manifold M’ when E^{1} and E^{2} are plumbed as above, the resulting cobordism
V’ is V’=M’- int \{N_{1}\cup N_{2}\cup N_{2}\}/Z_{p} , where the first N_{1} , N_{2} are in E^{1} and the
last N_{2} in E^{2}, and N_{1} in E^{2} is identified with N_{2} in E^{1} . In view of (i), (ii)
and (iii) in the proof of Lemma 1. 2, the following diagram is commutative:

D^{2k}\cross D^{2k}- int N_{2}/Z_{p}L(p)\underline{H}

(1) \downarrow h’

H
\downarrow h’

D^{2k}\cross D^{2k}- int N_{1}/Z_{p}-L(p)

The commutative diagram (1) is compatible with the bundle maps b of the
stable normal bundles which cover H. Therefore, V defines a normal
cobordism between \partial M’/Z_{p} and \{\partial N_{1}/Z_{p}, \partial N_{2}/Z_{p}, \partial N_{2}/Z_{p}\} .
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Further, if E^{2} is plumbed with E^{3} equivariantly at the unused fixed point
in E^{2}, the diagram (1) holds around the unused fixed point, so the resulting
cobordism also defines a normal cobordism. Proceeding in this way, we
finish the proof of the lemma.

PROOF OF Lemma 1. 4. We do further plumbings in the free part of
the action on M’ . This can be done by taking two disjoint trivializations
D_{i}^{2k}\cross D_{i}^{2k}\subset V’ and then identifying D_{1}^{2k}\cross D_{1}^{2k} with D_{2}^{2k}\cross D_{2}^{2k} by the map
h(x, y)=(y, x) , h:D_{1}\cross D_{1}arrow D_{2}\cross D_{2} . Lifting gives p-plumbings in the cover
M’ . Denote its manifold by M. If (G’, b’):Varrow L(p) is a normal map
of Lemma 1. 3, we can arrange, using the homotopy extension theorem,
that G’|D_{1}\cross D_{1}=(G’|D_{2}\cross D_{2})h without changing on the boundary components
\{\bigcup_{F}\partial N_{i}/Z_{p}, i=1,2\} . Let V be the resulting cobordism when we identify
D_{1}\cross D_{1} with D_{2}\cross D_{2} by h . Then, V=M- int N(pts)/Zp. The above com-
pactibility defines a map G:Varrow L(p) . By choosing a bundle equivalence
of \nu_{V’}|D_{1}\cross D_{1} with \nu_{V}|D_{2}\cross D_{2} covering h, we may arrange, using the bundle
covering homotopy theorem, that b’|(\nu_{V}|D_{1}\cross D_{1}) and b’|(\nu_{V}|D_{2}\cross D_{2}) are com-
patible to give a bundle map b:\nu\sim\nu_{L} . Hence G:Varrow L(p) is a normal
map. Repeating further plumbings in the free part of the action as above,
the above argument also holds. Therefore, this proves the lemma.

2. Proofs of Theorem 1 and 2

We shall recall a usefull algebraic result.
DEFINITION. Suppose that p is any integer. Let A and B be uni-

modular, even, symmetric matrices of the same rank. We say that A is
‘congruent mod p’ with B if there exists a matrix H, det H=\pm 1 , such
that A\equiv^{t}H\cdot B\cdot H mod p.

Then, by [3, Lemma 1.5], it follows that
(*) Any two unimodular, even, symmetric matrices of the same rank

are congruent mod p.
THEOREM 1. Suppose that p is any integer. Choose a unimodular,

even, symmetric matrix A of rank 2m(m\geqq 2) in the congruence class mod
2p and denote \sigma(A) its index. Then, for any k\geqq 2 and collection \{a_{1}, \cdots, a_{k}\}

with (a_{i},p)=1 , there is a free Z_{p} action T_{A} on a homotopy sphere \Sigma_{A}\in bP_{4k}

the Atiyah-Singer invariant of which has the form
\sigma(T_{A}^{j}, \Sigma_{A}^{4k-1})=\prod_{i=1}^{k}(\frac{1+(t^{j})^{a_{i}}}{1-(t^{j})^{a_{i}}})^{2}-\sigma(A)

Here, \Sigma_{A}=\sigma(A)/8\Sigma_{1} , the connected sum of \sigma(A)/8 -copies of \Sigma_{1}

’s, where \Sigma_{1}
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is the generator of bP_{4k} , and t=\exp(2\pi i/p) .
THEOREM 2. Let T_{A} be a free Z_{p}-action on \Sigma_{A} . Then, there exists

a homotopy equivalence f:\Sigma_{A}/T_{A}arrow L^{4k-1}(p) such that the normal invariant
\eta(f) is zero in [L^{4k-1}(p), G/O] , i. e. , \Sigma_{A}/T_{A} has the same normal cobordism
class as L^{4k-1}(p) .

PROOF OF THEOREM 1. Let P_{2m} be the symmetric, unimodular, even,
matrix of rank 2m(m\geqq 2) defined in [3],

P_{2m}=m\{\{\begin{array}{lllllllll}2 1 1 2 1 0 1 \ddots 2 1 1 0 1 1 -2 \ddots -\underline{9} 1 0 1 -\underline{?}\end{array}\}

.

It follows from (*) that there exists a matrix H, det H=\pm 1 such that

(2. 1) P_{2m}\equiv {}^{t}H\cdot A\cdot H mod 2p .
Rearrange (2. 1) as follows.

(2. 2) X+Y={}^{t}H\cdot A\cdot H_{\wedge}

, where

X=\{\begin{array}{llll}x_{11} 1 01 x_{22}1 1 \ddots 10 1 x_{2m2m}\end{array}\} , Y=\lfloor 0\backslash ’\downarrow\backslash |\nearrow............10.\backslash \prime\prime\prime\triangleright 0

satisfying that x_{ii}\equiv 2(2p) for 1\leqq i\leqq m , x_{m+1m+1}\equiv 0(2p) and x_{ii}\equiv-2(2p)

for m+2\leqq i\leqq 2m , and each entry of * in Y is a multiple of p-times.
We can take bundles E^{i} ’s, i=1 , \cdots , 2m from Lemma 1. 1 each of which

satisfies \chi(E^{i})=x_{ii} , plumbing E^{i} with E^{i+1} together equivariantly at a fixed
point of the Z_{p}-action on each. We can do this equivariantly from the
normal representations (3) of Lemma 1. 1 since E^{i} is the type E_{+} untill i=m,
E^{m+1} is the type E_{0} , and E^{i} is the type E_{-} for i=m+2, \cdots , 2m. Thus we
obtain a Z_{p}-manifold with boundary M’ which has the plumbing matrix X.
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M’ has (2m+1) -isolated fixed points. Let N((2rn+1)pts) be the equivariant
tubular neighborhoods of (2 m+1) -fixed points in M’ and put

V’=M’- int N((2m+1)pts)/Z_{p} .
By Lemma 1. 3, there is a normal map G’ : Varrow L^{4k-1}(p) between \{\bigcup_{F}\partial N_{i}/Z_{p} ,

i=1,2\} and \partial M’/Z_{p} . Looking at the boundary components, we see that

(G’| \{\bigcup_{F}\partial N_{i}/Z_{p}\} , \{ \bigcup_{F}\partial N_{i}/Z_{p}\})

=((m+1)(L(p), id)\cup m(L(p, - a_{1}, a_{1}) , c\cross 1)),
so that G’ has degree 1. So far, M’ is simply connected, and \pi_{1}(V’)=Z_{p} .
Hence G’ : V’arrow L(p) is a normal map in the usual sense. Now, to realize
Y, all other plumbings in M’ must be done by a multiple of p-times. We
can do them equivariantly in the free part of E^{i} ’s of the action. We have
a manifold with boundary M which admits a Z_{p}-action with (2m+1) fixed
points inside M. We then put

V=M-int N((2m+1)pts)/Z_{p} ‘

It follows from Lemma 1.4 that
(1) there is a normal map G:Varrow L(p) between \partial M/Z_{p} and

\{(m+1)(L(p), id)\cup m(L(p, - a_{1}, a_{1}) , c\cross 1)\}

(of course, G has degree 1).
From the standard theory of plumbing, it follows that M is connected,

\pi_{1}(\partial M)=\pi_{1}(M) is free, and

H_{i}(\partial M)=H_{i}(M)=0 for 1<i<2k-1 : H_{2k-1}(M)=0

Put (G|\partial_{+}V, \partial_{+}V)=(f’, \partial M/Z_{p}) . Since f’ has degree 1, so \pi_{1}(f’)=0 . There
is no obstruction to doing a normal surgery on a generator in

\pi_{2}(f’)=Ker\{f_{*}’ : \pi_{1}(\partial M/Z_{p})-\pi_{1}(L(p))\} ,

so there is a trace W and a normal map F’ : Warrow L(p) between \partial M/Z_{p} and
\partial_{+}W such that f=F|\partial_{+}W is 2-connected. Then, we set
V_{1}=V\cup W and M_{1}=M\cup\overline{W}(=\tilde{V}_{1}\cup N(2m+1)pts) along \partial M/Z_{p} and \partial M re-
spectively. Put \partial_{+}W=L .

(2) V_{1} is a normal cobordism between

((m+1)(L(p), id)\cup m(L(p, - a_{1}, a_{1}) , c\cross 1) ) and L

The universal cover \overline{L} bounds the parallelizable manifold M_{1} . Since the
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intersection matrix on the bilinear form H_{2k}(M_{1})\cross H_{2k}(M_{1})arrow Z is the plumb-
ing matrix (X+Y) which is unimodular, and from the above facts, it con-
cludes that \pi_{i+2}(f)=\pi_{i+1}(\overline{L})=0 for all i\geqq 0 . Hence, f is a homotopy equiva-
lence of L onto L^{4k-1}(p) .
Denote the Z_{p} action on M_{1} by T, and then put \tilde{L}=\Sigma_{A}\in bP_{4k} and T|\tilde{L}=

T_{A} (we called ( T_{A} , \Sigma_{A}) “Weintraub’s action” in Introduction). Since genera-
tors of H_{2k}(M_{1}) consist of invariant (2k) -spheres and the induced action is
trivial on homology, we have

Sing(T, M_{1}) = Index of the intersection matrix on H_{2k}(M_{1})

=\sigma(A) ,

the local invariants

L(T, \cdot M_{1})=\sum_{i=1}^{2m+1}L(T, x_{i}) . x_{i} the fixed points

=(m+1) \prod_{i=1}^{k}(\frac{1+t^{a_{i}}}{1-t^{a_{i}}})^{2}-m\prod_{i=1}^{k}(\frac{1+t^{a_{i}}}{1-t^{a_{i}}})^{2}

= \prod_{i=1}^{k}(\frac{1+t^{a_{i}}}{1-t^{a_{i}}})^{2}

.

It follows that \Sigma_{A}=\sigma(A)/8\Sigma_{1} and the Atiyah-Singer invariant

\sigma(T_{A}, \Sigma_{A})=\prod_{i=1}^{k}(\frac{1+t^{a_{i}}}{1-t^{a_{i}}})^{2}-\sigma(A) .

This proves the Theorem 1.

PROOF OF THEOREM 2. By (1), (2) in the proof of Theorem 1, there is
a normal cobordism F:V_{1}arrow L(p) between

((m+1)(L(p), id)\cup m(L(p, - a_{1}, a_{1}) , c\cross 1) ) and L=\Sigma_{A}/T_{A} .

Since c\cross 1:L(p, - a_{1}, a_{1})arrow L(p) is the orientation reversing diffeomorphism,
there is a normal cobordism W_{1} between

((m+1)(L(p), id)\cup m(L(p, - a_{1}, a_{1}) , c\cross 1) ) and (L(p), id)

Combing these cobordisms V_{1} , W_{1} , there exists a normal cobordism G:V_{2}arrow

L(p) between (L(p), id) and (\Sigma_{A}/T_{A},f) completing the proof of Theorem 2.
NOTE 1. Clearly, we can take W_{1} such that the intersection form on

H_{2k}(\overline{W}_{1}) does not affect that on H_{2k}(V_{2}) . The intersection form on H_{2k}(V_{2})

is the same as that on H_{2k}(M_{1}) , i . e. , \sigma(V_{2})=\sigma(M1=\sigma(A) , because H_{2k}(V_{2})=

H_{2k}(\tilde{V}_{1})=H_{2k}(M_{1}) , V_{2}=V_{1}\cup W_{1} .
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NOTE 2. For any i\in Z, we can take a unimodular, even, symmetric
matrix with index 8/. So, we can take it as A for the above normal c0-

bordism (G, V_{2}) . Then, we can derive (iii) of Theorem 13 A. 4 [4] for the
case of a cyclic group \pi .

COROLLARY 3. The transfer \tau:L_{0}^{h}(Z_{p})arrow L_{0}(1) is onto for any integer p.

3. Effects on the action

If one fixes the rank of a unimodular, even, symmetric matrix, by (*)

in \S 2, so many “Weintraub’s actions” are constructed. We consider these
actions under the calculations of Wall groups L_{0}^{\epsilon}(Z_{p})(\epsilon=h, s) .

THEOREM 4. Suppose that p is any odd integer or 2, 4 and 6. Let
A_{i} be a unimodular, even symmetric matrix for i=1,2 . There is a free
Z_{p} action ( T_{A_{i}} , \Sigma_{A}.J as in Theorem 1. Then, \Sigma_{A_{1}}/T_{A_{1}} is h -cobordant to \Sigma_{A_{2}}/T_{A_{2}}

if and only if \sigma(A_{1})=\sigma(A_{2}) . In particular, \Sigma_{A}/T_{A} is h -cobordant to L^{4k-1}(p)

if and only if \sigma(A)=0 .
The following is an immediate consequence of the Theorem, since

Wh(Z_{2})=0 .
COROLLARY 5. Let (T_{A_{i}}, \Sigma_{A_{i}}) be a free involution on a homotopy sphere

for i=1,2 . Then, (T_{A_{1}}, \Sigma_{A_{1}}) is equivariantly dijfeomorphic to (T_{A_{2}}, \Sigma_{A_{2}}) if
and only if \sigma(A_{1})=\sigma(A_{2}) . In particular, (T_{A}, \Sigma_{A}) is equivariantly diffeO-
morphic to (a, S^{4k-1}) if and only if \sigma(A)=0 . Here, a is the antipodal map
on the standard sphere S^{4k-1} .

We quote the Theorem of Wall [4]. Let R(Z_{p}) denote the complex
representation ring of Z_{p} . Using the ideas of Atiyah-Singer, we can define
a homomorphism called the “Multi-signature invariant”

\rho:L_{0}^{\epsilon}(Z_{p})-R(Z_{p}) by setting

\rho(t^{i}, x)=tracet_{*}^{i}|H_{2k}(\overline{W})_{+}- free t_{*}^{i}|H_{2k}(\overline{W})_{-} . i=1 , \cdots , p-1
Here t is a generator of Z_{p} and x=\theta(F, W)\in L_{0}^{\epsilon}(Z_{p}) , where

F:W^{4_{-}}L^{4k-1}(p)\cross I

is a normal map. In this case, the following alternative formula is deduced
from the definition

\rho(t^{i}, x)=\sigma(t^{i}, \partial_{+}W)-\sigma(t^{i}, \partial_{-}W)- , i=1 , \cdots , p-1
THEOREM (Wall). Suppose that p is any odd integer or 2, 4 and 6.

Then, the multi-signature \rho is injective on the summand L_{0}^{h}(Z_{p}\tilde{)}, where
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L_{0}^{h}(Z_{p}\tilde{)} is the reduced Wall group.
The proof is seen in [4, Theorem 13 A. 4, (ii)] and [5].

PROOF OF THEOREM 4. We have a normal cobordism between (L(p), id)
and (\Sigma_{A_{i}}/T_{A_{i}},f_{i}) as in Theorem 2. Denote the normal cobordism by Y_{i}

for i=1,2 , respectively. By note 1 \sigma(\tilde{Y}_{i})=\sigma(A_{i}) . Put X=Y_{1}\cup-Y_{2} . Then,
there is a normal cobordism F:Xarrow L(p) between \Sigma_{A_{1}}/T_{A_{1}} and \Sigma_{A_{2}}/T_{A_{2}} . Set
the surgery obstruction of F

x=\theta(F, X)\in L_{0}^{h}(Z_{p})

For the multi-signature of x, it follows by Theorem 1 that

\rho(T^{j}, x)=\sigma(T_{A_{1}}^{j}, \Sigma_{A_{1}})-\sigma(T_{A_{2}}^{j}, \Sigma_{A_{2}})

=\sigma(A_{1})-\sigma(A_{2})j i=1 , \cdots\prime p-1

If \sigma(A_{1})=\sigma(A_{2}) , by the above Theorem, x lies in the summand L_{0}(1)\subset L_{0}^{h}(Z_{p}) .
Hence, x is written m\chi_{R} for some m\in Z, where \chi_{R} is the regular representa-
tion of Z_{p} . Taking a p-fold covering of x, it follows that \tilde{x}=\theta(\tilde{F},\tilde{X})=pm .
Since \theta(\tilde{F},\tilde{X})=\sigma(\tilde{X})=\sigma(\tilde{Y}_{1})-\sigma(\tilde{Y}_{2})=0 , m must be zero, i. e. , \theta(F, X)=0 .
Hence, \Sigma_{A_{1}}/T_{A_{1}} is h -cobordant to \Sigma_{A_{2}}/T_{A_{2}} . Conversely, if \Sigma_{A_{1}}/T_{A_{1}} is h-cobor-
dant to \Sigma_{A_{2}}/T_{A_{2}} , then the Atiyah-Singer invariants of these must agree.
Hence, from our computations in Theorem 1, \sigma(A_{1})=\sigma(A_{2}) . The rest
of the Theorem follows from the fact that the Atiyah-Singer invariant of

L(p)=L^{4k-1}(p, a_{1^{ }},\cdots, a_{k}, a_{1}, \cdots, a_{k}) is \prod_{i=1}^{k}(\frac{1+t^{a_{i}}}{1-t^{a_{i}}})^{2}

REMARK 3. 1. According to the method of Theorem 1, we have a
plumbing manifolds with the plumbing matrix P_{2m} (see Proof of Theorem 1).
If we concentrate on the boundary, i. e. , on (T_{P_{2m}}, \Sigma_{P_{2m}}) , \Sigma_{P_{2m}} is S^{4k-1} ob-
tained by attaching S^{2k-1}\cross D^{2k} to D^{2k}\cross S^{2k-1} by means of

\psi(x, y)-(x, u(x)y) on S^{2k-1}\cross S^{2k-1}
,\cdot

where u:S^{2k-1}arrow SO(2k) is the characteristic map of the tangent bundle
\tau of S^{2k} . \psi makes sense for y\in D^{2k} and hence extends to an equivariant
diffeomorphism of S^{2k-1}\cross D^{2k} onto itself.
Thus (T_{P_{2m}}, \Sigma_{P_{2m}}) is equivariantly diffeomorphic to the linear Z_{p}-action on
S^{4k-1} which induces just L^{4k-1}(p, a_{1}, \cdots, a_{k}, a_{1}, \cdots, a_{k}) .

4. L\’opez’s involutions

P. Orlik and C. P. Rourke [2]
L\’opez’s construction.

proved the following theorem using
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THEOREM. For each i there exists a homotopy sphere \Sigma_{i}^{4k-1} , bounding
a parallelizable manifold M_{i} , and an involution T_{i} such that

I(T_{i}, \Sigma_{i})=\sigma(M_{i})=8i

First, we show that \Sigma_{i}/T_{i} is normally cobordant to the standard pr0-

jective space P^{4k-1}(k\geqq 2) .

Lemma 4. 1. There exists a normal cobordism X_{i} between P^{4k-1} and
\Sigma_{i}/T_{i} so that \sigma(\tilde{X}_{i})=8i .

This lemma depends only on the proof of the above theorem if one
takes care of normal maps. So, we sketch its proof for the necessity of
recalling the L\’opez’s construction. We use the same notations as [2], It
is sufficient to prove the case i=1 .

Let T_{0} : S^{4k-1}arrow S^{4k-1} be the antipodal map and W=S^{4k-2}\# 4(S^{2k-1}\cross S^{2k-1})

Z_{2}

be a characteristic submanifold of S^{4k-1} , i . e. , S^{4k-1}=V\cup T_{0}V, V\cap T_{0}V=W.
Since W/T and P^{4k-2} are characteristic submanifolds of P^{4k-1} , there is a char-
acteristic cobordism Y joining them so that S^{4k-1}\cross I=X^{4k}\cup TX^{4k} , X\cap TX=\tilde{Y}

and \partial X=V\cup\tilde{Y}\cup D^{4k-1} . If F:Yarrow P^{4k-2} is a normal map, then \tilde{F}:\tilde{Y}arrow S^{4k-2}

extends to a normal map G:Xarrow D^{4k-1} .
Let \{\alpha_{1}, \cdots, \alpha_{8}, \beta_{1}, \cdots, \beta_{8}\} be a standard basis for H_{2k-1}(W) chosen so that

\alpha_{i}\in Ker\{i_{*} : H_{2k-1}(W)arrow H_{2k-1}(V)\} and \beta_{i}\in Ker\{i_{*} : H_{2k-1}(W)arrow H_{2k-1}(T_{0}V)\} .
Choose new generators \alpha_{i}^{*}=p_{ij}\alpha_{j}+q_{ij}\beta_{j} , i=1 , \cdots , 8. The matrices P=(p_{ij})

Q=(q_{ij}) are given explicitly in [1]. So, we perform surgery on the

\alpha_{i}^{*}e Ker \{\tilde{f}_{*}: H_{2k-1}(W)-H_{2k-1}(S^{4k-2})\} .

obtaining a normal cobordism h:Aarrow S^{4k-2} between \tilde{f}:Warrow S^{4k-2} and a h0-
motopy equivalence Karrow S^{4k-2} . Then, they showed that V \bigcup_{W} A is a (4k-1)-
disk. Thus K is a standard sphere. Attach a disk D on V\cup A so that

W

V \bigcup_{W}A\cup D is a sphere bounding a 4k disk B (see Figure 1). The normal
map (G|V)\cup h:V\cup Aarrow D^{4k-1}\cup S^{4k-2}=D^{4k-1} extends to a normal map

W

H:V\cup A\cup Darrow\partial(D^{4k-1}\cross I) . Again, H extends to a normal map \overline{H} : Barrow
W

D^{4k-1}\cross I. Combining with G, there is a normal map

\overline{G} : X \bigcup_{V}B-D^{4k-1}\cup D^{4k-1}\cross I=D^{4k-1}\cross I-D^{4k-1}\tau

Put B’=X\cup B . Let B’*be another copy of B’ . We obtain a parallelizable
v

manifold M’ with a free involution T, M’=B’\cup B’* , glued on (T,\tilde{Y}) . Then,

M’/T is a cobordism between P^{4k-1} and a “L\acute{o}pez’ s(T,\tilde{Y}) involution \Sigma_{1}/T_{1}
”
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Fig. 1.

Let \eta_{P} be the normal bundle of P^{4k-2} in P^{4k-1} , and \eta_{Y} the normal bundle
of Y in M’/T Then, \partial E(\eta_{P})=S^{4k-2} , \partial E(\eta_{Y})=\tilde{Y} and P^{4k-1}=E(\eta_{P})\cup D^{4k-1} ,
M’/T=E(\eta_{Y})\cup B’ . Since F:Yarrow P^{4k-2} is a normal map, the same is true for
E(F):E(\eta_{Y})arrow E(\eta_{P}) , because \eta_{Y} is the pull-back of \eta_{P} . Now, \overline{G} : B’arrow D^{4k-1}

is also a normal map. Hence, M’/T defines a normal cobordism between
P^{4k-1} and \Sigma_{1}/T_{1} . For the rest of the lemma, the boundary (T_{0}, S^{4k-1}) of
M’ bounds a disk D^{4k} with the antipodal map. Put M=M’\cup D^{4k} . Then,
M=B\cup C\cup B^{*} , where C is the standard (4k) -disk with boundary S^{4k-1}=

v v*
V\cup T_{0}V. Then, it has been shown in [2] that \sigma(M’)=\sigma(M)=8 .

Consequently, we can say that in general case (T_{i}, \Sigma_{i}) bounds an M_{i}

which admits an involution T with only one fixed point, and if we remove
the interior of a disk D of the fixed point from M_{i} , then M_{i} int D/T is
a normal cobordism between P^{4k-1} and \Sigma_{i}/T_{i} so that \sigma (M_{i}- int D) =8i.

THEOREM 6. Suppose that p=2q(q\geqq 1) . There exists a free Z_{p}-act\iota on

T_{A} on a homotopy sphere \Sigma_{A}\in bP_{4k} which satisfifies that: If we restrict
this “Weintraub’s action” to the Z_{2}-action on \Sigma_{A}, then the above “L\’opez’s
involution” (T_{i}, \Sigma_{i}) is equivariantly diffeomorphic to (T_{A}^{q}, \Sigma_{A}) for any q.

PROOF. By Lemma 4. 1, there is a normal cobordism X_{i} such that
\sigma(\tilde{X}_{i})=8i . Let F_{i} : X_{i}arrow P^{4k-1} be a normal map between P^{4k-1} and \Sigma_{i}/T_{i} .
Then, the surgery obstruction of F_{i} is
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(1) \theta(F_{i})=(\sigma(X_{i}), \sigma(\tilde{X}_{i}))=(8i, 8i)\in L_{0}(Z_{2}) .

This follows from the fact that
2\sigma(X_{i})-\sigma(\tilde{X}_{i})=I(T_{i}, \Sigma_{i})-I(a, S^{4k-1})=8i

Take a free Z_{p} -action T_{A} on \Sigma_{A} from Theorem 1 such that \sigma(A)=8i (for
example, a direct sum of i-copies of the well known (8\cross 8) matrix E_{8}). By
Theorem 2 and Note 1, we have a normal cobordism (G, Y) between L(p)
and \Sigma_{A}/T_{A} such that \sigma(\tilde{Y})=\sigma(A)=8i . Since the Atiyah-Singer invariant \sigma

and the Browder-Livesay invariant I agree for involutions, so if Y^{q} is the
q-fold covering of Y, so that (G_{q}, Y_{q}) is a normal cobordism between P^{4k-1}

and \Sigma_{A}/T_{A}^{q} , then it follows that

(2) \theta(G^{q})=(\sigma(Y^{q}), \sigma(\tilde{Y}))=(8i, 8i)\in L_{0}(Z_{2})t

From (1) and (2), there is an h-cobordism between \Sigma_{i}/T_{i} and \Sigma_{A}/T_{A}^{q} (note
that \Sigma_{A}=\sigma(A)/8\Sigma_{1}) . Hence, (T_{i}, \Sigma_{i}) is equivariantly diffeomorphic to (T_{A}^{q}, \Sigma_{A}) .

REMARK 4. 1. We have the analogous results for lens spaces L^{4k-1}(p,
a_{1} , \cdots , a_{k}) instead of lens spaces L^{4k-1}(p, a_{1^{ }},\cdots, a_{k}, a_{1^{ }},\cdots, a_{k}) . Let \{a_{1^{ }},\cdots, a_{2k}\} be
any collection with (a_{i}, p)=1 and b an integer which reduces to \prod_{i=k+1}^{2k}a_{i}’\prod_{i=1}^{k}a_{i}

mod p. Let \overline{b} reduce b^{-1} mod p. Instead of P_{2m} , we use the following
matrix due to S. Weintraub.

P_{2m}(b)=\{\begin{array}{llllllllllll}2b 1 1 2\overline{b} 1 0 \ddots 2b 1 1 2\overline{b} 1 1 0 1 1 -2\overline{b} 1 1 -2b 0 \ddots -2b 1 1 -2\overline{b}\end{array}\}

Then, we can construct the bundles with Z_{p} actions E_{\pm},\overline{E}_{\pm} and E_{0} which
have the Euler classes congruent with \pm 2b , \pm 2\overline{b}, 0 mod 2p accordingly.
The results follow similarly.
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